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Featured Application: The qualitative and quantitative dynamic behavior of two degree-of-
freedom nonlinear systems can be studied by using their corresponding decoupled one degree
of freedom Duffing type equivalent representation forms in the sense of Lyapunov, with the
advantage of capturing amplitude-dependent nonlinear mode shapes.

Abstract: The aim of this paper focuses on finding equivalent representation forms of forced,
damped, two degree-of-freedom, nonlinear systems in the sense of Lyapunov by using a nonlinear
transformation approach that provides decoupled, forced, damped, nonlinear equations of the
Duffing type, under the assumption that the driving frequency and the external forces are equal in
both systems. The values of Lyapunov characteristic exponents (LCEs), Lyapunov largest exponents
(LLE), and time-amplitude and frequency-amplitude curves computed from numerical integration
solutions, indicate that the decoupled Duffing-type equations are equivalent, in the sense of Lyapunov,
to the original dynamic system, since both set of motion equations tend to have the same qualitative
and quantitative behaviors.

Keywords: Lyapunov characteristic exponents; Duffing’s equation; frequency amplitude response
curves; internal resonances

1. Introduction

Minorsky [1], Caughey [2], Iwan [3,4], Sinha and Srinivasan [5], Agrwal and Denman [6], Yuste
and Sánchez [7,8], Cai [9], Farzaneh and Tootoonchi [10], and many others have reported approaches
that replace linear and nonlinear dynamic systems by equivalent ones with known solutions that
are closed to the original system, which produce the same oscillations that appear in the original
equations of motion. . There, the authors focused on using linearization, weighted mean-square, and
least squares techniques to determine the equivalent expressions that provide solutions with the same
quantitative and qualitative original system dynamics response behavior.

On the other hand, a nonlinear transformation approach that is based on a cubication method,
was recently introduced to obtain the equivalent representation form of conservative two degree-of-
freedom nonlinear oscillators [11]. There, the authors developed an approach to replace a two
degree-of-freedom homogeneous, undamped system by another equivalent system with known
solutions that were closed to the original one. In that approach, they first replaced the system restoring
forces by polynomial expressions and then used a transformation technique to replace the resulting
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equations by two uncoupled nonlinear differential equations of the Duffing type. Here, some steps of
that approach are used to convert forced, damped, nonlinear systems of the form [12–15][

m1 0
0 m2

]{ ..
x1
..
x2

}
+

[
c11 c12

c21 c22

]{ .
x1
.
x2

}
+

[
k11 k12

k21 k22

]{
x1

x2

}
+

{
f1(x1, x2)

f2(x1, x2)

}
=

{
Q∗1(t)
Q∗2(t)

}
(1)

into equivalent decoupled, nonlinear equations of the Duffing type [16,17] in the Lyapunov sense, with
similar quantitative and qualitative dynamic behaviors. In Equation (1), m1 and m2 are the masses
of the system, cij and kij are the damping and stiffness system coefficients, respectively, f1(x1, x2)

and f2(x1, x2) are even, nonlinear restoring forces, and Q∗1(t) and Q∗2(t) are driving periodic forces.
The system initial conditions are assumed to be given by x1(0) = x10, x2(0) = x20,

.
x1(0) =

.
x10, and

.
x2(0) =

.
x20.

To achieve such equivalence in the sense of Lyapunov, first, the system (1) is written in its normal
canonical form in an attempt to predict the system’s dynamic behavior. Then, from the normal form
representation of the system (1) it is assumed that the modal system’s generalized coordinates can be
equivalently expressed as a power series expansion [18–21] to decouple each normal mode equation
into a forced, damped, nonlinear differential equation of the Duffing type, whose approximate solution
has been widely discussed in the literature [22–24].

It is conjectured that the equivalent form representation of the decoupled equations will have
the same Lyapunov characteristic exponents value (LCEs) as those for the normal canonical form of
the original equations of motion. In other words, it can be conjectured that the resulting decoupled
equations are equivalent in the sense of Lyapunov if the solutions of the decoupled expressions are
solutions of the normal canonical form of the original equations of motion, and vice versa [25,26].
If the decoupled Duffing equations of a two-degree-of-freedom dynamical system are equivalent in
the sense of Lyapunov to the canonical form of the original equations of motion, then the Lyapunov
characteristic exponents are the same, i.e.,

λi = λie, with i = 1, 2, 3, 4, (2)

where λi, and λie are the canonical form, and the equivalent Lyapunov characteristic exponents,
respectively.

It is believed that the decoupled form, in the sense of Lyapunov, of the normal canonical
representation of Equation (1) can be used as a valuable tool for understanding the significance of
nonlinear normal modes of several nonlinear systems. In fact, the generalization of conservative
nonlinear normal modes and its computation has led to the use of these in a diverse range of
applications in structural dynamics [27]. Furthermore, nonlinear normal modes have been used
to identify localized modes in micro-electromechanical devices [28] for the development of a
new kind of low frequency acoustic absorber [29] and for the analysis of nonlinear vibrations
for double-walled carbon nanotubes [30]. Also, the nonlinear normal modes have helped in the
understanding of the dynamic response behavior of full-scale aircrafts and satellites [31,32] as a tool
for sub-structuring [33], for the construction of reduced-order models [34], and for damage detection
in engineering structures [35], among others uses.

Therefore, the aim of this paper is to verify the previously mentioned conjecture by introducing
a nonlinear approach to replace the canonical normal form of a dynamical two-degree-of-freedom
system by two equivalent decoupled expressions of the Duffing type. A few examples are presented to
outline the basic ideas behind the determination of the equivalent representation form in the sense of
Lyapunov of nonlinear, forced, damped, two degree-of-freedom systems. The steps involved in the
proposed transformation approach to decouple nonlinear equations are introduced next.
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2. Transformation Technique

Before the decoupling procedure to find the equivalent representation form of Equation (1) in
the sense of Lyapunov is introduced, Equation (1) is first written into its canonical, normal mode by
applying the following linear transformation [36]{

x1

x2

}
= κ

{
u1

u2

}
(3)

which yields: [
1 0
0 1

]{ ..
u1
..
u2

}
+

[
ν1 ν2

ν2 ν3

]{ .
u1
.
u2

}
+

[
ω2

n1 0
0 ω2

n2

]{
u1

u2

}

+

{
ϕ1u3

1 + ϕ2u2
1u2 + ϕ3u1u2

2 + ϕ4u3
2

ϕ5u3
1 + ϕ6u2

1u2 + ϕ7u1u2
2 + ϕ8u3

2

}
=

{
P1(t)
P2(t)

} (4)

where u1 and u2 are the normal coordinates of the linear, undamped, free vibration system, κ is the
modal matrix which consists of the characteristic vectors that represent the natural modes of the linear
system obtained from (1), and these are given by κ = [R1{κ}1, R2{κ}2], where Ri are scale factors that
can be determined from

√
1/Mii, in which Mii = κT

i Mκi is the generalized mass and {κ}1 and {κ}2
denote column eigenvectors. If the scale factors are chosen so that Mii = κT

i Mκi = 1, i = 1, 2, then
the normal modes are mass-orthonormal, and thus, ω2

ni = κT
i Mκi, i = 1, 2. Furthermore, ϕ1 through

ϕ8, and P1(t) and P2(t) are parameters that are defined in accordance with the physics of the system.
Here, the initial conditions are assumed to be given as u1(0) = u10, u2(0) = u20,

.
u1(0) =

.
u10 and

.
u2(0) =

.
u20. It is further assumed that the linear transformation (3) preserves the Lyapunov exponents

of the original system (1); this implies that Lyapunov exponents of the original system (1) are equal
to those computed from (4) and hold for any solution of the original system and the corresponding
solution of the transformed one, as stated by Barabanov [37].

On the other hand, one can notice that the nonlinear Equation (4) does not have known exact
solutions and is as difficult to solve as the original equations of motion (1). In order to avoid these
difficulties, it is now assumed that the modal system (4) can be expressed, for the system generalized
coordinates (displacements or rotations), in a third-order power series expansion [18–21]. Thus,
Equation (4) becomes

..
u1 + ω2

n1u1 + ν1
.
u1 + ν2

.
u2 + ϕ1u3

1 + ϕ2u2
1u2 + ϕ3u1u2

2 + ϕ4u3
2

≡ ..
u1 + a1u1 + a2u2

1 + a3u3
1 + 2µ1

.
u1 + · · · = P1(t)

(5)

..
u2 + ω2

n2u2 + ν2
.
u1 + ν3

.
u2 + ϕ5u3

1 + ϕ6u2
1u2 + ϕ7u1u2

2 + ϕ8u3
2

≡ ..
u2 + b1u2 + b2u2

2 + b3u3
2 + 2µ2

.
u2 + · · · = P2(t)

(6)

Expressions (5) and (6) provide approximate decoupled representation forms of the original
equations of motion whose accuracy depends on the unknown coefficients: ai, bi, and µi. Here,
the external forces and the driving frequencies are considered to be the same in both systems [16,38].
Once these coefficients are determined, the approximate solutions of (5) and (6) can be derived by
using perturbation or numerical techniques [39], and their LCEs can be numerically computed by
using the procedure discussed in [40,41].

The following remarks are important to set the number of terms of the power series expansion of
Equations (5) and (6) that provides an invariant polynomial expression which describes the shapes of
the invariant manifolds that are related to the system’s nonlinear normal modes [21,38,42]:

(a) Odd terms arise in the right-hand term (RHT) of the invariant polynomial expressions of
Equations (5) and (6) if the restoring forces of the dynamic system are described by an invariant
odd polynomial expression.
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(b) If the restoring forces of the original system have mixed-parity nonlinearities, then even and odd
terms arise in the RHT invariant polynomial expressions of Equations (5) and (6).

(c) Velocity-dependent terms arise mainly in the RHT of the invariant polynomial expressions of
Equations (5) and (6) in order to capture not only the effective trend of the system’s nonlinearities
responsible for displaying amplitude-dependent nonlinear mode shapes, but also to take into
account decay rate effects.

3. Determination of ai, bi, and µi

To determine the coefficients ai, bi, and µi, a minimization procedure analogous to the one
followed by Caughley in [2] is assumed. Here, it is assumed that the square of the difference between
the acceleration of the originally coupled system and that of the simplified cubic one, given by
Expressions (5) and (6), could be minimized for each system by considering that the weighted mean
square errors, U1 and U2, can be determined by using the following expressions [17]:

U1 = min
V2∫
0

V1∫
0

η2∫
0

η1∫
0
(ω2

n1u1 + ν1
.
u1 + ν2

.
u2 + ϕ1u3

1 + ϕ2u2
1u2 + ϕ3u1u2

2 + ϕ4u3
2 − a1u1

−a2u2
1 − a3u3

1 − 2µ1
.
u1 − · · · )2 du1 du2 d

.
u1 d

.
u2,

(7)

U2 = min
V11∫
0

V22∫
0

η11∫
0

η22∫
0
(ω2

n2u2 + 2ν2
.
u1 + ν3

.
u2 + ϕ5u3

1 + ϕ6u2
1u2 + ϕ7u1u2

2 + ϕ8u3
2

−b1u2 − b2u2
2 − b3u3

2 − 2µ2
.
u2 − · · · )2 du2 du1 d

.
u2 d

.
u1.

(8)

Furthermore, the minimization of U1 and U2 with respect to the coefficients, ai, bi and µi, can be
achieved from [9]

∂U1

∂ai
= 0 with i = 1, 2, 3,

∂U1

∂µ1
= 0, (9)

∂U2

∂bi
= 0 with i = 1, 2, 3,

∂U2

∂µ2
= 0. (10)

Equations (9) and (10) yield, after performing some algebraic computer calculations with the help
of Mathematica 11.1.1.0 symbolic computer package, the following expressions:

a1 = ω2
n1 +

ϕ3η2
2

3
+

85
74η1

(
ϕ4η3

2 + 2ν2V2

)
, a2 =

37ϕ2η2
1η2 − 320

(
ϕ4η3

2 + ν2V2
)

37η2
1

, (11)

a3 =
111ϕ1η3

1 + 560
(

ϕ4η3
2 + ν2V2

)
111η3

1
, µ1 =

48ϕ4η3
2 + 37ν1V1 + 48ν2V2

74V1
, (12)

b1 = −
−222η22ω2

n2 − 255ϕ5η3
11 − 74ϕ6η2

11η22 − 510ν2V11

222η22
, (13)

b2 = −
160ϕ5η3

11 − 37ϕ7η11η2
22 + 320ν2V11

74η2
22

, (14)

b3 = −
−140ϕ5η3

11 − 111ϕ8η3
22 − 280ν2V11

111η2
22

, (15)

µ2 = −
−12ϕ5η3

11 − 24ν2V11 − 37ν3V22

74V22
. (16)

Here, ηi, ηii, Vi, and Vii describe integration constants whose values must minimize Expressions
(7) and (8). The general procedure to compute the integration constants ηi, ηii, Vi, and Vii is discussed
in the following section.
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Computation of ηi, ηii, Vi, and Vii Values

To determine the above integration constants, Equations (11) and (12) are substituted into
Equations (7), and (13)–(16) are substituted into Equation (8). This step yields, after performing
the corresponding integrations, the following expressions:

S1 =
121η1η2V1V2

258741

(
12ϕ2

4η6
2 + 21ϕ4η3

2ν2V2 + 28ν2
2V2

2

)
, (17)

S2 =
η11η22V11V22

41398560
(
3780750ϕ2

5η6
11 + 3677800ϕ5 ϕ6η5

11η22 + 1226624ϕ2
6η4

11η2
22

+2206680ϕ5 ϕ7η4
11η2

22 + 1724940ϕ6 ϕ7η3
11η3

22 + 689976ϕ2
7η2

11η4
22

+4957575ϕ5ν2η3
11V11 + 2755760ϕ6ν2η2

11η22V11 + 2066820ϕ7ν2η11η2
22V11

+4952920ν2
2V2

11
)
,

(18)

Notice that the resulting polynomial expressions, (17) and (18), provide convex, continuous
functions in the relative interior of their domains which depend on the values of ηi, ηii, Vi, and
Vii [43,44]. These functions, Si, have a unique minimum value within their bounded domain intervals,
as discussed in [45,46] and references cited therein. Thus, the values of ηi, ηii, Vi, and Vii that provide
the minimum values of Ui could be computed by following a classical minimization algorithm in
which the partial derivatives of Equations (17) and (18) must be determined, respectively, with respect
to the unknowns: ηi, ηii, Vi, and Vii. This step provides the following equations:

∂S1

∂η1
=

121η2V1V2

258741

(
12ϕ2

4η6
2 + 21ϕ4η3

2ν2V2 + 28ν2
2V2

2

)
, (19)

∂S1

∂η2
=

484η1V1V2

369663

(
3ϕ2

4η6
2 + 3ϕ4η3

2ν2V2 + ν2
2V2

2

)
, (20)

∂S1

∂V1
=

121η1η2V2

258741

(
12ϕ2

4η6
2 + 21ϕ4η3

2ν2V2 + 28ν2
2V2

2

)
, (21)

∂S1

∂V2
=

242η1η2V1

86247

(
2ϕ2

4η6
2 + 7ϕ4η3

2ν2V2 + 14ν2
2V2

2

)
, (22)

∂S2

∂η11
=

η22V11V22

2957040
(
1890375ϕ2

5η6
11 + 1576200ϕ5 ϕ6η5

11η22 + 438080ϕ2
6η4

11η2
22

+788100ϕ5 ϕ7η4
11η2

22 + 492840ϕ6 ϕ7η3
11η3

22 + 147852ϕ2
7η2

11η4
22

+1416450ϕ5ν2η3
11V11 + 590520ϕ6ν2η2

11η22V11 + 295260ϕ7ν2η11η2
22V11

+353780ν2
2V2

11
)
,

(23)

∂S2

∂η22
=

η11V11V22

41398560
(
3780750ϕ2

5η6
11 + 7355600ϕ5 ϕ6η5

11η22 + 3679872ϕ2
6η4

11η2
22

+6620040ϕ5 ϕ7η4
11η2

22 + 6899760ϕ6 ϕ7η3
11η3

22 + 3449880ϕ2
7η2

11η4
22

+4957575ϕ5ν2η3
11V11 + 5511520ϕ6ν2η2

11η22V11 + 6200460ϕ7ν2η11η2
22V11

+4952920ν2
2V2

11
)
,

(24)

∂S2

∂V11
=

η11η22V22

20699280
(
1890375ϕ2

5η6
11 + 1838900ϕ5 ϕ6η5

11η22 + 613312ϕ2
6η4

11η2
22

+1103340ϕ5 ϕ7η4
11η2

22 + 862470ϕ6 ϕ7η3
11η3

22 + 344988ϕ2
7η2

11η4
22

+4957575ϕ5ν2η3
11V11 + 2755760ϕ6ν2η2

11η22V11 + 2066820ϕ7ν2η11η2
22V11

+7429380ν2
2V2

11
)
,

(25)

∂S2

∂V22
=

η11η22V11

41398560
(
3780750ϕ2

5η6
11 + 3677800ϕ5 ϕ6η5

11η22 + 1226624ϕ2
6η4

11η2
22

+2206680ϕ5 ϕ7η4
11η2

22 + 1724940ϕ6 ϕ7η3
11η3

22 + 689976ϕ2
7η2

11η4
22

+4957575ϕ5ν2η3
11V11 + 2755760ϕ6ν2η2

11η22V11 + 2066820ϕ7ν2η11η2
22V11

+4952920ν2
2V2

11
)
,

(26)
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which are set equal to zero to find the critical points at which Equations (7) and (8) are minimized.
Notice from Equation (9) through (16) that the denominator terms depend, respectively, on η1, V1, η22,
and V22. Therefore, these coefficients cannot be zero. Thus, ∂S1/∂η1 = 0, ∂S1/∂η2 = 0, ∂S1/∂V1 = 0,
∂S1/∂V2 = 0, ∂S2/∂η11 = 0, ∂S2/∂η22 = 0, ∂S2/∂V11 = 0, ∂S2/∂V22 = 0 are identically satisfied, if,
and only if, η2 = 0, V2 = 0, η11 = 0, and V11 = 0. Then, the expressions for ai and bi that minimize
the weighted mean square error of using Expressions (7) and (8) to determine the coefficients, ai, bi,
and µi that describes the equivalent representation form of the original equation of motion, into the
approximate forms (5) and (6), simplify to

a1 = ω2
n1, a2 = 0, a3 = ϕ1, µ1 =

ν1

2
, (27)

b1 = ω2
n2, b2 = 0, b3 = ϕ8, µ2 =

ν3

2
. (28)

Thus, the above approach and the usage of power series expansion up to the third-order to replace
the modal restoring forces of Equations (5) and (6) provide the following uncoupled Duffing-type
equivalent equations:

..
u1 + 2µ1

.
u1 + a1u1 + a3u3

1 = P1(t),
..
u2 + 2µ2

.
u2 + b1u2 + b3u3

2 = P2(t). (29)

It is important to point out that such equivalence in this two degree-of-freedom (DOF),
non-integrable system (4) is only equivalent, in an approximate form, to two single degree-of-freedom
integrable equations. Furthermore, in the conservative case, almost periodic solutions can be observed
in two-DOF nonlinear system of coupled equations, but they are absent in the uncoupled, single-DOF,
nonlinear Equation (29). However, the linear combination of their approximate solutions, in accordance
with Equation (3), could exhibit, as in the case of the original system of differential Equation (1),
almost periodic solutions, as will be demonstrated in Example 2. In accordance with Shaw and
Pierre [20], the advantage of having decoupled modal equations is related to the possibility of obtaining
information about the system modal amplitudes and thus, the numerical integration solution of
these equivalent expressions, which could provide valuable information about the qualitative and
quantitative behaviors of the system dynamics.

On the other hand, if the restoring forces, f1(x1, x2) and f2(x1, x2), of the dynamic system (1)
contain even, nonlinear effects, then, their equivalent representation forms in the sense of Lyapunov
could also be expanded to power series in which decay terms must be considered. Section 5 focuses on
studying the effects of these new terms in the decoupled form of a nonlinear, dynamic system.

4. Numerical Validation

The applicability of the proposed approach of replacing, in the sense of Lyapunov, a two-degree-
of-freedom system with equivalent expressions of the Duffing type will be examined by considering
three nonlinear dynamic systems.

4.1. Example 1: Dynamic System with Cubic Nonlinearities

To study the accuracy attained by applying the proposed approach to decouple nonlinear
differential equations and to validate the proposed conjecture, first, the frequency-amplitude response
curves of the original unforced, undamped system (4) will be compared to the backbone curves
obtained from the Duffing equations described by Equation (29). To accomplish this goal, the nonlinear
dynamic systems discussed in [20,21] are considered, in which the corresponding equations of motion
are described by

[
m 0
0 m

]{ ..
x1
..
x2

}
+

[
c −c
−c 2c

]{ .
x1
.
x2

}
+

[
1 + k −k
−k 1 + k

]{
x1

x2

}
+

{
εx3

1
0

}
=

{
f1 cos ω f t

0

}
(30)
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where f1 is the magnitude of the driving force, and ω f represents the corresponding driving frequency.
The system initial conditions are assumed to be given as x1(0) = x10,

.
x1(0) = 0, x2(0) = x20,

and
.
x2(0) = 0. In order to study the dynamic response of the system (30), this is first transformed into

the modal coordinates,
{

u1 u2

}T
, via the following linear transformation

{
x1

x2

}
=

[
β β

β −β

]{
u1

u2

}
(31)

where β = 1/
√

2. Thus, the system (30) can be equivalently written as Equation (4) with

ϕ1 ≡ ε/8, ϕ2 ≡ −3ε/8, ϕ3 ≡ 3ε/8, ϕ4 ≡ −ε/8, ϕ5 ≡ −ε/8, ϕ6 ≡ 3ε/8,
ϕ7 ≡ −3ε/8, ϕ8 ≡ ε/8, ν1 = ν2 = 1/2c, ν3 ≡ 5/2c, ω2

n1 ≡ 1/m,
ω2

n2 = (1 + 2k)/m, P1(t) = P2(t) = f1/
√

2 cos ω f t.
(32)

In order to determine if the decoupled Equation (29) provides a good description of the dynamics
of the original system (30), the frequency-amplitude backbone curves are plotted. In accordance with
Hsu [47], the exact frequency-amplitude equations for the unforced, undamped Duffing Equation (4)
are given as

mode 1 : ω2
1 = a1 + a3u2

10; mode 2 : ω2
2 = b1 + b3u2

20 (33)

while the approximate frequency-amplitude relationships obtained from the modified
Lindstedt–Poincaré method are [48,49]

mode 1 : ω2
1 = ω2

n1 + 1/4
(

3/8εu2
10 + 3/8εu10u20 + O

(
ε2
))

, (34)

mode 2 : ω2
2 = ω2

n2 + 1/4
(

3/8εu2
20 + 3/8εu10u20 + O

(
ε2
))

. (35)

Figure 1 shows the simulation performed to verify the accuracy of the proposed methodology
that decouples the nonlinear normal mode’s differential equations. The system parameter values in
dimensionless units are m = 1, k = 1, ε = 0.5 with c = 0 and f1 = 0; these are similar to those used
in [20]. To plot the frequency-amplitude curve of the first mode, initial conditions of

(
u1, u2,

.
u1,

.
u2
)
=

(1, 0, 0, 0) were considered, and for the second mode,
(
u1, u2,

.
u1,

.
u2
)
= (0, 1, 0, 0) was used. It is

clear from the results exhibited in Figure 1 that the frequency-amplitude curves of the original system
compare well with those of the uncoupled equations. Therefore, it is concluded that the replacement
of the original equation of motion for two equivalent equations of the Duffing-type describes the
qualitative and quantitative dynamic system behaviors well, as shown in Figure 2, in which the
frequency-amplitude backbone curves for several values of k and ε have been plotted.

Next, the damped nonlinear case was considered with parameter values of m = 1, c = 0.3,
k = 1 and ε = 0.5 to compare the numerical integration of Equation (30) with respect to those given
by expressions (29). The results of the simulations in physical coordinates are depicted in Figure 3
in which the amplitude-time curves have been plotted by using the system’s initial conditions of(

x1, x2,
.
x1,

.
x2
)
= (0, 0, 2, 0).

It is evident from Figure 3, that the decoupled Equation (29) is in agreement with the numerical
integration solutions of the original equations of motion (30). In fact, the LCEs of the original system
have mean values of λ1 = −0.0756, λ2 = −0.0802, λ3 = −0.3698, and λ4 = −0.3743 bits/second, while
the LCEs computed from the equivalent models are λ1e = −0.0749, λ2e = −0.0750, λ3e = −0.3726,
and λ4e = −0.3773 bits/second. In spite of having some discrepancies in the computed numerical
values, the order of magnitude of the LCEs of the equivalent expressions tend to be similar to those
computed from the original equations of motion with root mean square error (RMSE) values of 0.1117
and 0.0788 for the first and second mode, respectively.
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To further assess the accuracy of the proposed nonlinear decoupling procedure, the frequency-
amplitude steady-state response curves of the forced, damped nonlinear system (30) were plotted with
parameter values of m = 1, k = 1, c = 0.3, ε = 0.5 and f1 = 0.25.
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Figure 1. Modal amplitudes: (a) u1 vs ω1, (b) u2 vs ω2. The backbone curves were computed from
Equations (33) to (35). The parameter values used to obtain these plots were m1 = m2 = 1, k = 1,
ε = 0.5 with c = 0 and f1 = 0. Here, the black solid lines describe the solutions obtained from
Equations (34) and (35), while the blue dashed lines represent the backbone curves computed from
Equation (33).
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Figure 2. Modal amplitudes: (a) u1 vs ω1, (b) u2 vs ω2. The backbone curves were computed from
Equations (33) to (35). The parameter values used to obtain these plots for different values of k and ε

were m1 = m2 = 1, with c = 0 and f1 = 0. Here, the black solid lines describe the solutions obtained
from Equations (34) and (35), while the colored, dashed lines represent the backbone curves computed
from Equation (33).
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Figure 3. Time-amplitude response curves (a) x1 vs t, (b) x2 vs t. These were computed from the
numerical integration solutions of Equations (29) and (30). The parameter values used to obtain
these plots were m1 = m2 = 1, k = 1, ε = 0.5 with c = 0.3, with initial conditions given by(

x1, x2,
.
x1,

.
x2
)
= (0, 0, 2, 0). Here, the black lines describe the numerical integration solutions

of Equation (30), while the blue, dashed lines represent the numerical solutions obtained from the
nonlinear equations of motion (29).
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It can be seen from Figure 4 that the numerical integration solutions of the decoupled Equation (29)
provide curves that slightly differ close to the resonant region to those obtained from the numerical
integration solutions of the original equations of motion, but its qualitative and quantitative system
dynamic predictions are, in general, good. The corresponding Largest Lyapunov Characteristic
Exponent (LLE) curves plotted versus the driving frequency, ω f , are exhibited in Figure 5. It is
evident from Figure 5 that the LLE curve computed from the equivalent uncoupled expressions (29) is
closed to that estimated from Equation (30). In this case, the RMSE does not exceed the value of 0.0056.
This confirms that the proposed conjecture is numerically true.
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Figure 4. Frequency-amplitude response curves: (a) x1 vs ωf, (b) x2 vs ωf. These were computed from
the numerical integration solutions of Equations (29) and (30). The parameter values used to obtain
these plots were m1 = m2 = 1, k = 1, ε = 0.5 with c = 0.3 and f1 = 0.25. Here, the black solid lines
describe the numerical integration solutions of Equation (30), while the blue dashed lines represent the
numerical solutions obtained from Equation (29).
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Figure 5. Largest Lyapunov Characteristic Exponent (LLE) curves computed from the numerical
integration solutions of Equations (29) and (30). The parameter values used to obtain these plots were
m1 = m2 = 1, k = 1 and ε = 0.5 with c = 0.3 and f1 = 0.25. Here, the black, solid line represents the
LLE computed from the numerical integration solutions of Equation (30), while the blue, dashed line
describes the LLE obtained from Equation (29).

As a second example to investigate the validity of the proposed conjecture, a forced, damped
nonlinear dynamic system with cubic nonlinearities was next examined.

4.2. Example 2: A Forced System with Cubic Nonlinearities

Here, the nonlinear dynamic system introduced in [21] was examined, which has the form[
m1 0
0 m2

]{ ..
x1
..
x2

}
+

[
c1 0
0 c2

]{ .
x1
.
x2

}
+

[
k1 + k2 −k2

−k2 k2 + k3

]{
x1

x2

}
+

{
ε1x3

1
ε2x3

2

}
=

{
Q1 cos ω f t

0

}
, (36)
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with initial conditions given by x1(0) = x10,
.
x1(0) = 0, x2(0) = x20, and

.
x2(0) = 0. To find the

canonical representation form of Equation (36), the following transformation approach is applied [36]:{
x1

x2

}
=

[
R1 R2

R1 f1 R2 f2

]{
u1

u2

}
, (37)

which yields the canonical form (4). In this case,

ω2
n1 =

1
2m1m2

[k1m2 + k2(m1 + m2) + k3m1 − H1], (38)

ω2
n2 =

1
2m1m2

[k1m2 + k2(m1 + m2) + k3m1 + H1], (39)

where
H1 =

√
((k2 + k3)m1 + k1 + k2m2)

2 − 4(k2k3 + k1(k2 + k3))m1m2 (40)

and

ν1 =
(
c1 + c2 f 2

1
)
r2

1, ν2 = (c1 + c2 f1 f2)r1r2, ν3 =
(
c1 + c2 f 2

2
)
r2

2,
ϕ1 ≡ ε1R4

1 + f 4
1 ε2R4

1, ϕ2 ≡ 3R3
1R2ε1 + 3 f 3

1 f2ε2R3
1R2, ϕ3 ≡ 3R2

1R2
2ε1 + 3 f 2

1 f 2
2 ε2R2

1R2
2,

ϕ4 ≡ R1R3
2ε1 + f1 f 3

2 ε2R1R3
2, ϕ5 ≡ R3

1R2ε1 + f 3
1 f2ε2R3

1R2, ϕ6 ≡ 3R2
1R2

2ε1 + 3 f 2
1 f 2

2 ε2R2
1R2

2,
ϕ7 ≡ 3R1R3

2ε1 + f1 f 3
2 ε2R1R3

2, ϕ8 ≡ R4
2ε1 + f 4

2 ε2R4
2,

f1 ≡
k1+k2−m1ω2

n1
k2

, f2 ≡
k1+k2−m1ω2

n2
k2

, P1(t) ≡ R1Q1 cos ω f t.
(41)

Thus, the equivalent decoupled representation form of Equation (36), becomes

..
u1 + 2µ1

.
u1 + a1u1 + a3u3

1 = P1(t),
..
u2 + 2µ2

.
u2 + b1u2 + b3u3

2 = P2(t). (42)

where ai, bi, and µi, are defined by Equations (27) and (28).
To assess the precision of the proposed approach, the frequency amplitude response curves were

next computed using the following system parameter values: m1 = 1 kg, m2 = 1.5 kg, k1 = 2 N/m,
k2 = 3.5 N/m, k3 = 5 N/m, c1 = 0.066 N-s/m, c2 = 0.099 N-s/m, ε1 = 1 N/m3, ε2 = 1 N/m3 and
Q1 = 0.2 N. The computation is performed starting with ω f = 0, with the initial conditions given by(
x1, x2,

.
x1,

.
x2
)
= (0, 0, 0, 0) and the driving frequency, ω f , increased gradually at small incremental

driving frequency step values of ∆ω f = 0.05. The steady-state vibration amplitude of the previous
solution is used as the initial condition to obtain the corresponding numerical integration solution at
the next ω f value.

Figure 6 shows the frequency-amplitude response diagrams from the numerically computed
form, Equation (36), and from the corresponding equivalent representation forms (42). Notice that
the numerical integration of (42) slightly differs from the numerical integration solutions of Equation
(36) near to the second resonance region; however, the nonlinear modal equations capture the
dynamics of the original system well. The LLE average values for Expressions (36) and (42) are
λLLE = −0.0229 bits/second, and λLLEe = −0.0226 bits/second, respectively. These computed LLE
average values are almost the same, which confirms the validity of the proposed conjecture.

Next the undamped and unforced case was considered with the above system parameter values
and

(
x1,

.
x1, x2,

.
x2
)
= (0, −0.1, 0, 0). Then, the transformation relationships (42) were used to plot

the time-amplitude response curves. Notice from Figure 7 that the linear combination solution (37)
describes the qualitative and quantitative system dynamics well. In fact, almost periodic solutions can
be observed when the modal displacements are transformed back into the original coordinate systems
by using the relationships (37). Therefore, it is concluded that the equivalent representation form of
Equation (36) validates the conjecture, since the numerical integration solutions follow the dynamic
behavior, observed during the numerical integration of the original equations of motion, well.

As a final example, the nonlinear absorber system introduced by Ji in [50] was examined.
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Figure 6. Frequency-amplitude response curves: (a) x1 vs ωf, (b) x2 vs ωf. These were computed from
the numerical integration solutions of Equations (36) and (42). The parameter values used to obtain
these plots were m1 = 1 kg, m2 = 1.5 kg, k1 = 2 N/m, k2 = 3.5 N/m, k3 = 5 N/m, c1 = 0.066 N-s/m,
c2 = 0.099 N-s/m, ε1 = 1 N /m3, ε2 = 1 N/m3, Q1 = 0.2 N. Here, the black, solid lines describe the
numerical integration solutions of Equations (36), while the blue, dashed lines represent the numerical
solutions obtained from the derived equivalent nonlinear equations of motion (42).
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Figure 7. Amplitude versus time response curves: (a) u1 vs t, (b) u2 vs t, (c) x1 vs t, (d) x2 vs t. Almost
periodic solutions can be observed when the modal displacements are transformed back into the
original coordinate systems x1 and x2 using the relationships (37). Here the solid line represents
the numerical integration solution of Equation (36), while the dashed, colored line describes the
approximate solution obtained from Equation (42).

4.3. Example 3: A Nonlinear Absorber System

The following equations of motion,[
m1 0
0 m2

]{ ..
x1
..
x2

}
+

[
c1 + c2 −c2

−c2 c2

]{ .
x1
.
x2

}
+

[
k1 + k3 −k3

−k3 k3

]{
x1

x2

}
+

{
k2x3

1 + k4(x1 − x2)
3

−k4(x1 − x2)
3

}

=

{
f0 cos ω f t

0

}
,

(43)



Appl. Sci. 2018, 8, 649 12 of 22

describe the dynamics of a nonlinear absorber attached to a single degree-of-freedom nonlinear
oscillator [50]. Here, x1, m1, k1, k2 and c1 represent the displacement, mass, linear and nonlinear
stiffnesses, and damping coefficient of the primary system, respectively, while x2, m2, k3, k4 and c2 are
system parameters related to the nonlinear secondary absorber system, and f0 and ω f are the external
excitation force and driving frequency, respectively.

It is easy to show that system (43) has the normal canonical modal representation form (4) with

ϕ1 = r4
1

[
k2 + k4( f1 + 1)( f1 − 3)3

]
, ϕ2 = 3r3

1r2

[
k2 + k4( f1 − 1)2( f1 + 1)( f2 − 1)

]
, (44)

ϕ3 = 3r2
1r2

2

[
k2 + k4

(
f 2
1 − 1

)
( f2 − 1)2

]
, ϕ4 = r3

1r2

[
k2 + k4( f1 + 1)( f1 − 3)3

]
, (45)

ϕ5 = r3
1r2

[
k2 + k4( f1 − 1)3( f2 + 1)

]
, ϕ6 = 3r2

1r2
2

[
k2 + k4( f1 − 1)2

(
f 2
2 − 1

)2
]

, (46)

ϕ7 = 3r1r3
2

[
k2 + k4( f1 − 1)( f2 − 1)2( f2 + 1)

]
, ϕ8 = r4

2

[
k2 + k4( f2 − 1)3( f2 + 1)

]
, (47)

ν1 = r2
1

[
c1 + c2( f1 − 1)2

]
, ν2 = r1r2[c1 + c2( f1 − 1)( f2 − 1)], ν3 = r2

2

[
c1 + c2( f1 − 1)2

]
, (48)

ω2
n1 = 1/(2m1m2)

{
k1m2 + k3(m1 + m2)−

√
[k1m2 + k3(m1 + m2)]

2 − 4k1k3m1m2

}
(49)

ω2
n2 = 1/(2m1m2)

{
k1m2 + k3(m1 + m2) +

√
[k1m2 + k3(m1 + m2)]

2 − 4k1k3m1m2

}
(50)

f1 =
(

k1 + k3 −ω2
n1m1

)
/k3, f2 =

(
k1 + k3 −ω2

n2m1

)
/k3, r2

1 = 1/
(

m1 + f 2
1 m2

)
(51)

r2
2 =

1(
m1 + f 2

2 m2
) , P1(t) = f0r1 cos ω f t, P1(t) = f0r2 cos ω f t. (52)

To obtain the frequency-amplitude response curves of the nonlinear absorber system, the
parameter values of m1 = 10 kg, m2 = 0.6 kg, c1 = 0.1 Ns/m, c2 = 0.08 Ns/m, k1 = 44 N/m,
k2 = 8 N/m3, k3 = 2 N/m, k4 = −0.15 N/m3, and f0 = 0.37 N were considered, which are similar to
those used in [50]. Figure 8 illustrates the frequency-amplitude response curves obtained from the
numerical integrations of Equations (29) and (43), in which the equivalent damping coefficients, µ1 and
µ2, are bigger than zero. Figure 8 shows that the decoupled solutions describe the dynamic behavior
of the original equations of motion well. The LLE numerically-calculated curves are illustrated in
Figure 9. As before, these computed LLE curves agree well along the driving frequency range, since
the estimated RMSE value is lower than 0.0017.

Next, the following system parameter values are used to plot the frequency-amplitude curves
shown in Figure 10: m1 = 10 kg, m2 = 0.8 kg, c1 = 0.1 Ns/m, c2 = 0.08 Ns/m, k1 = 44 N/m,
k3 = 2 N/m, k4 = −0.65 N/m3, f0 = 0.37 N, and k2 = 0 and 8 N/m3. As can be seen from Figure 10,
the frequency-amplitude curves obtained using the corresponding decoupled expressions follow
closely, in spite of having an absorber device that can have linear or nonlinear stiffness effects;
these curves are obtained by numerically integrating the original expressions (43). In this case,
the corresponding LLE-computed curves for the original and equivalent equations in the sense of
Lyapunov are shown in Figure 11.

To further assess the accuracy of the proposed approach, the values of k3 = 9.016 N/m, and
20.828 N/m with m2 = 0.6 kg were used to excite internal resonances of the types, ωn2 = 2ωn1 and
ωn2 = 3ωn1, which are second-order and third-order internal resonance relationships, respectively.
Figure 12 illustrates the frequency-amplitude curves obtained from the numerical integration solutions
of Equations (29) and (43).

It is evident that the equivalent equations in the sense of Lyapunov capture both types of internal
resonances without any additional assumptions or simplifications in the method. The estimated LLE
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curves for the original and equivalent equations are shown in Figure 13. From Figure 13, it is very
interesting to see the agreement in the computed LLE curves which is also confirmed by the computed
RMSE values and by the bifurcation diagrams shown in Figures 14 and 15. As a consequence,
one can conclude that the proposed conjecture is true, i.e., the decoupled Duffing Equations (29)
are equivalent, in the sense of Lyapunov, to the normal canonical form of the original equations
of motion (43) if the system’s nonlinearities are small and the oscillation amplitudes are moderate.
In other words, although our proposed approach is straightforward and easy to apply, this uncoupling
process could be only justifiable for small deviations in the system’s linear behavior because, for large
amplitudes, coupling and nonlinear terms are important. However, in spite of these drawbacks,
the proposed decoupling technique can capture internal resonances, something that is cumbersome
when applying other techniques [38,51]. Of course, further investigation into the applicability of
this approach to the prediction of internal resonances in other dynamic systems and its potential
advantages or disadvantages are beyond the scope of this paper, and these issues will be addressed in
a forthcoming article.
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Figure 8. Frequency-amplitude response curves: (a) x1 vs ωf, (b) x2 vs ωf. These were computed
from the numerical integration solutions of Equations (29) and (43). The parameter values used to
obtain these plots were m1 = 10 kg, m2 = 0.6 kg, c1 = 0.1 Ns/m, c2 = 0.08 Ns/m, k1 = 44 N/m,
k2 = 8 N/m3, k3 = 2 N/m, k4 = −0.15 N/m3, f0 = 0.37 N. Here, the black, solid lines describe the
numerical integration solution of Equation (43), while the blue, dashed lines represent the numerical
solutions obtained from the derived equivalent nonlinear equations of motion (29).
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Figure 9. LLE curves computed from the numerical integration solutions of Equations (29) and (43).
The parameter values used to obtain these plots were m1 = 10 kg, m2 = 0.6 kg, c1 = 0.1 Ns/m,
c2 = 0.08 Ns/m, k1 = 44 N/m, k2 = 8 N/m3, k3 = 2 N/m, k4 = −0.15 N/m3, f0 = 0.37 N. Here,
the black line represents the LLE computed from the numerical integration solutions of Equation (43),
while the blue line describes the LLE obtained from Equation (29).
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Figure 10. Frequency-amplitude response curves computed from the numerical integration solutions of
Equations (29) and (43). The parameter values used to obtain these plots were m1 = 10 kg, m2 = 0.8 kg,
c1 = 0.1 Ns/m, c2 = 0.08 Ns/m, k1 = 44 N/m, k3 = 2 N/m, k4 = −0.65 N/m3, f0 = 0.37 N, and (a) x1

vs ωf, and (b) x2 vs ωf with k2 = 0; (c) x1 vs ωf, and (d) x2 vs ωf with k2 = 8 N/m3. Here, the black, solid
lines describe the numerical integration solution of Equation (43), while the blue, dashed lines represent
the numerical solutions obtained from the derived equivalent nonlinear equations of motion (29).

Appl. Sci. 2018, 8, x 14 of 23 

 

 

 

 

Figure 10. Frequency-amplitude response curves computed from the numerical integration solutions 

of Equations (29) and (43). The parameter values used to obtain these plots were 𝑚1 = 10 kg, 𝑚2 =

0.8  kg, 𝑐1 = 0.1  Ns/m, 𝑐2 = 0.08  Ns/m, 𝑘1 = 44  N/m, 𝑘3 = 2  N/m, 𝑘4 = −0.65  N/m3, 𝑓0 = 0.37 

N, and (a) x1 vs f, and (b) x2 vs f with k2 = 0; (c) x1 vs f, and (d) x2 vs f with k2 = 8 N/m3. Here, the 

black, solid lines describe the numerical integration solution of Equation (43), while the blue, dashed 

lines represent the numerical solutions obtained from the derived equivalent nonlinear equations of 

motion (29). 

  

Figure 11. LLE curves computed from the numerical integration solutions of Equations (29) and (43). 

The parameter values used to obtain these plots were 𝑚1 = 10 kg, 𝑚2 = 0.8 kg, 𝑐1 = 0.1 Ns/m, 

𝑐2 = 0.08 Ns/m, 𝑘1 = 44 N/m, 𝑘3 = 2 N/m, 𝑘4 = −0.65 N/m3, 𝑓0 = 0.37 N, and (a) 𝑘2 = 0 and (b) 

𝑘2 = 8  N/m3. Here, the black line represents the LLE computed from the numerical integration 

solutions of Equation (43), while the blue line describes the LLE obtained from Equation (29). 

1.0 1.5 2.0 2.5 3.0

0.025

0.020

0.015

0.010

0.005

0.000

(a)

k2 = 0

RMSE = 0.0008

L
L

E
, b

it
s/

se
c

Original
Equivalent

f [rad/s]

1.0 1.5 2.0 2.5 3.0

0.025

0.020

0.015

0.010

0.005

0.000

(b)

k2 = 8 N/m3

RMSE = 0.0012

L
L

E
, b

it
s/

se
c

Original
Equivalent

f [rad/s]

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

A
m

p
li

tu
d

e,
 x

1
[m

]
A

m
p

li
tu

d
e,

 x
1

[m
]

k2 = 8 N/m3

(a)

(c)

k2 = 0 k2 = 0

k2 = 8 N/m3

Original
Equivalent

A
m

p
li

tu
d

e,
 x

2
[m

]
A

m
p

li
tu

d
e,

 x
2

[m
]

f [rad/s]

f [rad/s]

f [rad/s]

f [rad/s]

(b)

(d)

Figure 11. LLE curves computed from the numerical integration solutions of Equations (29) and (43).
The parameter values used to obtain these plots were m1 = 10 kg, m2 = 0.8 kg, c1 = 0.1 Ns/m,
c2 = 0.08 Ns/m, k1 = 44 N/m, k3 = 2 N/m, k4 = −0.65 N/m3, f0 = 0.37 N, and (a) k2 = 0 and
(b) k2 = 8 N/m3. Here, the black line represents the LLE computed from the numerical integration
solutions of Equation (43), while the blue line describes the LLE obtained from Equation (29).
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Figure 12. Frequency-amplitude response curves computed from the numerical integration solutions
of Equations (29) and (43) when subjected to internal resonances. Internal resonance of the type
ωn2 = 2ωn1, (a) x1 vs ωf, (b) x2 vs ωf with k3 = 9.016 N/m. Internal resonance of the type, ωn2 = 3ωn1,
(c) x1 vs ωf, (d) x2 vs ωf with k3 = 20.828 N/m. The parameter values used to obtain these plots
were m1 = 10 kg, m2 = 0.6 kg, c1 = 0.1 Ns/m, c2 = 0.08 Ns/m, k1 = 44 N/m, k2 = 8 N/m3,
k4 = −0.65 N/m3, and f0 = 0.37 N. Here, the black, solid lines describe the numerical integration
solution of Equation (43), while the blue, dashed lines describe the numerical solutions obtained from
the derived equivalent nonlinear equations of motion (29).
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Figure 13. LLE curves computed from the numerical integration solutions of Equations (29) and (43).
The parameter values used to obtain these plots were m1 = 10 kg, m2 = 0.6 kg, c1 = 0.1 Ns/m,
c2 = 0.08 Ns/m, k1 = 44 N/m, k2 = 8 N/m3, k4 = −0.65 N/m3, and f0 = 0.37 N; (a) LLE vs ωf

with k3 = 9.016 N/m, (b) LLE vs ωf with k3 = 20.828 N/m. Here, the black, solid line represents the
LLE computed from the numerical integration solutions of Equation (43), while the blue, dashed line
represents the LLE obtained from Equation (29).
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Figure 14. Bifurcation diagrams computed from the numerical integration solutions of Equations (29)
and (43). The parameter values used to obtain these curves were m1 = 10 kg, m2 = 0.6 kg, c1 = 0.1
Ns/m, c2 = 0.08 Ns/m, k1 = 44 N/m, k2 = 8 N/m3, k3 = 9.016, k4 = −0.65 N/m3, and f0 = 0.37 N,
with ωn2 = 2ωn1. Here, the black line represents the bifurcation diagram computed from the numerical
integration solutions of Equation (43), while the red line describes the one obtained from Equation (29).
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Figure 15. Bifurcation diagrams computed from the numerical integration solutions of Equations (29)
and (43). The parameter values used to obtain these curves were m1 = 10 kg, m2 = 0.6 kg, c1 = 0.1
Ns/m, c2 = 0.08 Ns/m, k1 = 44 N/m, k2 = 8 N/m3, k3 = 20.828 N/m, k4 = −0.65 N/m3, and
f0 = 0.37 N, with ωn2 = 3ωn1. Here, the black line represents the bifurcation diagram computed from
the numerical integration solutions of Equation (43), while the red line describes the one obtained from
Equation (29).

5. Fifth-Order Power Series Expansion

It is important to bear in mind that the predictions obtained in the above examples consider a
truncated power series to replace the nonlinear restoring forces, fi = (x1, x2), by uncoupled cubic
polynomial expressions, which, if inaccurate, would cause the conjecture to be false. In an attempt
to avoid this situation, the modal system (4) was next replaced by a truncated fifth-order power
series expansion that contained nonlinear damping terms [13,38,51–53]. As usual, driving forces were
assumed to remain constant during the transformation approach. The uncoupled dynamic equations
of motion are now written as
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..
u1 + ω2

n1u1 + ν1
.
u1 + ν2

.
u2 + ϕ1u3

1 + ϕ2u2
1u2 + ϕ3u1u2

2 + ϕ4u3
2

≡ ..
u1 + a1u1 + a2u3

1 + a2u5
1 + 2µ1

.
u1 + µ2u1

.
u2

1 + µ3u2
1

.
u1 + · · · = P1(t),

(53)

..
u2 + ω2

n2u2 + ν2
.
u1 + ν3

.
u2 + ϕ5u3

1 + ϕ6u2
1u2 + ϕ7u1u2

2 + ϕ8u3
2

≡ ..
u2 + b1u2 + b2u3

2 + b3u5
2 + 2µ4

.
u2 + µ5u2

.
u2

2 + µ6u2
2

.
u2 + · · · = P2(t).

(54)

The Expressions (53) and (54) provide equivalent decoupled representation forms, in the sense of
Lyapunov, of the original equations of motion whose accuracy depends on the unknown coefficients:
ai, bi, and µi. By following the procedure described in Section 3, the coefficients, ai, bi, and µi, were
found to be

a1 = ω2
n1 +

1206645ϕ1η1η2

10446976η1
+

394725
614528η1

(
ϕ4η3

2 + 2ν2V2

)
+

ϕ3η2
2

3
, (55)

a2 = ϕ1 +
105
[
57921ϕ1η2

1η2 − 109055
(

ϕ4η3
2 + 2ν2V2

)]
10446976η3

1
, (56)

a3 =
231
[
−9199ϕ1η2

1η2 + 31659
(

ϕ4η3
2 + 2ν2V2

)]
10446976η5

1
, (57)

µ1 =
17
(
4875ϕ4η3

2 + 19204ν1V1 + 9750ν2V2
)
− 2727ϕ2η2

1η2

652936V1
, (58)

µ2 =
135
[
1013ϕ2η2

1η2 − 35275
(

ϕ4η3
2 + 2ν2V2

)]
10446976η1V2

1
, (59)

µ3 =
3
[
−52ϕ2η2

1η2 + 3825
(

ϕ4η3
2 + 2ν2V2

)]
81617η2

1V1
, (60)

b1 = ω2
n2 +

15
(
447355ϕ5η3

11 + 804432ϕ7η11η2
22 + 894710ν2V11

)
10446976η22

+
ϕ6η2

11
3

, (61)

b2 =
34
(
307264ϕ8η3

22 − 673575ν2V11
)
+ 6081705ϕ7η11η3

22 − 11450775ϕ5η3
11

10446976η3
11

, (62)

b3 =
231
(
31659ϕ5η3

11 − 9199ϕ7η11η2
22 + 63138ν2V11

)
10446976η5

22
, (63)

µ4 =
ν3

2
+

3
(
27625ϕ5η3

11 − 909ϕ7η11η2
22 + 55250ν2V11

)
652936V22

, (64)

µ5 = −
135
(
35275ϕ5η3

11 − 1013ϕ7η11η2
22 + 70550ν2V11

)
10446976η22V2

22
, (65)

µ6 =
3
(
3825ϕ5η3

11 − 52ϕ7η11η2
22 + 7650ν2V11

)
10446976η22V2

22
. (66)

The values of ηi, ηii, Vi, and Vii were obtained by minimizing the following expressions:

U1 = min
V2∫
0

V1∫
0

η2∫
0

η1∫
0
(ω2

n1u1 + ν1
.
u1 + ν2

.
u2 + ϕ1u3

1 + ϕ2u2
1u2 + ϕ3u1u2

2 + ϕ4u3
2 − a1u1 − a2u3

1

−a3u5
1 − 2µ1

.
u1 − µ2u1

.
u2

1 − µ3u2
1

.
u1)

2 du1 du2 d
.
u1 d

.
u2,

(67)

U2 = min
V11∫
0

V22∫
0

η11∫
0

η22∫
0
(ω2

n2u2 + 2ν2
.
u1 + ν3

.
u2 + ϕ5u3

1 + ϕ6u2
1u2 + ϕ7u1u2

2 + ϕ8u3
2 − b1u2 − b2u3

2

−b3u5
2 − 2µ4

.
u2 − µ5u2

.
u2

2 − µ6u2
2

.
u2)

2du2 du1 d
.
u2 d

.
u1.

(68)
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For comparison purposes, only the dynamic system examined in Example 1 was considered,
since the oscillators studied in Examples 2 and 3 had small errors when the equivalent expressions
in the sense of Lyapunov were compared to the original equations of motion. First, we focused
on studying the unforced dynamic system (30) and plotted the amplitude-time curves by using the
equivalent cubic, and quintic expressions: (29), (53) and (54). The parameter values selected were
m = 1, k = 1, c = 0.3, ε = 0.5, with

(
x1, x2,

.
x1,

.
x2
)
= (0, 0, 2, 0). Projection of the initial condition

onto the linear transformation (3), yielded
(
u10, u20,

.
u10,

.
u20
)
= (1.9118, −0.9165, 0, 0). Figure 16

shows the time-amplitude curves for the two modes of the system. Notice that as a consequence
of the fifth-order and nonlinear decay terms of the quintic approach, the equivalent representation
forms (53) and (54) provide an improvement in the RMSE values. Next, the driving force magnitude
of f1 = 0.25 was considered and then, the frequency-amplitude response, as well as the LLE curves
were plotted. As can be seen in Figure 17, the quintic equivalent representation form in the sense
of Lyapunov provided a better approximation to the exact numerical values. An improvement was
achieved in the frequency-amplitude response curves obtained from the quintic approach since the
estimated curves match the numerical results well; however, one can notice from Figure 18, that when
the quintic approach is used to compute the LLE values, the RMSE value is slightly higher than that
computed by using the cubic model, which is mainly due to the numerical procedure used to compute
these values rather than to the decoupling proposed approach.Appl. Sci. 2018, 8, x 19 of 23 
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Figure 16. Time-amplitude response curves computed from the numerical integration solutions of
Equations (53) and (54). Cubic approximation: (a) x1 vs t, (b) x2 vs t. Quintic approximation: (c) x1

vs t, (d) x2 vs t. The parameter values used to obtain these plots were m1 = m2 = 1, k = 1, ε = 0.5
with c = 0.3, with initial conditions given by

(
x1, x2,

.
x1,

.
x2
)
= (0, 0, 2, 0), a1 = 1.055, a2 = 0.1375,

a3 = 0.0109, b1 = 2.9995, b2 = 0.1228, b3 = 0.0008, µ1 = 0.0807, µ2 = −0.0206, µ3 = 0.0066, µ4 = 0.375,
µ5 = 0, µ6 = 0, with fitting parameter values of η1 = 1, η2 = 0.3, V1 = 1, V2 = −0.15, η11 = −0.01,
η22 = 1, V11 = 0, V22 = 1, and weighted mean square error values of U1 = −2.16 × 10−5, U2 = 0.
Here, the black, solid lines describe the numerical integration solutions of Equation (30), while the
blue, dashed lines represent the numerical solutions obtained from the nonlinear equations of motion,
(53) and (54).
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Figure 17. Frequency-amplitude response curves computed from the numerical integration solutions
of Equations (53) and (54). Cubic approximation: (a) x1 vs ωf, (b) x2 vs ωf. Quintic approximation:
(c) x1 vs ωf, (d) x2 vs ωf. The values used to obtain these plots were m1 = m2 = 1, k = 1, ε = 0.5 with
c = 0.3 and f1 = 0.25, with fitting parameter values for the quintic approximation of η1 = 1, η2 = 0.3,
V1 = 1, V2 = −0.15, η11 = −0.01, η22 = 1, V11 = 0, V22 = 1, and weighted mean square error values of
U1 = 2.16× 10−5, U2 = 0. Here, the black, solid lines describe the numerical integration solutions of
Equation (30), while the blue, dashed lines are the numerical solutions obtained from the equivalent
cubic and quintic expressions, (29), (53) and (54), respectively.
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Figure 18. LLE curves computed from the numerical integration solutions of Equations (29), (30), (53)
and (54). The parameter values used to obtain these plots were m1 = m2 = 1, k = 1, ε = 0.5 with
c = 0.3 and f1 = 0.25, with fitting parameter values for the quintic approximation of η1 = 1, η2 = 0.3,
V1 = 1, V2 = −0.15, η11 = −0.01, η22 = 1, V11 = 0, V22 = 1, and weighted mean square error values
of U1 = 2.16× 10−5, U2 = 0. Here, the black line represents the LLE computed from the numerical
integration solutions of Equation (30), while the blue and red lines describe the LLE obtained from
Equations (29), (53) and (54), respectively.

Based on these results, one can conclude that the improvement of the numerical prediction
obtained from the equivalent representation forms will depend on the physical system, its nonlinearities,
and its initial condition values.
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6. Conclusions

A transformation approach has been proposed to find the equivalent representation form in
the sense of Lyapunov of forced, damped, nonlinear, two degree-of-freedom dynamic systems. This
proposed approach of finding equivalent expressions has the main advantage of providing simple
algebraic relations whose coefficient values are determined by minimizing the error of replacing the
original restoring forces by equivalent ones. By studying the dynamic responses of three nonlinear
dynamic systems, the validity of the proposed conjecture has been numerically examined by comparing
the LCEs of the original equations with those obtained from their equivalent uncoupled expressions.
From the numerical predictions obtained, it is concluded that the LCEs and the LLE of the equivalent
expression are similar to those obtained from the original equations of motion. In fact, numerical results
have shown that the proposed procedure predicts the quantitative behavior of the nonlinear systems
examined here well; however, there are some discrepancies which could be removed if additional terms
in the power series expansion of the dynamical system’s restoring forces are considered. Furthermore,
when the system’s restoring forces were replaced by a fifth-order truncated power series expansion in
which decay rate terms were considered, numerical predictions computed from the nonlinear dynamic
system of Example 1, indicated that the RMSE values were lower than those of the cubic truncated
power series expansion, since, in this quintic approach, decay rate terms were considered. In this
case, both the qualitative and the quantitative dynamic system behaviors in physical coordinates were
predicted well in spite of having uncoupled modal equivalent oscillators, as shown in Figures 16
and 17.

Finally, and contrary to other proposed approaches, the one introduced here is capable of
describing the dynamic behavior of nonlinear systems when internal resonance exists between
the two modes, and thus, it is possible to uncouple, in modal coordinates, the resonant modes,
as illustrated in Figure 12. Therefore, it can be concluded, in accordance with the numerical evidence of
the dynamic systems examined here, that it is possible to have two decoupled Duffing-type equivalent
representation forms of the original equations of motion in the sense of Lyapunov that can predict the
dynamics of the original system, and accuracy can be improved if additional terms in the truncated
power series are considered, not only to describe elastic forces, but also to take into account decay
rate effects.

Of course, the system’s restoring forces could be replaced by other forms rather than Duffing-type
equivalent representation expressions.

However, the applicability of the proposed approach to other nonlinear dynamic systems by using
truncated power series expansions or alternative forms to replace the system restoring forces could
be considered only for small deviations of the system’s linear behavior, because for large amplitudes,
coupling and nonlinear terms are important.
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