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Abstract: The aim of this work was to introduce new ways to model the I-V characteristic of a
photovoltaic (PV) cell or PV module using straight lines and Bézier curves. This is a complete novel
approach, Bézier curves being previously used mainly for computer graphics. The I-V characteristic
is divided into three sections, modeled with lines and a quadratic Bézier curve in the first case and
with three cubic Bézier curves in the second case. The result proves to be accurate and relies on the
fundamental points usually present in the PV cell datasheets: Voc (the open circuit voltage), Isc (the
short circuit current), Vmp (the maximum power corresponding voltage) and Imp (the maximum
power corresponding current), and the parasitic resistances Rsh0 (shunt resistance at Isc) and Rs0

(series resistance at Voc). The proposed algorithm completely defines all the implied control points
and the error is analyzed. The temperature and irradiance influence is also analyzed. The model is
also compared using the least squares fitting method. The final validation shows how to use Bézier
cubic curves to accurately represent the I-V curves of an extensive range of PV cells and arrays.

Keywords: PV cell; I-V characteristic; model; simulation; interpolation; Bézier curve; control points;
least squares fitting method

1. Introduction

The forecast of the total photovoltaic (PV) installations, offered by Bloomberg New Energy
Finance (BNEF) predicts an optimistic growth at 111 GW in 2018, rising to 121 GW in 2019, along
with a polysilicon factory growth boom and module prices drop to US$ 0.30/W [1,2]. This robust
growth explains the high interest in PV research, modeling, and simulation–along with design and
development of PV equipment.

The electrical characteristics of the PV cell and PV modules have been of interest for several
decades, and different models have been proposed. Phang and Chan [3] were among the first to
propose a solution for PV cell parameter extraction. Garrido-Alzar [4] uses a double exponential model
to extract the PV cell parameters using the experimental I-V curve. Villalva et al. [5] developed an
algorithm to find the parameters defining the I-V characteristic for the single diode model of a PV
cell, using the Newton-Raphson method and imposing a minimum error threshold for the maximum
power point. Babu and Gurjar [6] introduced a simplified two-diode model for the PV module,
while Cubas et al. [7] used the Lambert W-Function for finding the solar panel equivalent circuit
parameters and also proposed an LTSpice model according to their findings. Temperature influence
has been studied by Chander et al. [8]. Ishaque and Salam [9] use differential evolution to find the PV
modules parameters.

Franzitta et al. provided extensive studies of the most widely used models both in single diode
case [10] and for the double-diode version [11], introducing a criterion for rating the accuracy and
usability of the analyzed models. In our previous paper [12], we proposed a complete SPICE model
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including all the parameters variation and selfheating. In a recent work, Cuce et al. [13] claim a good
accuracy for their electrical model for a PV module and they also discuss energy and exergy efficiency
as a reliable substitute for the fill factor. All the aforementioned works use an electrical model to
describe the behavior of the circuit and rely on a specific circuit to generate the I-V characteristic of the
PV cell or module.

This paper introduces a new approach. This time, the cell or module are not involved at the
electrical level, being defined by just the specific points Psc, Pmp, Poc and by the parallel and series
resistances Rsh0 and Rs0, specified at Isc and Voc, respectively. Careful inspection of the typical I-V
characteristic of the PV module or PV cell (Figure 1a,b) shows a similar pattern in all curves. Our aim
was to find a way to model it using smooth curves and the datasheet information currently available.

Figure 1. Typical photovoltaic (PV) module I-V characteristics, with 30 cells connected in series. (a) at
different temperatures (0–80 ◦C); (b) at different irradiances (200–1000 W/m2).

Bernstein polynomials have been studied since the beginning of the 20th century and they form
the foundation for Bézier curves [14]. The core applications for graphics came first in 1959 when the
French mathematician Paul de Casteljau developed an algorithm able to evaluate a family of specific
curves at Citroën. In 1962 the French engineer Pierre Bézier also used them to design automobile
bodies at Renault and afterwards they achieved wide acceptance [15].

Bézier curves are largely used in computer graphics [16,17] and also in the time domain for
smoothing the trajectory of the robotic arms, for an accurate gluing or welding path or for trajectory
generation [18]. Further development for shape representation was proposed by Jalba et al. [19].

The current proposal analyses the use of Bézier curves [20] in order to accurately represent the I-V
characteristic of a PV cell or module. Although Bézier curves are commonly used as 2D curves (which
are usually not functions) [21], our approach uses such curves to approximate an I-V characteristic
(a function). A complete mathematical solution is provided, separately validated for a PV cell and
a PV module and the error is analyzed. The results are also studied for different temperature and
irradiances and finally compared with the ones offered by the least squares fitting method. In depth
analysis of Bézier cubic curves fitting for 18 PV arrays and cells (from various manufacturers and
different technologies) is also performed.

There are other possible approaches, for example spline fitting [22,23], well known Hermite
interpolation, or spiral curve fitting [24]. Our aim was solely the Bézier curves.

The remainder of this paper is organized as follows: Section 2 briefly analyzes the definition of
the quadratic and cubic Bézier curves and their equations, focusing on the basic knowledge needed
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in the subsequent paragraphs. Section 3 deals with the information usually provided by the PV cell
or module manufacturers in their datasheets. The proposed models are covered in Section 4, with
Section 4.1. introducing the approximation with two segments and one quadratic Bézier curve, while
Section 4.2. deals with the better approximation based on three Bézier cubic curves. The models are
rated at the reference temperature, 25 ◦C. The results are also compared with the least squares fitting
method in Section 4.3. In Section 4.4. the influence of the external parameters is analyzed. The proposal
is verified in Section 4.5. against a large range of PV cells and modules and the results show a good fit.
Discussion and conclusions are provided in the next Sections.

2. Definition of the Bézier Curves

A quadratic Bézier curve (Figure 2) can be specified by three control points [15]: the curve goes
through the ends P0 and P2 and approximates P1.

Figure 2. A quadratic Bézier curve representation. P0 and P2 are the end points, the control point P1 is
approximated and the curve is tangent to P0P1 and P2P1 segments at P0 and P2 respectively.

The curve equation is as follows [20]:

B2(t) = (1− t)2P0 + 2t(1− t)P1 + t2P2 (1)

where t varies between 0 and 1. Equation (1) can be expressed for the x and y coordinates:{
x(t) = (1− t)2x0 + 2t(1− t)x1 + t2x2

y(t) = (1− t)2y0 + 2t(1− t)y1 + t2y2
(2)

The derivative of (1) is:

B′2(t) = 2(1− t)(P1 − P0) + 2t(P2 − P1) (3)

At the end points, (3) becomes (4):{
B′2(t)|t=0 = 2P1 − 2P0

B′2(t)|t=1 = 2P2 − 2P1
(4)

A cubic Bézier curve (Figure 3) can be specified by four control points [15]: the curve goes
through the ends P0 and P3 and approximates P1 and P2. The analytical expression of the curve is a
cubic polynomial. The curve is tangent at P0 to P0P1 and at P3 to P3P2.
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The equation for the Bézier cubic curve is [20]:

B3(t) = (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3 (5)

The previous equation can be expressed for the x and y coordinates:{
x(t) = (1− t)3x0 + 3t(1− t)2x1 + 3t2(1− t)x2 + t3x3

y(t) = (1− t)3y0 + 3t(1− t)2y1 + 3t2(1− t)y2 + t3y3
(6)

The derivative of (5) is:

B′3(t) = 3(1− t)2(P1 − P0) + 6t(1− t)(P2 − P1) + 3t2(P3 − P2) (7)

At the end points, (7) becomes (8):{
B′3(t)

∣∣
t=0 = 3P1 − 3P0

B′3(t)
∣∣
t=1 = 3P3 − 3P2

(8)

Figure 3. A cubic Bézier curve representation. P0 and P3 are the end points, the control points P1 and
P2 are approximated, and the curve is tangent to P0P1 and P2P1 segments at P0 and P3 respectively.

3. Materials and Methods

The first PV cell used in our work is a high efficiency, silicon monocrystalline 156 × 156 mm2

cell [25] and has the main characteristics summarized in Table 1.

Table 1. PV Cell main specifications on STC (1000 W/m2, AM 1.5, 25 ◦C).

Symbol Description Value

Voc,cell,re f Cell open circuit voltage 0.699 V
Isc,re f Short circuit current 9.207 A
Vmp Maximum power voltage 0.572 V
Imp Maximum power current 8.756 A
Rsh0 Shunt resistance at Isc 73.19 Ω
Rs0 Series resistance at Voc 3.8 mΩ

The MSMD290AS-36_EU Monocrystalline PV module formerly manufactured by MünchenSolar
Germany [26] has been well documented and studied by Cubas et al. [6]. Its main electrical data is
listed in Table 2 and this information is used in Section 4.4. to evaluate the influence of the temperature
and irradiance to our Bézier curves based model.
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Table 2. MSMD290AS-36_EU Module main specifications on STC (1000 W/m2, AM 1.5, 25 ◦C).

Symbol Description Value

Voc,module,re f Cell open circuit voltage 44.68 V
Isc,re f Short circuit current 8.24 A
Vmp Maximum power voltage 37.66 V
Imp Maximum power current 7.70 A
Rsh0 Shunt resistance at Isc 316 Ω
Rs0 Series resistance at Voc 130 mΩ
kI Current temperature coefficient 3.296 mA/K
kV Voltage temperature coefficient −146.256 mV/K
ns Number of series cell 72

For studying and representing Bézier curves, an interesting application which allows draggable
control points was developed by Mugnaini [27]. For computing the coordinates on the curves we used
the Kronecker tensor product found as in [28]. An example for the Bézier least square fitting method is
given in [29].

4. Results

It must be stressed that all the physical actual values involved in Section 4.1., Section 4.2.,
and Section 4.3. are specified at 25 ◦C, being reference values. The irradiance is also standard
(1000 W/m2). As it is demonstrated in Section 4.4., the same method is suitable for different
temperatures and irradiances.

4.1. I-V Characteristic Approximation with Two Segments and a Quadratic Bézier Curve

The first approximation implies five control points: Psc(0, Isc), Pa(xa, ya), Pb(xb, yb), Pc(xc, yc),
and Poc(Voc, 0) and is made of two segment lines IscPa and PbVoc and one quadratic Bézier curve
defined by the endpoints Pa and Pb and the control point Pc (Figure 4).

Figure 4. Projected PV cell I-V characteristic approximation with two straight line segments and one
quadratic Bézier curve.

It has already been proven [3] that the slopes of the lines can be written as (9) and (10):

dI
dV

∣∣∣∣
V=0

= − 1
Rsh0

(9)
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dI
dV

∣∣∣∣
V=Voc

= − 1
Rs0

(10)

Thus, the equation for first line is (11):

I = Isc −
V

Rsh0
(11)

By choosing xa in the linear region (eg 0.6Voc), one can find ya from the above equation, so Pa is
completely defined.

For the second line, the next equation is valid (12):

I =
Voc −V

Rs0
(12)

The Pc(Vc, Ic) control point has therefore the coordinates defined by (13):(
xc = Vc =

VocRsh0 − IscRsh0Rs0

Rsh0 − Rs0
, yc = Ic =

IscRsh0 −Voc

Rsh0 − Rs0

)
(13)

For xb, it must be emphasized that its position is on the end of the curve, a realistic value being
0.9Voc. The maximum power point is positioned on the second curve, so solving (14) gives tmp:

t2
mp(xa + xb − 2xc) + 2tmp(xc − xa) + xa −Vmp = 0 (14)

Replacing the positive solution for tmp in (2) yields yb as in (15):

yb =

(
2tmp − t2

mp − 1
)

ya + 2tmp
(
tmp − 1

)
yc + Imp

t2
mp

(15)

Now all the control points of the plot are completely defined. The results are summarized in
Table 3. The application code written for the coordinate finding can be retrieved from [30].

Table 3. The control point coordinates when using two lines and one quadratic Bézier curve.

Point x coordinate (V) y coordinate (A)

First line segment
Psc 0 9.207
Pa 0.4893 9.2003

Quadratic Bézier Curve
Pa 0.4893 9.2003
Pc 0.6070 9.1987
Pb 0.6291 7.0181

Second line segment
Pb 0.6291 7.0181
Poc 0.699 0

The final plot is represented in Figure 5, where one can observe an excellent correspondence
between the actual PV cell I-V characteristic, represented with black dots and the PscPa segment (blue
line), a fair correlation for the second range, approximated by the Bézier quadratic curve (red line) and
some modest results in the third region (magenta line).
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Figure 5. PV cell I-V characteristic approximation with two straight lines and one quadratic
Bézier curve—results.

The same conclusion arises from Figure 6, where the relative error has been plotted. It is worth
mentioning that although the relative error is quite high above 0.64 V (0.92Voc), the absolute error is in
fact less than 0.7 A in a region where the cell normally should not operate.

Figure 6. Approximation errors are high over 0.64 V.

Looking for a more accurate model is the reason we came up with the second scenario, where the
I-V characteristic is entirely modeled with cubic Bézier curves.
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4.2. I-V Characteristic Approximation with Three Cubic Bézier Curves

In order to have a general solution, we analyzed the case where all three regions are covered with
cubic Bézier curves. This implies 12 control points (Figure 7), i.e. 24 coordinates to be found.

Figure 7. Projected PV cell I-V characteristic approximation with three cubic Bézier curves.

The first curve, represented in Figure 8, is described by the control points P00(0, Isc), P01, P02,

and P03. It turns out that the linear approximation of the first region of the I-V curve has an error
below 0.5% if P03x = Voc

2 . During various simulations we also discovered that all Pj,k points can be
evenly arranged, with j = {1, 2}; k = {1, 2, 3}. This leads to P01x = P03x

3 and P02x = 2P03x
3 . For the y

coordinates, P0ky = Isc − P0kx
Rsh0

, with k = {1, 2, 3}. Now the first curve is completely defined.

Figure 8. First Bézier curve with the associated control points. The slope is exaggerated for a
better understanding.

The second curve (Figure 7) is described by the control points P10 = P03, P11, P12, and P13.
We observed that P13x = 0.75Voc offers a very good fit of the curve for this type of PV cell. With the
same evenly arrangement for the x coordinates, P1kx = P10x +

k(P13x−P10x)
3 , with k = {1, 2}. P11 is

also located in the linear region of the I-V curve, so P11y = P03y − P11x
Rsh0

. This leaves P12y and P13y as
unknowns at this stage.

The third curve (Figure 7) is described by the control points P20 = P13, P21, P22, and P23(Voc, 0).
Using the same assumptions as for the second curve, P2kx = P20x +

k(P23x−P20x)
3 , with k = {1, 2}. It is

obvious that P20x = P13x and P23x = Voc. The segment P22P23 is tangent to the curve at the point P23,
so P22y = (Voc−P22x)

Rs0
. This leaves P21y as an additional unknown at this step.
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For continuity reasons, P12P13 and P20P21 segments belong to the same line. This implies that the
derivatives of the second curve at P13 and of the third curve at P20 are equal (16):

3P13y − 3P12y = 3P21y − 3P20y (16)

Which means that:
P21y = 2P13y − P12y (17)

The control point P11 is placed on the second curve, so (18) can be written:

V11 = P11x = (1− t11)
3P10x + 3t11(1− t11)

2P11x + 3t2
11(1− t11)P12x + t3

11P13x (18)

Solving the previous equation and keeping only the real solution for t11, (19) is also valid:

I11 = P11y = (1− t11)
3P10y + 3t11(1− t11)

2P11y + 3t2
11(1− t11)P12y + t3

11P13y (19)

Finally, the graph also goes through the maximum power point Pmp
(
Vmp, Imp

)
, yielding

Equation (20):

Vmp =
(
1− tmp

)3P20x + 3tmp
(
1− tmp

)2P21x + 3t2
mp
(
1− tmp

)
P22x + t3

mpP23x (20)

Keeping only the real solution for tmp, (21) is also valid:

Imp =
(
1− tmp

)3P20y + 3tmp
(
1− tmp

)2P21y + 3t2
mp
(
1− tmp

)
P22y (21)

The linear system made of equations (17), (19), and (21) give the last three unknown coordinates
P12y, P13y, and P21y. The results are summarized in Table 4. The application code written for coordinate
finding can be retrieved from [30].

Table 4. The control point coordinates when using three cubic Bézier curves.

Point x coordinate (V) y coordinate (A)

First Bézier cubic curve
P00 0 9.207
P01 0.1165 9.206
P02 0.2330 9.204
P03 0.3495 9.202

Second Bézier cubic curve
P10 0.3495 9.202
P11 0.4078 9.197
P12 0.4660 9.210
P13 0.5243 9.074

Third Bézier cubic curve
P20 0.5243 9.074
P21 0.5825 8.939
P22 0.6408 8.616
P23 0.6990 0

Figure 9 shows the location of the control points with respect to the I-V characteristic of the PV cell.
The control points P00, P01, P02, P03 = P10 and P11 are collinear and with Pmp, are all placed on the
I-V characteristic.
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Figure 9. PV cell I-V characteristic (black line, continuous) and the position of the 12 computed control
points (red markers).

Figure 10 shows the modeled characteristic (red, green, and blue lines) overlapping in most
areas with the practical I-V characteristic (black markers). The application code can also be retrieved
from [30].

Figure 10. I-V characteristic of a PV cell modeled with three cubic Bézier curves, defined by 12
control points.

The relative error of the Bézier modeled I-V characteristic against the actual data taken from [12]
is shown in Figure 11. It must be emphasized that in the 0–0.94 Voc range, the relative error is below 1%.
Above 0.94 Voc the absolute error is less than 72 mA, while the reference Isc = 9.207A.
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Figure 11. The relative error of our model compared with the actual data. Good performance can be
observed in the 0–0.5 V interval and near Vmp. Higher errors occur near Voc for low output currents.

4.3. Data Fitting Using the Least Squares Method

Data fitting using the least squares method is a standard approach in data analysis [31,32]. A good
overview of curve fitting using Bézier cubic curves in image processing is given by Shao et al. in [33],
while Zhao et al. [34] extend this method using a genetic algorithm for parameter optimization for
Bézier curve fitting. In Section 4.2. we have shown that for the studied PV cell, the best results
arise when the x coordinates of the middle end points are set at 0.5Voc and 0.75Voc respectively.
A similar conclusion arises if the least squares method is used for the same cell modeling. Running
the least squares method for the MSMD290AS-36_EU Monocrystalline PV module proved that the
minimum error occurs when the control end points are set again at 0.5Voc and 0.75Voc respectively.
Table 5 summarizes the data fitting results for the same PV cell used in Section 4.1. and Section 4.2.,
where the results from the two approaches are very close. The graphical representation of the date
fitting is given in Figure 12, where only the endpoints are represented.

Table 5. Control point coordinates comparison. On the left, the least squares method is used for
computation, on the right the same values as in Table 4 are listed.

Least Squares Method Proposed Method

Point x coordinate (V) y coordinate (A) x coordinate (V) y coordinate (A)
First Bézier cubic curve

P00 0 9.207 0 9.207
P01 0.1165 9.206 0.1165 9.206
P02 0.2330 9.204 0.2330 9.204
P03 0.3495 9.202 0.3495 9.202

Second Bézier cubic curve
P10 0.3495 9.202 0.3495 9.202
P11 0.4076 9.183 0.4078 9.197
P12 0.4658 9.245 0.4660 9.210
P13 0.5239 9.103 0.5243 9.074

Third Bézier cubic curve
P20 0.5239 9.103 0.5243 9.074
P21 0.5823 8.9646 0.5825 8.939
P22 0.6406 8.6724 0.6408 8.616
P23 0.6990 0.004 0.6990 0
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Figure 12. Bézier approximation using the least squares method.

Figure 13 depicts the relative error of the modeled I-V characteristic compared with the actual data
taken from our previous work [12]. In the 0–0.96Voc range, the relative error is below 2%. Furthermore,
above 0.96Voc, the absolute error is less than 66 mA, while the reference short circuit current is 9.207 A.

Figure 13. The relative error of the least squares method Bézier based approximation compared with
the actual data. The absolute error ∆I = IBezier − I is also indicated.

4.4. Parameter Variation

In order to further validate the proposed method, in this section we analyze the temperature
and irradiance influence for the MSMD290AS-36_EU Monocrystalline PV module. An extensive
study of the parameter influence over the PV cell can be found in [12]. It is important to notice
that the Bézier approximation is not related to any of the parameter variation, just to the specified
points Psc, Pmp, Poc and the parasitic resistances Rsh0 and Rs0 as already stated. The challenge
becomes in this case the finding of the new position for the control points and the new values for the
parasitic resistances.
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Villalva et al. [5] accurately describe the short circuit current variation as in (22):

Isc =

(
Rsh + Rs

Rsh
Isc,re f + kI∆T

)
G

Gre f
≈
(

Isc,re f + kI∆T
) G

Gre f
(22)

Ishaque and Salam [9] propose for the Voc,cell the following variation (23):

Voc,cell = V0c,cell,re f + a
kT
q

ln
G

Gre f
+ kv∆T (23)

Equation (23) proved to be too conservative in this case, as larger Voc,cell variations were observed.
A better approximation is the empirical law (24):

Voc = 29.579 + 2.1934 ln G (24)

A possible way for defining Rsh behavior is suggested in [12], as in (25) with kRsh estimated as 8
for the best fit.

Rsh = Rsh,re f

(Tre f

T

)kRsh

(25)

For Rs, a linear variation law (26) is given in [12] with αRs = −0.01K−1, again for the best fit:

Rs = Rs,re f

[
1 + αRs

(
T − Tre f

)]
(26)

Figure 14 shows the irradiance influence for the I-V module characteristic, where the approximated
data using our proposed method is plotted with solid lines and the experimental data is represented
with markers. Isc, Voc, Rsh, and Rs were computed using (22), (24–26) respectively.

Figure 14. Bézier approximation of the I-V irradiance dependent characteristics for the
MSMD290AS-36_EU monocrystalline PV module. The lines represent the computed curves, whereas
the markers represent the actual data.

The temperature dependent Bézier curves resulted from our algorithm compared with the actual
data are introduced in Figure 15. Once again, the results show a very good correlation between the
modeled data and the actual data.
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Figure 15. Bézier approximation of the I-V temperature dependent characteristics for the
MSMD290AS-36_EU Monocrystalline PV module. The lines represent the computed curves, whereas
the markers represent the actual data.

4.5. Final Validation

In order to definitely test whether the proposed method is applicable to common PV cells and
modules, a selection of 18 cases were analyzed at reference conditions, based on information found
in their technical data [35–49], synthesized in Table 6. The selection includes three mono-crystalline
PV arrays (1–3), nine poly-crystalline arrays (4–11 and 13) and one poly-crystalline PV cell (12),
a thin-film array (14), one Heterojunction with Intrinsic Thin layer (HIT, 15) two amorphous silicon
glass arrays (with different see-through degrees, respectively 10% and 30%, 16 and 17) and eventually
an amorphous silicon cell (18).

Table 6. Datasheet technical data for the analyzed 18 PV cells and modules [35–49].

No. PV Type Tech ns
Voc
(V)

Vmp
(V)

Imp
(A)

Isc
(A)

kV
(V/K)

kI
(A/K)

1 Shell SP-70 Mono 36 21.4 16.5 4.24 4.7 −0.076 0.002
2 Isofoton I150 InDach Mono 36 22.6 18.5 8.12 8.7 −0.1026 0.00365
3 Bosch M245 3BB Mono 60 37.8 30.11 8.14 8.72 −0.11718 0.002703
4 MSP300AS-36.EU Poly 72 44.48 37.42 8.02 8.58 −0.14678 0.003432
5 Kyocera KG200GT Poly 54 32.9 26.3 7.61 8.21 −0.123 0.00318
6 Kyocera KC85T Poly 36 21.7 17.4 5.02 5.34 −0.0821 0.00212
7 Kyocera KD135SX_UPU Poly 36 22.1 17.7 7.63 8.37 −0.08 0.00502
8 Kyocera KD245GH-4FB2 Poly 60 36.9 29.8 8.23 8.91 −0.133 0.00535
9 Sharp ND-224uC1 Poly 60 36.6 29.3 7.66 8.33 −0.13176 0.004415

10 Shell S36 Poly 36 21.4 16.5 2.18 2.3 −0.076 0.001
11 Solarex MSX-60 Poly 36 21.1 17.1

3.5 3.8
−0.08

0.00312 Solarex MSX-60—cell Poly 1 0.586 0.475 −0.00222
13 Amerisolar AS-6P 300W Poly 72 44.7 36.7 8.19 8.68 −0.14751 4.86E-03
14 Shell ST40 Thin-Film 36 23.3 16.6 2.41 2.68 −0.1 0.00035
15 Sanyo HIT-240 HDE4 HIT 60 43.6 35.5 6.77 7.37 −0.109 0.00221
16 Onyx 1200 × 600 Ref10 aSi

glass 72 47 32
0.9 1.11 −0.0893

0.000999
17 Onyx 1200 × 600 Ref30 0.63 0.74 0.000666
18 6.5 Wp L Cel aSi cell 1 2.2 1.6 4.09 5.1 −0.00836 0.00612

Using the Villalva algorithm [5], the main parameters were computed and are listed in Table 7.
For the last three cases, due to different technology, interesting values for the diode ideality factor
a occur.
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Table 7. Computed values for main parameters of the analyzed PV cells and modules.

No. Rs(Ω) Rsh(Ω) I0(A) Ipv(A) a Rs0(Ω) Rsh0(Ω)

1 0.506 74.30 6.57 × 10−10 4.732 1.022 0.691 95.27
2 0.109 284.83 2.17 × 10−8 8.703 1.234 0.233 304.09
3 0.378 220.45 2.55 × 10−10 8.735 1.012 0.535 266.54
4 0.142 192.59 5.23 × 10−10 8.586 1.023 0.372 202.92
5 0.308 193.05 2.15 × 10−9 8.223 1.076 0.463 225.66
6 0.277 439.46 1.63 × 10−9 5.343 1.071 0.437 502.34
7 0.19 51.83 1.51 × 10−9 8.401 1.067 0.3161 60.474
8 0.28 140.26 1.56 × 10−9 8.928 1.067 0.438 161.66
9 0.317 108.98 1.41 × 10−9 8.354 1.057 0.501 127.07

10 0.968 1.24E+06 3.41 × 10−10 2.3 1.022 1.332 151053
11 0.316 146.08 1.22 × 10−9 3.808 1.045 0.557 164.26
12 0.009 4.19 1.21 × 10−9 3.809 1.045 0.016 4.788
13 0.264 405.65 5.50 × 10−10 8.686 1.030 0.458 450.79
14 1.555 210.33 3.30 × 10−9 2.7 1.23 2.168 300.48
15 0.437 117.72 1.75 × 10−11 7.397 1.058 0.637 138.19
16 11.57 186.22 1.21 × 10−13 1.179 0.856 13.60 204.51
17 16.639 418.79 8.60 × 10−14 0.769 0.856 19.50 459.43
18 0.079 2.06 1.52 × 10−9 5.296 3.938 0.103 2.13

Table 8 lists the control points computed for Bézier curve fitting, where in all cases the control end
points are set at 0.5Voc and 0.75Voc respectively. Only two x coordinates are presented, as the others are
evenly spaced and can be easily computed. Selected plots of the PV devices are presented in Figure 16.

Table 8. Control points coordinates of the analyzed PV cells and modules.

No.
x Coordinates (V) y Coordinates (A)

03 13 00 01 02 03 11 12 13 21 22

1 10.628 15.931 4.732 4.684 4.637 4.588 4.538 4.606 4.360 4.212 2.575
2 11.295 16.930 8.703 8.690 8.678 8.663 8.635 8.696 8.508 8.210 8.125
3 18.870 28.285 8.735 8.706 8.678 8.649 8.604 8.697 8.453 8.529 5.997
4 22.224 33.312 8.586 8.547 8.509 8.470 8.443 8.453 8.370 7.684 9.991
5 16.425 24.620 8.223 8.194 8.167 8.137 8.094 8.178 7.930 7.909 5.930
6 10.845 16.256 5.343 5.335 5.327 5.318 5.298 5.350 5.212 5.200 4.168
7 10.975 16.451 8.401 8.3301 8.260 8.189 8.128 8.178 7.946 7.918 6.273
8 18.415 27.603 8.928 8.883 8.841 8.796 8.749 8.812 8.595 8.581 7.029
9 18.228 27.362 8.354 8.298 8.243 8.187 8.133 8.191 7.967 7.954 6.288
10 10.940 16.399 2.300 2.300 2.300 2.299 2.287 2.331 2.226 2.180 1.367
11 10.527 15.779 3.808 3.784 3.760 3.736 3.715 3.733 3.649 3.599 3.241
12 0.293 0.438 3.809 3.786 3.763 3.739 3.718 3.738 3.652 3.608 3.204
13 22.336 33.479 8.686 8.667 8.649 8.630 8.606 8.650 8.525 8.411 8.209
14 11.565 17.335 2.700 2.680 2.666 2.642 2.606 2.669 2.275 1.868 0.969
15 21.720 32.557 7.397 7.336 7.274 7.213 7.168 7.185 7.063 7.200 5.950
16 23.500 35.225 1.110 1.0717 1.0343 0.995 0.971 0.978 0.775 0.578 0.289
17 23.500 35.225 0.740 0.723 0.707 0.689 0.677 0.686 0.542 0.403 0.201
18 1.100 1.649 5.100 4.928 4.760 4.584 4.456 4.506 3.949 3.372 1.786

In the second column of Table 9, the average of the current (I) relative error is displayed in order
to evaluate the fit quality. Maximum current error (absolute and relative, listed as positive values)
is associated in each case with the coordinates where it appears. The maximum power point is also
investigated as an absolute and relative error and finally the computed value is listed. The current (I)
relative error is below 1.18% in all cases, and the Pmp relative error is even better (lower than 1%).
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Table 9. Computed errors for the analyzed PV cells and modules.

No.
Current (I) Error Max. Power

(
Pmp

)
Error

Avg.Rel.
(%)

Coordinates Abs.
(mA)

Rel.
(%)

Abs.
(W)

Rel.
(%)

Comp.
(W)V (V) I (A)

1 −0.11 18.423 3.247 16.63 0.52 −0.363 −0.52 70.32
2 −0.08 20.398 6.325 21.97 0.35 −0.246 −0.16 150.47
3 −0.21 32.952 6.615 59.85 0.90 −1.80 −0.74 246.90
4 0.10 34.638 8.319 92.81 1.12 −1.99 −0.66 302.10
5 −0.19 28.788 6.183 50.70 0.82 −1.223 −0.61 201.37
6 −0.20 19.077 4.105 33.65 0.82 −0.481 −0.55 87.83
7 −0.20 19.306 6.225 52.58 0.84 −0.227 −0.17 135.28
8 −0.20 32.432 6.801 57.57 0.85 −1.242 −0.51 246.50
9 −0.20 32.103 6.248 53.40 0.86 −1.308 −0.58 225.75
10 −0.13 18.548 1.675 9.200 0.55 −0.240 −0.67 36.21
11 −0.17 18.697 2.867 19.97 0.70 −0.215 −0.36 60.07
12 −0.17 0.519 2.872 20.60 0.72 −0.006 −0.38 1.669
13 −0.17 39.909 6.788 47.91 0.71 −0.914 −0.30 301.49
14 0.03 12.255 2.635 3.32 0.13 0.093 0.23 39.91
15 −0.27 38.253 5.730 67.47 1.18 −1.253 −0.52 241.59
16 0.04 30.966 0.925 0.94 0.10 0.015 0.05 28.79
17 0.04 30.816 0.650 0.79 0.12 0.010 0.05 20.15
18 0.014 1.578 4.142 7.09 0.17 0.01 0.16 6.53

Avg. Rel. = the average of the relative error, Abs. = absolute error, Rel. = relative error, Comp. = computed value

Figure 16. Cont.
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Figure 16. Cont.
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Figure 16. Bézier approximation of the I-V curves using the proposed method (left) and the least
squares method (right). The lines represent the computed curves, whereas the markers represent the
actual data. Control points are represented with black dots. (a) Bosch M245 3BB Mono-Crystalline PV
module; (b) Kyocera KD135SX_UPU Poly-Crystalline PV module; (c) Shell S36 Poly-Crystalline PV
module; (d) Solarex MSX-60 Poly-Crystalline PV Cell; (e) Onyx Ref 10 amorphous Silicon PV Glass
module; (f) 6.5Wp L amorphous Silicon PV Cell.

An additional plot of the relative error is introduced in Figure 17a,b for two of the analyzed
PV devices. The same pattern arises as in Figure 11, with small errors up to 0.94Voc. The curvature
plots from Figure 17c,d were computed using the Herman and Klette method [50], with 20 forward
and backward points, using an adapted script from [51].

Figure 17. Cont.
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Figure 17. Relative error (a,b) and curvature plots (c,d) for Shell ST40 Thin film PV module (a,c) and
6.5 Wp L amorphous Silicon PV Cell (b,d).

5. Discussion

In all studied cases, the x coordinates can be evenly spaced. Both for the PV cells and for the PV
modules, the first Bézier cubic curve was very close to a straight line and ended at x03 = 0.5Voc, while
the middle curve ended at x13 = 0.75Voc. The relative error is less than or equal to 1.18% for all the
studied PV devices, while neglecting the values in the 0.94Voc − Voc region, where the absolute error
is tens of mA and the relative error is misleading, (Figures 11 and 17).

The differences between the results obtained with the proposed method and the least squares
method are negligible (less than 1% for all coordinates). Rs and Rsh can be easily derived from the
manufacturer’s datasheet, using for example the method proposed by Vilallva et al. [5]. In most cases
Rsh is close to Rsho (Table 7). Larger differences occur for the series parasitic resistance: for the same
PV cell. For different irradiances and temperatures, Section 4.4 provides all the necessary formulae.

In most cases Vmp > P13x. The method was also valid for Onyx Ref 10, Onyx Ref 30, and 6.5 Wp L
Cell, where the previous relation was not satisfied.

In relation to the Maximum Power Point Tracking (MPPT), it must be emphasized that the Bézier
curves are inherently smooth. This reduces the risk for the algorithm of becoming stuck in some false
area/minimum of the curve. Furthermore, as the generation of the Bézier curves is so easy, the MPPT
simulation can be further simplified.

6. Conclusions

A novel method for modeling a PV cell or a PV module I-V characteristic was introduced. To the
best of our knowledge, Bézier curves have not been used to model the I-V characteristic of PV
devices before. The method proved high accuracy and was validated both in the case of a single PV
cell and in the case of a whole PV module, for different technologies and manufacturers. The method
was also used in the case of varying irradiance and temperature. The proposed method can be used
for implementing hardware solar array simulators, for teaching or remote study. It is far easier to
use the proposed method to find the I-V characteristic of a PV cell or module when compared with
solving the exponential equations associated with the single or double diode model largely used today.
A common microcontroller can compute the points on the I-V curve with a minimum of resources,
inherently increasing the computing speed and the response of the system.

The advantage of our method relies on the ease of I-V characteristic generation: if we exclude
Voc and Isc, only 10 different values (P23x = Voc, P00y = Isc, P01y, P02y, P03y, P11y , P12y, P13y, P21y, P22y)
have to be stored—SAS manufacturers usually use 1024 or more double points to accurately define
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the I-V characteristic. Alternate use is for any graphical plot of the I-V (and subsequently P-V) curves.
Furthermore, little knowledge of the device itself is required, as only common data from the datasheet
is needed.

As future work, fitting spiral segments will be investigated and compared with our
current method.
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Nomenclature

Main Symbols
a Diode ideality factor
G Actual irradiance
Gre f Reference irradiance, 1000 W/m2

I Output current
Imp Output current at maximum power point
Isc Short circuit current
Isc,re f Short circuit current 25 ◦C
k Boltzmann constant
kI Current temperature coefficient, A/K
kV Voltage temperature coefficient, V/K
kRsh Rsh temperature exponent
ns Number of series cells
Pmp = Vmp Imp Maximum output power
q Electron charge
Rs Series resistance
Rs,re f Series resistance at 25 ◦C
Rs0 Series resistance based on I-V characteristic slope close to Voc

Rsh Parallel (shunt) resistance
Rsh,re f Parallel (shunt) resistance, at 25 ◦C
Rsh0 Parallel (shunt) resistance based on I-V characteristic slope close to Isc

T Internal temperature, (K)
Tre f Reference temperature 298.15 K
∆T = T − Tre f Temperature difference
V Output voltage
Voc Open circuit voltage
Voc,re f Open circuit reference voltage at 25 ◦C
Voc,cell Solar cell open circuit voltage
Voc,cell,re f Solar cell open circuit reference voltage at 25 ◦C
Vmp Output voltage at maximum power point
Abbreviations
AM Air Mass
MPPT Maximum Power Point Tracking
PV Photovoltaic
SAS Solar Array Simulator
STC Standard Test Conditions (cell temp. 25 ◦C; irradiance 1000 W/m2; air mass 1.5)
Greek Symbols
αRs Series resistance temperature coefficient (linear law)
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