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Abstract: The propagation characteristics of high-power laser beams in plasma is an important
research topic and has many potential applications in fields such as laser machining, laser-driven
accelerators and laser-driven inertial confined fusion. The dynamic evolution of high-power
Laguerre-Gaussian (LG) beams in plasma is numerically investigated by using the finite-difference
time-domain (FDTD) method based on the nonlinear Drude model, with both plasma frequency
and collision frequency modulated by the light intensity of laser beam. The numerical algorithms
and implementation techniques of FDTD method are presented for numerically simulating the
nonlinear permittivity model of plasma and generating the LG beams with predefined parameters.
The simulation results show that the plasma has different field modulation effects on the
two exemplified LG beams with different cross-sectional patterns. The self-focusing and stochastic
absorption phenomena of high-power laser beam in plasma are also demonstrated. This research
also provides a new means for the field modulation of laser beams by plasma.
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1. Introduction

The complex interaction of high-power laser with plasma has become a popular research topic
due to its various applications in science and technology, including laser-driven inertial confined fusion
(ICF) [1], laser-driven accelerators [2] and laser machining [3]. The main research areas have focused
on the propagation characteristics of high-power laser beams in plasma [4–6]. The Drude model of
electrical conduction is extensively considered in this research field [7,8]. Sharma et al. [9] have found
that the propagation characteristics of an intense laser beam in plasma depend on the power and
width of the beam and the ratio of plasma frequency and light wave frequency. Wang et al. [10] have
investigated the propagation characteristics of a Gaussian laser beam in unmagnetized cold plasmas,
based on the theory of ponderomotive nonlinearity. They also applied the Wentzel–Kramers–Brillouin
(WKB) method to study the propagation characteristics of a Gaussian laser beam in cold plasma [11].
However, since the above studies are conducted by only solving the scalar wave equation with complex
eikonal function assumption and paraxial approximation, the obtained information about the dynamic
laser-plasma interaction is limited. Additionally, the solutions are not accurate enough for tightly
focused laser beams whose sizes are in the order of several wavelengths.

In recent decades, the finite-difference time-domain (FDTD) method has become a popular
numerical technique in directly solving Maxwell’s curl equations [12]. The FDTD method also
has well-developed techniques for accurately simulating the Drude model [13–15] and numerically
generating any types of laser beams based on the total-field/scattered-field (TF/SF) technique [16].
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Therefore, the current study evaluates the FDTD method in investigating the propagation
characteristics and relevant phenomena of high-power Laguerre-Gaussian laser beams in plasma.

2. Theoretical Background

In physical optics, the complex-form expression of the electric field of a Laguerre-Gaussian beam
propagating in the free space under cylindrical coordinates (r, φ, z) is given by:

Elp(r, z) = E0
w0

w(z)

( √
2r
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)|l|
L|l|p

(
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where E0 is the nominal magnitude of light field of laser beam, k = 2π/λL is the wave number of

laser beam with wavelength λL, w0 is the radius of beam waist, w(z) = w0[1 + (z/zR)
2]

1/2
is the

beam size at distance z from the beam waist with Rayleigh range zR = πw2
0/λ, q(z) = z + izR is

the complex beam parameter, ϕpl(z) = (2p + |l|+ 1) tan−1(z/zR) is the Gouy phase shift, and Ll
p(·)

are the associated Laguerre polynomials. Herewith, each Laguerre-Gaussian beam of LGl
p mode is

specified by two mode indices, the angular mode index l (l = 0, ±1, ±2, . . .) and the transverse
radial mode index p (p = 0, 1, 2, . . .). It is noted that a Laguerre-Gaussian beam degenerates to
the fundamental Gaussian beam when p = l = 0. In this work, we focus on the category of vortex
Laguerre-Gaussian laser beams with l 6= 0. To maintain simplicity without losing generalizability,
we investigate the propagation of two typical low-order Laguerre-Gaussian beams in plasma. The first
one is the doughnut-shaped LG1

0 laser beam with electric field written as:

E10(r, z) =
E0
√

2w0r
w2(z)

exp
[
−i
(

kr2

2q(z)
+ kz + φ− 2 tan−1(

z
zR

)

)]
(2)

Figure 1 shows the field magnitude and phase distributions of the LG1
0 laser beam propagating in

free space, where Em(r, z) =
∣∣∣Elp(r, z)

∣∣∣ and Φ(r, z) = arg
{

Elp(r, z)
}

are the magnitude and principal
argument of the complex electric field Elp(r, z) of laser beam given by Equation (1), respectively.
The size of beam waist is w0 = 3λL as depicted in Figure 1, where λL is the wavelength of laser beam.
The distinct doughnut-shaped feature makes it ideal for applications in many areas of optics, such as
optical trapping [17] and optical tweezers [18].

The second laser beam is the double-ring-shaped Laguerre-Gaussian vortex laser beam of LG2
1

mode with its electric field given by

E21(r, z) = E0
2w0r2
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according to the associated Laguerre polynomial L2
1(x) = 3− x. Figure 2 shows the magnitude and

phase distributions of an electric field of the Laguerre-Gaussian laser beam of LG2
1 mode propagating

in free space. Here, a smaller size of beam waist w0 = 2λL is applied, which implies a larger
diffraction effect as we can see from Figure 2a. The cross-sectional view of field magnitude distribution
Em(r, z = 0)/E0 in Figure 2b shows that the laser beam is double-ring-shaped.



Appl. Sci. 2018, 8, 665 3 of 10
Appl. Sci. 2018, 8, x FOR PEER REVIEW  3 of 10 

 

Figure 1. The field magnitude and phase distributions of the doughnut-shaped Laguerre-Gaussian 
vortex laser beam of 1

0LG  mode in free space: (a) The longitudinal view of the normalized field 
magnitude distribution m 0( , ) /E r z E ; (b) the cross-sectional view of the normalized field magnitude 
distribution m 0( , 0) /E r z E  on the plane of beam waist; (c) the cross-sectional view of principal 
argument distribution ( , 0)r z   of the complex field of laser beam on the plane of beam waist. 

 
Figure 2. The field magnitude and phase distributions of the double-ring-shaped Laguerre-Gaussian 
vortex laser beam of 2

1LG  mode in free space: (a) The longitudinal view of the normalized field 
magnitude distribution m 0( , ) /E r z E ; (b) the cross-sectional view of the normalized field magnitude 
distribution m 0( , 0) /E r z E  on the plane of beam waist; (c) the cross-sectional view of principal 
argument distribution ( , 0)r z   of the complex field of laser beam on the plane of beam waist. 

The dynamic interaction of laser beams with plasma is complex and dependent on the level of 
laser power [19]. When the intensity of the incident laser beam is low, the charged particles such as 
ions and electrons in plasma driven by the light fields are oscillating around their nearly-fixed 
oscillation centers. Therefore, the spatial distribution of the electron density keeps nearly 
unchanged. However, when the light intensity is extremely high, the spatially-inhomogeneous light 
beam exerts a significant nonlinear Lorentz force, called the ponderomotive force, on the charged 
particles in the plasma. Since the ponderomotive force scales with the inverse of particle mass, the 
ponderomotive effect on ions is generally negligible with respect to that of electrons. Thus, the 

Figure 1. The field magnitude and phase distributions of the doughnut-shaped Laguerre-Gaussian
vortex laser beam of LG1

0 mode in free space: (a) The longitudinal view of the normalized field
magnitude distribution Em(r, z)/E0; (b) the cross-sectional view of the normalized field magnitude
distribution Em(r, z = 0)/E0 on the plane of beam waist; (c) the cross-sectional view of principal
argument distribution Φ(r, z = 0) of the complex field of laser beam on the plane of beam waist.
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Figure 2. The field magnitude and phase distributions of the double-ring-shaped Laguerre-Gaussian
vortex laser beam of LG2

1 mode in free space: (a) The longitudinal view of the normalized field
magnitude distribution Em(r, z)/E0; (b) the cross-sectional view of the normalized field magnitude
distribution Em(r, z = 0)/E0 on the plane of beam waist; (c) the cross-sectional view of principal
argument distribution Φ(r, z = 0) of the complex field of laser beam on the plane of beam waist.

The dynamic interaction of laser beams with plasma is complex and dependent on the level of
laser power [19]. When the intensity of the incident laser beam is low, the charged particles such
as ions and electrons in plasma driven by the light fields are oscillating around their nearly-fixed
oscillation centers. Therefore, the spatial distribution of the electron density keeps nearly unchanged.
However, when the light intensity is extremely high, the spatially-inhomogeneous light beam exerts a
significant nonlinear Lorentz force, called the ponderomotive force, on the charged particles in the
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plasma. Since the ponderomotive force scales with the inverse of particle mass, the ponderomotive
effect on ions is generally negligible with respect to that of electrons. Thus, the electron density in
plasma is manifestly changed by such a force until the balance is restored with the plasma pressure
gradient force. According to the theory of ponderomotive nonlinearity, the redistributed electron
density is exponentially dependent on the square of light-field magnitude E2

m(r, z) and is given by [20]:

ne(r, z) = ne0 exp

[
− e2

4mekBTeω2
L

E2
m(r, z)

]
= ne0 exp

[
−αE2

m(r, z)
]

(4)

where ne0(r, z) is the initial spatial distribution of electron density before the presence of laser beam,
E2

m(r, z) is the square of light-field magnitude, Te is the electron temperature of plasma in unit of
kelvin, kB is Boltzmann’s constant, ωL is the angular frequency of laser beam, and the coefficient
α = e2/(4mekBTeω2

L) is defined for the sake of conciseness of following equations.
On the other hand, the electromagnetic properties of plasma are usually described by the famous

Drude model of permittivity:

ε(ω) = ε0

(
1−

ω2
p

ω2 − jωνc

)
(5)

where ε0 is permittivity of free space, ωp is the plasma frequency and νc is the collision frequency.
Theoretical derivations [7,11] demonstrated that ω2

p and νc both are proportional to the electron density
ne(r, z). Therefore, for high-power laser beam incidence, both the plasma frequency and collision
frequency are modulated by the square of field magnitude as follows:

ω2
p(r, z) = ω2

p0 exp
[
−αE2

m(r, z)
]

(6)

and
νc(r, z) = νc0 exp

[
−αE2

m(r, z)
]

(7)

where ωp0 = e
√

ne0/ε0me and νc0 are the initial plasma frequency and collision frequency before the
incidence of laser beam. Thus, the modified Drude model of permittivity for describing the interaction
of high-power laser beams with plasma is given by

ε(r, z) = ε0

{
1−

ω2
p0 exp

[
−αE2

m(r, z)
]

ω2 − jωνc0 exp[−αE2
m(r, z)]

}
(8)

As apparent in Equation (8), such a physical model of permittivity for plasma is related to the
light intensity of laser beam. Therefore, it is a nonlinear and space-dependent model. According to the
electromagnetic theory, the refractive index of a medium is n =

√
εrµr, where εr and µr are the relative

permittivity and relative permeability of the medium, respectively. Since the relative permeability
of plasma is usually defaulted to unit one µr = 1 in the regime of optical frequencies, the complex
refractive index of plasma is accordingly expressed as

n(r, z) =
√

εr(r, z) =

{
1−

ω2
p0 exp

[
−αE2

m(r, z)
]

ω2 − jωνc0 exp[−αE2
m(r, z)]

}1/2

(9)

which also reflects the dispersion and dissipation characteristics of the plasma.

3. Numerical Methodology

The Laguerre-Gaussian laser beams are numerically generated by utilizing the FDTD method
based on the total field/scattering field (TF/SF) source condition [12,16]. It is possible to generate
any types of laser beams with predefined pattern and parameters using this technique. Within the
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framework of FDTD method, assuming that the TF/SF interface is perpendicular to the z axis and
locates at z = (ks − 1/4)∆z, the x component of scattering magnetic field H(n+1/2)

s,x on the plane
z = (ks − 1/2)∆z at time instant t = (n + 1/2)∆t can be updated by:

H(n+1/2)
s,x (i, j +

1
2

, ks −
1
2
) = H(n+1/2)

s,x (i, j +
1
2

, ks −
1
2
)

FDTD
− ∆t

µ∆z
E(n)

LG,y(i, j +
1
2

, ks) (10)

where the first item on the right side of (10) is the FDTD updating equation for H(n+1/2)
s,x and the last

item is the y component of the electric field of the to-be-generated laser beam,

E(n)
LG,y(i, j +

1
2

, ks) = ELG,y[i∆x, (j +
1
2
)∆y, ks∆z, n∆t] (11)

Similarly, the y component of scattering magnetic field:

H(n+1/2)
s,y (i +

1
2

, j, ks −
1
2
) = H(n+1/2)

s,y (i +
1
2

, j, ks −
1
2
)

FDTD
+

∆t
µ∆z

E(n)
LG,x(i +

1
2

, j, ks) (12)

where the last item is the x component of the electric field of the to-be-generated laser beam:

E(n)
LG,x(i +

1
2

, j, ks) = ELG,x[(i +
1
2
)∆x, j∆y, ks∆z, n∆t] (13)

Typically, the TF/SF interface is set at or near the plane of beam waist for convenience purposes,
where the electric field has the simplest expression and there is no z component of electric field.

The bilinear transform (BT) approach [13] can be used to implement the complex dispersive model
given by Equation (8) via the numerical implementation of the constitutive equation, D = ε(ω)E,
within the frame work of FDTD method. The BT approach is not only accurate, but also stable with a
stability limit that is equal to the Courant stability limit, ∆tC = ∆s/c

√
m, where ∆s = min{∆x, ∆y, ∆z}

is the shortest side of Yee cell, c is the speed of light, and m is the dimensionality of the simulated
problem. In fact, we can first introduce the auxiliary quantity:

S(ω) = −
ω2

p0 exp
[
−αE2

m(r, z)
]

ω2 − jωνc0 exp[−αE2
m(r, z)]

E(ω) =

(
ωp0∆t

)2 exp
[
−αE2

m(r, z)
]

(jω∆t)2 + (jω∆t){νc0∆t exp[−αE2
m(r, z)]}

E(ω), (14)

so that:
D(ω) = ε0[E(ω) + S(ω)]. (15)

Subsequently, by applying the bilinear transformation jω∆t⇔ 2(1− Z−1)/(1 + Z−1) to
transform Equation (15) from the frequency domain to the Z domain and noting that EnZ−1 = En−1

and SnZ−1 = Sn−1, we have the updating equation for the discrete time-domain relationship between
S and E:

Sn = C1

(
En + 2En−1 + En−2

)
− C2Sn−1 − C3Sn−2, (16)

where C1 =
(
ωp0∆t

)2
β/(2νc0∆tβ + 4), C2 = −8/(2νc0∆tβ + 4), and C3 =

(−2νc0∆tβ + 4)/(2νc0∆tβ + 4) with β = exp
[
−αE2

m(r, z)
]
. By substituting Equation (16) into

Equation (15), we have the final updating equation for E:

En =
1

1 + C1
[
Dn

ε0
− C1(2En−1 + En−2) + C2Sn−1 + C3Sn−2] (17)

after some mathematical manipulation. However, the coefficients C1, C2, and C3 are dependent on
β that is related to E2

m(r, z). Thus, we also need to extract the parameter E2
m(r, z). According to the
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time-harmonic property of a coherent laser beam, E2
m(r, z) can be numerically extracted by applying

the composite trapezoidal rule within the discrete framework of FDTD method [20],

E2
m(r, z) ≈ 2

NT

{
E2[r, z, (n− NT/2)∆t] + E2(r, z, n∆t) + 2

n−1

∑
m=n−NT/2+1

E2(r, z, m∆t)

}
, (18)

where NT = TL/∆t is an even number of time steps per period of laser oscillation.

4. Simulation Results

The propagation characteristics of the x-polarized high-power LG1
0 laser beam in plasma is first

modeled and simulated. The laser beam used is as the one depicted in Figure 1, where the beam
waist w0 = 3λL with the wavelength λL = 351nm in the ultraviolet region. The nominal electric field
of the laser beam is E0 = 2.55× 1010V/m, which is feasible and practicable in modern giant laser
facilities [1]. The total three-dimensional computational region for the following FDTD simulations is
12λL× 12λL× 28λL in the x, y, and z directions and is surrounded by perfectly matched layers (PMLs).
A cubic Yee cell with size ∆x = ∆y = ∆z = λL/20 is applied for the space discretization. The initial
electron density of simulated plasma is spatially homogeneous with ne0 = 3.25× 1021cm−3 and the
collision frequency is νc0 = 0.05ωp0. As the interaction process is simulated in a relatively short time
t = 3000∆t = 3000∆x/2c = 8.78× 10−14s for a total of 3000 time steps, a constant electron temperature
Te = 1× 104K is also considered. Figure 3a,b show the simulation results for the longitudinal views of
the redistributed light field magnitude of high-power doughnut-shaped LG1

0 laser beam on the xOz
and yOz planes, respectively, when it propagates in plasma. Figure 4a–f show the cross-sectional views
of light field magnitude of LG1

0 laser beam at several propagation distances z = 4λL, 8λL, 12λL, 16λL,
20λL and 24λL from the beam waist. The dynamic interaction process between the LG1

0 laser beam
and plasma are vividly recorded in Videos S1 and S2. See Supplementary Videos S1 and S2 for details.
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Figure 3. Simulation results for the propagation of the high-power doughnut-shaped LG1
0 laser beam

in plasma (see Video S1). The longitudinal views of the light-field magnitude of laser beam normalized
to E0 and shown in logarithmic scale (a) on the xOz plane and (b) on the yOz plane.

Secondly, the propagation characteristics of the x-polarized high-power LG2
1 laser beam in plasma

is modeled and simulated. The investigated laser beam is as the one depicted in Figure 2 and the
parameters for wavelength and light-field intensity are the same as those of the LG1

0 laser beam.
The parameters for FDTD simulations and plasma parameters are also the same as the first numerical
example. Figure 5a,b show the simulation results for the longitudinal views of the redistributed
light field magnitude of high-power double-ring-shaped LG2

1 laser beam on the xOz and yOz planes,
respectively, when it is propagating in plasma. Figure 6a–f show the cross-sectional views of light
field magnitude of LG2

1 laser beam at several specified propagation distances z = 4λL, 8λL, 12λL, 16λL,
20λL and 24λL from the beam waist. The dynamic interaction process between the LG2

1 laser beam
and plasma are vividly recorded in Videos S3 and S4. See Supplementary Videos S3 and S4 for details.
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5. Discussion

From Figures 3 and 5, it is noted that the self-focusing and absorption phenomena of high-power
laser beams in plasma are evident as compared with those propagating in free space as illustrated
in Figures 1 and 2. The physical model of permittivity with ponderomotive nonlinearity given by
Equation (8) determines that the refractive index of plasma is smaller at the place where the light
intensity is lower and larger where the light intensity is stronger. The ensuing inhomogeneous
distribution of refractive-index attribute to the self-focusing effect and the laser beam is therefore
focused when this effect overly counteracts the natural diffractive divergence of the laser beam. This is
apparent from Figures 4 and 6 in which the cross-sectional profiles of the light fields of LG1

0 and LG2
1

vortex laser beams within the plasma first experienced self-focusing and then stochastic absorption.
Video S2 and Video S4 vividly displayed the rotations and temporal evolutions of the cross-sectional
light fields of LG1

0 and LG2
1 laser beams, which demonstrate the vortex features of the LG laser beams.

We also note that the field distributions of the xOz and yOz planes are different from each other since
the two laser beams are both linearly polarized in the x direction.

We also highlight the ribbons with half-wavelength intervals in Figures 3 and 5. Since the incident
laser beams are assumed spatially coherent, the transient light intensity proportional to E2(r, z, t) is
also harmonic with a half-wavelength period. In each half period of space, the electrons at the place
with high transient light intensity are pushed to the place with low transient light intensity. According
to Equations (4) and (9), this intensifies the difference of refractive indices at the two places and the
half-wavelength electron-free elongated cavities are formed. The ensuing high reflection of light at
the walls of cavities causes the ribbon phenomenon. Moreover, the speckles found in Figures 4 and 6
can be attributed to the Rayleigh-Taylor fluid mechanics instability [19] under the local oscillation
electronic acceleration mechanism. Once the initial laser beam has a small-scale perturbation or is
disturbed by the unevenly medium when it propagates in the plasma, a rapid light intensity growth
will occur in the near region that forms a speckle in the cross-sectional patter of the laser beam. It can
be estimated that different modulation effects of light fields can be achieved by using LG laser beams
of other polarization states, such as the radial and azimuthal polarizations. Thus, the plasma can serve
as a new medium for modulating the LG beams into the desired field patterns.

6. Conclusions

In this article, the propagation characteristics of Laguerre-Gaussian vortex laser beams in
plasma is modeled and simulated under the given parameters. By using the FDTD method,
the numerical methodology for modeling the nonlinear permittivity and generating the LG beams
is proposed. The simulation results about the 3D dynamic interaction of high-power LG beams
with plasma are illustrated and discussed. The obtained simulation results verify the self-focusing
and stochastic absorption phenomena of high-power laser beam propagation in plasma. Our work
presents the methodology for the numerical simulations of the complex interaction of high-power
Laguerre-Gaussian vortex laser beams with plasma by using the FDTD method. It provides detailed
information about the dynamic 3D evolution of both the light field of the laser beam and the spatial
distribution of electron density and many special laser beams can be simulated based on the TF/SF
technique. This is much superior to the state-of-the-art studies [9–11] that were conducted only by
solving the scalar wave equation based on the WKB method with complex eikonal function assumption
and paraxial approximation, where only a simple laser beam of large beam size can be calculated and
only the limited information such as the variation of beam size can be obtained. This research embraced
the potential merits of theory models and simulation techniques for many research applications such
as the laser machining and laser-driven inertial confined fusion.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/8/5/665/s1.
Video S1: Longitudinal views of high-power doughnut-shaped LG01 laser beam in plasma, Video S2: Cross-sectional
views of high-power doughnut-shaped LG01 laser beam in plasma, Video S3: Longitudinal views of high-power
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double-ring-shaped LG12 laser beam in plasma, Video S4: Cross-sectional views of high-power double-ring -shaped
LG12 laser beam in plasma.
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