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Abstract: In this paper, we propose an effective directional Bayer color filter array (CFA) demosaicking
algorithm based on residual interpolation (RI). The proposed directional interpolation algorithm
aims to reduce computational complexity and get more accurate interpolated pixel values in the
complex edge areas. We use the horizontal and vertical weights to combine and smooth color
difference estimations. Compared with four directional weights in minimized Laplacian residual
interpolation, the proposed algorithm not only guarantees the quality of color images but also reduces
the computational complexity. Generally, the directional estimations may be inaccurately calculated
because of the false edge information in irregular edges. We alleviate it by using a new method to
calculate the directional color difference estimations. Experimental results show that the proposed
algorithm provides outstanding performance compared with some previous algorithms, especially in
the complex edge areas. In addition, it has lower computational complexity and better visual effect.

Keywords: image demosaicking; color filter array (CFA); Bayer pattern; directional interpolation;
residual interpolation (RI)

1. Introduction

In recent years, many more people choose digital cameras to take pictures. Each digital color
image needs at least three color samples at each pixel. To achieve the requirement, cameras have to set
three sensors to get red (R), green (G), and blue (B) components at each pixel. However, in view of
equipment costs, there is only one signal sensor set at each pixel. The sensors compose a color filter
array (CFA). The CFA needs only one color to be observed and the other two missing colors can be
estimated at each pixel. The process of estimation is called demosaicking [1]. The method effectively
reduces the density of the sensors.

Bayer pattern CFA [2] is the most common pattern for CFA, as shown in Figure 1. The G pixels
are estimated on a quincunx grid, while R or B pixels are estimated on a rectangular grid in Bayer
pattern CFA. The density of G pixels is as twice as that of R or that of B in Bayer pattern CFA,
because the peak sensitivity of human visual system (HVS) lies in the wavelength of G light.

For the original Bayer pattern CFA, the commonly used demosaicking algorithms include
the nearest neighbor interpolation [3], bilinear interpolation [4], and bicubic interpolation [5].
These demosaicking algorithms generate the other two missing colors at each pixel with linear
averaging color pixel values. They can be widely applied in a real-time system because of the
lower computational complexity. However, they have significant zipper artifacts around line edges in
demosaicking images.
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Figure 1. Bayer pattern CFA.

To solve this problem, several demosaicking algorithms [6–8] have been proposed. Malvar [6]
proposed a high-quality linear interpolation algorithm for CFA demosaicking. It presents a
simple linear demosaicking filter that has better performance and lower computational complexity.
Many previous demosaicking algorithms are based on inter-channel color difference interpolation.
For instance, Yu [7] proposed a novel demosaicking algorithm exploiting joint intra-channel color
correlation and inter-channel color difference, but it does not perform well enough when images
have sharp color transition areas. Normally, G pixel values are first interpolated in most Bayer
pattern CFA demosaicking algorithms, since the density of G pixel is as twice as that of R or that
of B. On the contrary, Zhang et al. [8] proposed a novel demosaicking algorithm that estimated two
independent chrominance components (R and B). Then they estimated the luminance component (G).
As a result, the demosaicking algorithm can avoid the associated estimation error.

Although the above mentioned nonadaptive algorithms [6–8] have lower computational
complexity for the CFA, most of them perform color directional interpolation based on the
estimated gradient. However, the gradient estimations of the methods may not be robust in
texture areas and edges. Based on the directional linear minimum mean square-error estimation
(DLMMSE) framework, Zhang and Wu [9] proposed an adaptive algorithm to improve the problem.
They assumed that the primary difference signals between G and R or G and B channels are low-pass.
In both horizontal and vertical directions, the missing G pixel values are adaptively estimated
by DLMMSE. Some demosaicking algorithms provide novel contributions such as square-on-point
neighborhood and lattice variables [10]. In [10], a corrective term and localized polling were used to
improve the performance of the reconstructed images. However, the corrective term is empirically
derived. Shi et al. [11] demonstrated that the input image is divided into two different area types and
each type adopts different interpolation respectively. In edge areas, they recovered edge information
with weights by using multidirectional components. The demosaicking algorithm has the advantages
of region adaptation. Chen and Chang [12] detected edge characteristics by comparing color difference
in horizontal and vertical directions. Then they used different weighted interpolation to effectively
reduce the color artifacts at the edge of the image and enhance the image quality. Pekkucuksen
and Altunbasak [13] exploited an orientation-free edge strength filter to estimate edge information,
and applied it to reconstruction process. However, the demosaicking algorithm failed in utilizing
spectral correlation.

To solve this problem, Tsai and Song [14] proposed a novel edge-adaptive demosaicking algorithm,
which reduces the aliasing error in R and B channels by exploiting high-frequency information of the
G channel. Adams and Hamilton [15] exploited chrominance and luminance with 5× 5 neighborhoods
interpolation equation. The advantage of method is computationally efficient in both execution time
and memory storage requirements. On the basis of this interpolation method, several demosaicking
algorithms [16–18] have been proposed. Pekkucuksen and Altunbasak [16] designed a gradient-based
threshold free color filter. It combined the estimations of color difference from each direction
into a gradient without setting the thresholds. To estimate different directions, in [17], the color
differences were combined by using multiscale color gradients adaptively. This algorithm does not
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need any threshold because it makes no hard decision. Chen et al. [18] proposed an algorithm by
combining voting-based edge direction detection with weighting-based interpolation, because some
other algorithms may use false edge information in irregular edges.

The residual interpolation (RI) method has been widely used recently [19–25]. The RI algorithm
exploited the characteristics of the guided filter [26] and showed outstanding performance [19].
Kiku et al. [20] incorporated the RI into the gradient-based threshold free algorithm. The better
the interpolation results of images are, the smaller the Laplacian energies of images will have.
In this way, the RI algorithm combined with minimizing the Laplacian energies of the residuals,
which is termed as minimized Laplacian RI (MLRI) [21]. Ye and Ma [22] exploited iterative RI
process and reconstructed a highly accurate G channel to reduce reconstruction error for the first time.
Wang and Jeon [23] reconstructed only R and B channels by using RI algorithm, while the missing color
components of G channel were estimated by eight-direction weighted color difference interpolation.
The demosaicking algorithm effectively combined the advantages of color difference interpolation and
residual interpolation. Kim and Jeong [24] proposed a four-directional RI algorithm to reduce severe
demosaicking artifacts. The adaptive residual interpolation (ARI) algorithm [25] adaptively combined
two RI-based algorithms and selected the appropriate number of iterations at each pixel to improve
the existing RI-based algorithm. However, the weakness of this algorithm is that the algorithm has
high computational complexity.

Furthermore, a demosaicking algorithm was proposed for the multispectral filter array about
RI in [27]. There are some demosaicking algorithms based on other patterns such as RGB-white
color filter arrays [28]. The image reconstructed in [28] contains much important information that
cannot be perceived in the color image reconstructed by conventional CFA. However, they still have
other artifacts, and further improvements are needed.

RI can be used as an alternative to the widely used color different interpolation and it performs
better in some image datasets. MLRI has better interpolation results because the images have smaller
Laplacian energies. Furthermore, MLRI also produces other artifacts in some complex edge areas.
However, we find that the directional color difference estimations are not completely the same as the
actual values sometimes. With the process of research, we think the problem can be solved by reducing
the weights of directional color difference estimations. This paper proposes an effective directional
residual interpolation algorithm for color image demosaicking based on MLRI. We use the two weights,
horizontal and vertical weights, while there are four directional weights in MLRI. In this way,
our method reduces the computational complexity. Afterwards, we use a novel method to calculate the
directional color difference estimations, and to combine and smooth the color difference estimations.
The proposed algorithm can effectively reduce the influence of false edge information in irregular edges.
In the following experiments, our proposed algorithm outperforms previous algorithms and provides
better color fidelity.

The rest of this paper is organized as follows. Section 2 starts with a brief of MLRI and related work.
The proposed method is described in Section 3. Experimental results of the proposed method are
presented in Section 4. Conclusions and remarks on possible future work are given in Section 5.

2. Related Work

2.1. The Outline of MLRI

The proposed algorithm is based on MLRI. First, we introduce the outline of MLRI.
The interpolation process of the G pixel can be divided into three steps in MLRI.

Step 1. The G pixel values are calculated through residuals at the location of R and B pixels from
horizontal and vertical directions. R and B pixel values also are calculated at the location of
G pixels. The calculation of the residuals replaces the calculation of the color difference in
Adams and Hamilton’s interpolation equation [15].
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Step 2. MLRI calculates both horizontal and vertical color difference estimations based on Step 1 at each
pixel, then MLRI combines and smooths the color difference estimations.

Step 3. The color difference estimations are added to the observed R or B pixel values. It aims to
interpolate G pixel values.

After interpolating the G pixel, MLRI interpolates the R and B pixel values, and the method
simply replaces the traditional method of using color difference as shown in Figure 2.

In the past decades, color difference interpolation has been used gradually in image demosaicking.
However, residual interpolation has been used recently in MLRI. MLRI uses a novel filter called
guided filter. We compare the process of MLRI with that of the color difference interpolation in
calculating R pixel. The process of calculating B pixel is similar.

We introduce the process of color difference interpolation to help us understand the process
of MLRI. Firstly, the missing pixel in G image is the average of four observed G pixels around it.
By this way, it can get G pixel values at each pixel to combine the interpolated G image. Secondly,
the color differences between R and G are calculated at the locations of R pixel by subtracting
the interpolated G pixel values from the observed R pixel values (R − G). Then color differences
are interpolated. Finally, an interpolated R image can be calculated by adding G pixel values to the
interpolated color image.

Figure 2 shows the interpolation of the R pixel values by using MLRI in detail according to [21].
First, it can get the interpolated G image as the same method as the color difference interpolation.
To minimize the Laplacian energies of the residuals, the guided image and the input image are
first passed through a sparse Laplacian filter. The sparse Laplacian filter with MLRI is shown

in Table 1. Then MLRI uses the guided filter to generate the tentative estimation of the R (
^
R) image.

The interpolated G image is used as the guided image, and the observed R image is used as the
input image. After that, tentative estimation of the R image uses a mask to obtain the value at the
location of R image. Then minimized Laplacian residuals are calculated at the location of R pixel by

subtracting the tentative estimation
^
R

H
values from the observed R pixel values (R−

^
R). Then MLRI

interpolates the residuals. Finally, an interpolated R image can be calculated by adding the
^
R image to

the interpolated residual image.

Figure 2. The interpolation of the R pixel values by using MLRI.

Table 1. The sparse Laplacian filter used in MLRI.

Direction G Channel Interpolation R and B Channels Interpolation

Horizontal ( 1 0 −2 0 1 )


0 0 1 0 0
0 0 0 0 0
1 0 −4 0 1
0 0 0 0 0
0 0 1 0 0

Vertical


1
0
−2
0
1
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2.2. Guided Filter

As an example, we describe how to get the
^
R image by the guided filter in detail. The guided

filter can accurately transfer the structures of the guided image to the filtered output. It has a good
performance in edge-preserving smoothing and does not suffer from reversal artifacts. Thus, it can
be used in demosaicking area. Furthermore, the guided filter also can be applied in denoising,
edge-preserving, dehazing, and guided feathering.

The interpolated G image can be regarded as a guided image, and the observed R image can be
regarded as an input image. To minimize the Laplacian energies of the residuals, the guided image
and the input image are first passed through a sparse Laplacian filter. After that, the guided image
uses a mask to obtain the value at the location of input image.

The guided filter assumption is a local linear model between the guided image I and the filtering
output q in a window as shown in Equation (1):

qi = ak Ii + bk, ∀i ∈ wk, (1)

where i is the pixel in wk, and wk is a window centered at the pixel k; (ak, bk), which are assumed to be
constant, are linear coefficients in wk. To determine the linear coefficients (ak, bk), the cost function is
given as:

E(ak, bk) = ∑
i∈wk

(ak Ii + bk − pi)
2, (2)

where pi is a pixel at wk in the input image. To minimize Equation (2), the solution is given by:

ak =

1
|w| ∑

i∈wk

Ii − µk pk

σ2
k

, (3)

bk = pk − akµk, (4)

where µk and σ2
k are the mean and variance of I in wk, |w| is the number of pixels in wk,

and pk = 1
|w| ∑

i∈wk

pi is the mean of p in wk. However, a pixel i is involved in all the overlapping

windows wk that covers i. The value of qi in Equation (1) is not identical when it is computed in
different windows, so we rewrite Equation (1) by:

qi = ai Ii + bi, (5)

where ai =
∑

k∈wi

ak

|w| and bi =
∑

k∈wi

bk

|w| are the average coefficients of all windows overlapping i.

3. The Proposed Demosaicking Algorithm

Our proposed demosaicking algorithm, which is a high-performance algorithm, is based on
MLRI. We designed a new method that could effectively calculate the horizontal and vertical weights.
It can also combine and smooth the horizontal and vertical color difference estimations. It improves
the visual effect of the complex texture region. Compared with four directional weights in MLRI,
the amount of calculation in the proposed demosaicking algorithm is efficiently reduced.

It is vital to interpolate the missing G pixel values because the peak sensitivity in HVS lies in the
wavelength of the green light. Since the missing G pixel values are the key to the performance of the
proposed algorithm, we first estimate the G pixel values at each pixel. Then we estimate the R and B
pixel values, which are based on the interpolated G pixel values.

Similarly, compared with MLRI, the interpolation processes of the missing G pixel values can be
divided into three steps in the same way as that in MLRI [21].
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Step 1. The linear color difference interpolation in Adams and Hamilton’s interpolation equation [15]
can be replaced by MLRI [21]. Then the new equation estimates the G, R, and B pixels in
horizontal and vertical directions, so we can get GH, GV, RH, RV, BH, and BV.

Step 2. The horizontal and vertical color difference estimations are calculated, and we can generate the
horizontal and vertical weights at each pixel.

Step 3. To get color difference, the horizontal and vertical color difference estimations are combined
and smoothed by two directional weights. As a result, the G pixel values at the location of R
and B pixels are generated by adding final color difference to the observed R or B pixel values.

To sum up, the outline of the interpolation processes of the missing G pixel values is shown
in Figure 3.

Figure 3. The outline of the proposed algorithm.

3.1. The Calculation Process of Directionaly Estimated Pixel Value

In Step 1, the Adams and Hamilton’s interpolation equation [15] can be considered as a
linear model, as shown in Figure 4a. The linear color model can be replaced by MLRI [21]. The locations
of R and B are symmetrical and the amount of R pixels and B pixels are same. To simplify
the explanation, we explain the estimation of the R pixel values in the horizontal direction in detail,
as shown in Figure 4b.

Figure 4. Cont.
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Figure 4. The horizontal R pixel value interpolation: (a) Adams and Hamilton’s interpolation
equation [15]; (b) MLRI [21].

The linear model in Adams and Hamilton’s interpolation equation can be expressed as:

RH
i,j = (Ri,j−1 + Ri,j+1)/2 + (2× Gi,j − Gi,j−2 − Gi,j+2)/4, (6)

where RH is the horizontally estimated R pixel value, the suffix (i, j) represents the target pixel
coordinates. This interpolation equation can be considered the linear interpolation, which is shown in
Equation (7):

RH
i,j − Gi,j = (Ri,j−1 − GH

i,j−1)/2 + (Ri,j+1 − GH
i,j+1)/2. (7)

Here GH is the G pixel value horizontally estimated at the R pixel and GH is calculated as follows:

GH
i,j−1 = (Gi,j−2 + Gi,j)/2, (8)

GH
i,j+1 = (Gi,j + Gi,j+2)/2. (9)

Similarly, we can calculate GH and GV at the R and B pixels. MLRI uses the tentative estimations
to replace of these estimated G pixel values as shown in Figure 4b. As a result, Equation (6) can be
rewritten as:

RH
i,j −

^
R

H

i,j = (Ri,j−1 −
^
R

H

i,j−1)/2 + (Ri,j+1 −
^
R

H

i,j+1)/2, (10)

where
^
R

H
is the tentative estimated R image.

To sum up, the horizontally estimated G pixel value at the location of R pixel can be calculated
by Equations (8) and (9) at first. Then the interpolated GH image is used as the guided image.

As a result, the tentative estimation
^
R

H
is generated by guided filter. The residual can be calculated

after subtracting the tentative estimation
^
R

H
value from the observed R pixel values. After that,

residuals are interpolated by Equation (10) at each pixel. We use the residuals to add the tentative

estimation
^
R

H
and generate the horizontally estimated R pixel value RH.

RV, BH, and BV at G pixel can be similarly generated by Step 1.

3.2. The Calculation Process of Directional Weights

We can get an observed pixel value and two directionally estimated values at each pixel after Step 1.
In this section, we use the directional color difference estimations and the absolute color difference
gradients to calculate the directional weights. The process is shown in Figure 5.
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Figure 5. The calculation process of the directional weights.

The directional color difference estimations can be calculated by Equation (11) in MLRI.

∆̃H
g,r(i, j) =

{
GH

i,j − Ri,j, G is interpolated
Gi,j − RH

i,j, R is interpolated
, ∆̃V

g,r(i, j) =

{
GV

i,j − Ri,j, G is interpolated
Gi,j − RV

i,j, R is interpolated
, (11)

where ∆̃H
g,r is the horizontal color difference estimation between G and R image, and ∆̃V

g,r is the vertical
color difference estimation between G and R image. The effective combination of the directional color
difference estimations is the most important factor of a successful algorithm. However, the horizontally
estimated R pixel value RH in Equation (11) is not completely the same as the actual value. There are
differences between the missing actual value during imaging and the reconstructed value. To reduce
the influence of differences and to get estimated values, we reduce the weight of RH in Equation (11).
Compared with MLRI, we use Equation (12) to calculate the directional color difference estimations.

∆̃H
g,r(i, j) =

{
GH

i,j − Ri,j/2, G is interpolated
Gi,j − RH

i,j/2, R is interpolated
, ∆̃V

g,r(i, j) =

{
GV

i,j − Ri,j/2, G is interpolated
Gi,j − RV

i,j/2, R is interpolated
. (12)

Similarly, we can calculate the directional color difference estimations between G and B image.
As a result, the observed pixel value and the two directional color difference estimations are generated
at each pixel. It provides convenience for the reconstruction of missing G pixel values. Furthermore,
the directional estimation may be inaccurately calculated because of the false edge information in
irregular edges. However, experimental results show that Equation (12) can effectively reduce this
influence of it. From the above steps, we use the directional color difference estimations to calculate
the color difference gradients. The absolute color difference gradients at pixel coordinates (i, j) are
given by:

DH
i,j =

∣∣∣∆̃H(i, j− 1)− ∆̃H(i, j + 1)
∣∣∣, DV

i,j =
∣∣∣∆̃V(i, j− 1)− ∆̃V(i, j + 1)

∣∣∣, (13)

where ∆̃H(i, j) is the horizontal color difference estimation in (i, j), and ∆̃V(i, j) is the vertical color
difference estimation in (i, j). Then we use the absolute color difference gradients to calculate horizontal
and vertical weights. As we all know, the average without directional weights usually causes aliasing
in the edge and the texture areas, so it is necessary to distinguish direction to avoid aliasing. In a word,
the values around the target pixel are averaged according to different weights. It can effectively reduce
aliasing which is caused by the abrupt color change. Thus, the weight will become smaller when the
abrupt color change becomes larger. As a result, directional color difference estimations will be given a
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small weight in color difference combination if there is a sharp color transition area. The weights in
horizontal and vertical, wh and wv, are given as:

wh = 1/

(
i+2

∑
a=i−2

j+2

∑
b=j−2

DH
a,b

)2

, wv = 1/

(
i+2

∑
a=i−2

j+2

∑
b=j−2

DV
a,b

)2

. (14)

3.3. The Calculation Process of Estimated Pixel Values

We can get the weights and the directional color difference estimations at each pixel after Step 2.
Then, the directional color difference estimations are combined and smoothed by Equation (15):

∆̃g,r(i, j) =
{

wh f ∗ ∆̃h
g,r(i, j− 1 : j + 1) + wv f T ∗ ∆̃v

g,r(i− 1 : i + 1, j)
}

/(wh + wv), (15)

where f is a linear filter f = ( 1/4 2/4 1/4 ). To make the sum of the weights equal to 1,
the weights should be allocated in the combination and smoothness.

Once the color difference is estimated, we add it to the available target pixels to obtain the
estimated G pixel value:

G̃(i, j) = R(i, j)/2 + ∆̃g,r(i, j), G̃(i, j) = B(i, j)/2 + ∆̃g,b(i, j). (16)

After G image is interpolated, the R and B pixel values are interpolated by guided filter.
The interpolation is described in Figure 2.

4. Experimental Results

In this section, 18 images in the MCMaster dataset [29] are used to evaluate the effectiveness of the
proposed algorithm. These images have a resolution of 500 × 500 as shown in Figure 6. The MCMaster
dataset images are more in line with the characteristics of digital color images. The proposed algorithm
is compared with DLMMSE [9], LDI-NAT [29], LDI-NLM [29], VDI [18], RI [19], and MLRI [21].
Especially, the guided filter is applied in the proposed algorithm, RI, and MLRI.

Figure 6. Cont.
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Figure 6. The MCMaster dataset images.

To simulate the proposed algorithm, we use MATLAB R2015b with Inter Core i7-5500U and
2.4 GHz CPU processors. Each calculation excludes the boundary of 10 pixels around the interpolated
image in order to avoid the boundary effect.

Two indexes, peak signal-to-noise ratio (PSNR) and composite PSNR (CPSNR), are used to
calculate the quality of the reconstructed demosaicking images, which are defined as:

PSNR = 10 log10

 2552

1
MN

M
∑

i=1

N
∑

j=1
[Iin(i, j)− Iout(i, j)]2

(dB), (17)

and

CPSNR = 10 log10

 2552

1
3MN

3
∑

k=1

M
∑

i=1

N
∑

j=1
[Iin(i, j, k)− Iout(i, j, k)]2

(dB), (18)

where M and N are the row and column sizes of image; Iin and Iout are the input image and the
output image, respectively; i and j are the locations of pixels in the color plane, and k represents the
color plane.

Table 2 shows the PSNR of different algorithms to G components, since G components are the
peak sensitivity of HVS. The highest PSNR of each image is marked in bold. Table 3 shows the CPSNR
of different algorithms. The highest CPSNR of each image is marked in bold.
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As shown in Table 2, the proposed algorithm performs better than the other six algorithms on
10 out of 18 images. The average PSNR of G components in the proposed algorithm is higher than
MLRI and RI by 0.31 dB and 0.20 dB, respectively. Moreover, as for CPSNR in Table 3, the proposed
algorithm performs better than the other six algorithms on 11 out of 18 images. The average CPSNR
of the proposed algorithm is higher than that of MLRI and RI by 0.35 dB and 0.25 dB, respectively.
In brief, among the three methods, RI [19], MLRI [21], and the proposed algorithm, those use the
guided filter, the proposed algorithm is superior to MLRI and RI. This demonstrates that the proposed
algorithm is effective for image demosaicking.

Table 2. The PSNR (dB) of G components for the MCMaster images.

Image DLMMSE [9] LDI-NAT [29] LDI-NLM [29] VDI [18] RI [19] MLRI [21] Proposed

Figure 6a 27.51 32.66 32.31 32.57 32.37 32.39 32.64
Figure 6b 31.91 39.00 39.09 38.95 39.44 39.24 39.47
Figure 6c 34.46 35.46 35.50 35.44 36.75 36.68 36.38
Figure 6d 36.80 40.40 38.99 41.31 42.14 41.16 43.15
Figure 6e 32.48 38.05 37.61 38.13 37.86 37.69 38.73
Figure 6f 33.09 43.36 41.87 42.49 42.16 41.85 43.12
Figure 6g 40.54 37.24 37.58 36.63 38.77 39.34 37.34
Figure 6h 40.43 40.15 40.32 39.60 41.37 41.73 40.36
Figure 6i 32.27 41.63 41.49 41.90 41.62 41.54 41.97
Figure 6j 31.15 42.66 42.24 42.47 42.07 41.98 42.95
Figure 6k 31.87 42.73 42.00 41.78 42.03 42.05 41.97
Figure 6l 31.55 41.52 41.52 41.65 42.24 42.04 42.38
Figure 6m 33.54 44.80 45.50 45.38 45.10 44.87 45.77
Figure 6n 30.89 42.80 42.62 42.96 43.05 42.78 43.71
Figure 6o 32.19 42.65 42.51 42.54 42.67 42.48 43.00
Figure 6p 26.70 35.60 35.10 35.20 35.16 35.28 35.35
Figure 6q 29.28 37.74 37.49 37.86 37.38 36.90 38.16
Figure 6r 30.43 37.66 37.74 36.36 37.68 37.89 36.89
Average 32.62 39.78 39.53 39.62 39.99 39.88 40.19

Table 3. The CPSNR (dB) of MCMaster images.

Image DLMMSE [9] LDI-NAT [29] LDI-NLM [29] VDI [18] RI [19] MLRI [21] Proposed

Figure 6a 24.12 29.01 28.70 28.02 28.98 28.87 29.37
Figure 6b 28.39 35.01 34.86 34.16 35.00 35.09 35.17
Figure 6c 31.78 32.57 33.08 32.63 33.71 33.79 33.72
Figure 6d 34.13 35.95 36.47 36.00 37.88 37.48 38.56
Figure 6e 28.55 34.10 33.77 32.63 33.92 33.79 34.59
Figure 6f 29.24 37.86 37.12 35.64 38.32 38.29 38.62
Figure 6g 38.38 35.98 36.28 36.03 36.97 37.43 36.00
Figure 6h 36.64 37.46 37.82 37.41 36.98 36.83 38.20
Figure 6i 28.85 36.91 36.98 35.96 35.92 36.53 36.69
Figure 6j 27.76 38.73 38.36 37.26 38.15 38.55 38.92
Figure 6k 28.66 39.47 39.19 37.96 39.43 39.96 39.74
Figure 6l 27.35 38.89 38.59 37.10 39.64 39.67 39.58
Figure 6m 29.10 40.78 40.85 39.41 40.31 40.53 40.71
Figure 6n 27.25 38.68 38.48 37.32 38.95 38.74 39.16
Figure 6o 28.78 38.93 38.94 37.85 38.35 38.92 39.27
Figure 6p 24.23 33.50 32.98 31.41 35.15 35.16 35.30
Figure 6q 26.39 32.83 32.54 31.16 32.39 32.48 33.26
Figure 6r 27.83 34.98 35.21 34.24 36.48 36.23 35.95
Average 29.30 36.20 36.12 35.12 36.47 36.57 36.82

Objective measures are not reliable enough to judge the performance of the proposed method
sometimes. Thus, we choose Figure 6a,h to show visual comparison of the interpolated images.
Figure 7 shows the visual comparison of the yellow rectangular frame in Figure 6a. Figure 8 shows
the visual comparison of the yellow rectangular frame in Figure 6h. We can find that the proposed
algorithm produces precise image color information in details. In Figure 7, the Figure 7i has fewer
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artifacts than other subfigures. In Figure 8, the Figure 8i reconstructs the dots more exactly than
other subfigures.

Figure 7. The processing results of image Figure 6a: (a) the original image marked with the
yellow rectangular frame; (b) the enlarged area of the yellow rectangular frame; (c) DLMMSE [9];
(d) LDI-NAT [29]; (e) LDI-NLM [29]; (f) VDI [18]; (g) RI [19]; (h) MLRI [21]; (i) the proposed algorithm.

We use CPU processing time to compare computational complexity. The original source codes
of [9,19,21,29] are used to record the CPU processing time under the same test conditions. The average
computation time for each method is shown in Table 4. For each image, the proposed algorithm takes
1.50 s while MLRI takes 1.57 s. The proposed algorithm reduces two directional-weight calculation
processes. Therefore, it shows lower complexity. LDI-NAT and LDI-NLM take more than 60 s in
the same condition because of the nonlocal mean method that is used to refine the interpolation.
To sum up, the proposed algorithm provides a relatively low computational complexity.

Table 4. Average computation time (s) on MCMaster images.

DLMMSE [9] LDI-NAT [29] LDI-NLM [29] VDI [18] RI [19] MLRI [21] Proposed

6.68 397.94 66.90 1.96 1.20 1.57 1.50
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Figure 8. The processing results of image Figure 6h: (a) the original image marked with the yellow
rectangular frame; (b) the polka dots of the tie in the yellow rectangular frame; (c) DLMMSE [9];
(d) LDI-NAT [29]; (e) LDI-NLM [29]; (f) VDI [18]; (g) RI [19]; (h) MLRI [21]; (i) the proposed algorithm.

5. Conclusions

In this paper, an effective directional residual interpolation algorithm for color image
demosaicking is presented. With the use of directional weights by residual interpolation, more precise
color components are interpolated. The proposed algorithm can be an alternative to color difference
interpolation and MLRI, because it provides lower computational complexity by using horizontal and
vertical weights. Besides, based on calculating the color difference estimations, we use a novel method
to effectively reduce the influence of false edge information in irregular edges. It provides better
color fidelity. Experimental results show that the proposed algorithm has outstanding performance
on more complicated edge areas with lower computational complexity. In addition, it shows better
subjective quality. For further work, we will continue to focus on the improved algorithm with
better visual effect on more types of images. However, this improvement does not necessarily
make the estimated values closest to the true values. Therefore, future research efforts will focus
on finding an optimal algorithm to remove the difference caused by the directional color difference
estimations absolutely.
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