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Abstract: In order to facilitate the local sharing of renewable energy, an energy sharing management
method of multiple microgrids (MGs) with a battery energy storage system (BESS) and renewable
energy sources (RESs) is developed. First, a virtual entity named the energy sharing provider (ESP),
which acts as an agent for MGs, is introduced to minimize the power loss cost. Second, a distributed
optimal model and a two-level iterative algorithm for the MGs and ESP are proposed, which minimize
the total operation cost including purchasing electricity cost, energy storage cost and power loss cost.
Based on the energy sharing framework, considering the local objectives of MGs and the objective
of ESP, the optimal scheduling can be achieved through the bidirectional interaction between MGs
and ESP. During the optimization, the shared information between MGs and ESP is limited to
expected exchange power, which protects the privacy of MGs and ESP. Finally, the effectiveness of
the proposed model and algorithm in different scenarios is verified through a case study.

Keywords: interconnected microgrids; distributed optimization; energy sharing; alternating direction
method of multipliers (ADMM); power loss

1. Introduction

The distribution management system (DMS) [1,2] is regarded as one of the most essential factors
of the development of the smart grid. A new smart DMS with distributed energy resources (DERs) [3],
increasing various loads [4], the amounts of data and devices, is facing more challenges. To reduce the
complexity of a distribution system, a smart DMS can be considered as many coupled microgrids [5].
That is, conventional DMS can be transformed to a multi-microgrid (MMG) distribution system.

In recent years, with the increment of the permeability of DERs [6], microgrids (MGs) [7] have
grown rapidly worldwide due to flexible generation, environmentally-friendly characteristics, etc.
In general, MGs can be operated by connecting to the utility grid, as well as in island mode [8].
The neighboring MGs can form an MG cluster, in which several MGs can exchange energy with
one another [9]. On the one hand, forming a cluster can improve operation stability and reliability
in power delivery [10], which is beneficial to realize the failure recovery of a distributed network.
On the other hand, it is useful to reduce operation cost and realize the energy complementation
of MGs [11]. Recently, the energy management of prosumer community groups [6,12] has become
an attractive issue in order to improve the operation efficiency and encourage local consumption
of RESs. In addition, the development of integrated community groups [13–15] based on the combined
heat and power (CHP) [16] system contributes to the cost reduction and energy conservation. In these
cases, the energy management of the group including multiple MG prosumers considering the CHP
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system becomes an important problem to be addressed for cost reduction and energy sustainability.
Therefore, the energy sharing management for interconnected MGs would be promising for application.

In the existing literature, the optimal dispatch [17] of interconnected multi-microgrids in island
mode is studied. A distributed convex optimization framework and a cost minimization model and
algorithm based on the subgradient method are developed in [18] for energy trading between islanded
MGs. Unlike the aforementioned studies, in this paper, an energy sharing framework is constructed at
the distribution grid level.

Until recently, numerous studies have worked on the energy management [6] of multi-microgrids,
and there are different considerations for diverse purposes and specific problems. For the reduction
of environmental pollution, an increasing number of distributed generation (DG) units has attracted
more attention. The long-term DG placement and short-term DG placement are optimized in an MMG
system considering the randomness of load demands and DG power generation [19]. Recently,
renewable energy sources (RESs) have been exponentially growing to reduce carbon emissions and
the operation cost of systems. However, it is difficult to control them due to their stochastic behavior.
A bilevel optimal control scheme is proposed for stochastic optimal operation of interconnected
microgrids characterized by renewable and traditional power production, bidirectional power flows,
dynamic storage systems and stochastic modeling issues [20]. Moreover, the reliability is regarded as
an important indicator for interconnection of MGs. The optimal planning in [21] takes into account
various factors including the economics, reliability and variability of renewables, network and
resource-based uncertainties. In addition, the battery energy storage system (BESS) [22,23] is the key
component to improve the utilization of RESs. A privacy-preserving distributed optimal scheduling
method is proposed for the interconnected microgrids in [24]. In the optimization, the optimization
objectives are commonly set as minimizing the operation cost or maximizing energy efficiency.
Multi-objective optimization was used in [25] to solve operation optimization. In a distribution grid,
the power loss should be further studied, which is rarely considered for simplicity.

In order to reduce operation cost, improve renewable energy consumption and enhance system
reliability, many optimal schemes for energy management [15] of interconnected MGs have been
proposed by some researchers, which can be classified into centralized and decentralized schemes [26].
The centralized scheme would be to solve the optimization problem by means of a coordinating
entity (CE) with global operational data. In this context, [27] proposes a centralized scheme for
energy management of multiple MGs by taking the cost minimization as the objective. However,
a centralized scheme presents a number of weak points since MGs may belong to different economic
entities. Moreover, it is difficult to meet the huge data communication requirements. In contrast,
the decentralized method not only can protect the critical information of MGs, but it also would reduce
the optimization complexity for CE. A distributed robust energy management scheme for an MMG
system in the real-time energy market is proposed in [28].

For optimal operation of the MMG system, a coordinator is necessary to facilitate the arrangement
of energy sharing; thus, we propose an energy sharing provider (ESP) to minimize system power loss
cost. The relationship between ESP and multiple MGs is a bidirectional interactive process. In this
regard, distributed optimization can be achieved with bidirectional interaction between ESP and MGs
by using the alternating direction method of multipliers (ADMM). However, other distributed optimal
schemes may solve the problem differently without the interaction process, which also means that
the energy sharing management may be difficult for applications. The objective of energy sharing
management of the MMG system can be regarded as having two parts, that is the cost of MGs and
the cost of ESP, which are convex functions and in accordance with the condition of using ADMM.
In particular, the alternating iteration of variables in the ADMM algorithm can describe the bidirectional
interaction between ESP and MGs. Therefore, it is suitable to model the energy sharing management
of the MMG system by using ADMM.

To this end, the energy sharing framework of multiple MGs based on ADMM has been highlighted
in this paper, which can reduce power loss and operation cost. Based on the energy sharing
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framework, optimal scheduling can be achieved through the bidirectional interaction between MGs
and ESP. First, considering the local operation cost, each MG decides the expected exchange power and
submits it to ESP. Combined with the data from MGs, the ESP decides the adjusted expected exchange
power taking into account its objective. The optimal scheduling can be realized until the expected
exchange power decided by the MGs is equal to the adjusted expected exchange power decided by
the ESP. Only the expected exchange power is required during iterations, which safeguards the local
information of MGs. Motivated by the above facts, we propose a distributed optimal dispatching
method of interconnected MGs with BESS and RESs based on ADMM. The main contributions of this
paper are as follows.

(1) An energy sharing structure is proposed to integrate the neighboring MGs into an energy sharing
zone. Besides, a virtual entity called ESP, which acts as an agent for multiple MGs, is introduced
to minimize power loss cost.

(2) Based on the framework of ADMM, a distributed optimal scheduling model and a two-level
iterative algorithm for the MGs and ESP in coalition are proposed, which minimize the total
operation cost including purchasing electricity cost, energy storage cost and power loss cost in
coalition. The power loss cost can be decreased by the proposed method effectively.

(3) An energy sharing framework at the distribution network level is proposed. Through
bidirectional interaction between MGs and ESP, the optimal scheduling can be achieved until the
expected exchange power decided by MGs is equal to the adjusted expected exchange power
decided by ESP. During the optimization, the shared information is limited to expected exchange
power, which protects the privacy of MGs and ESP.

(4) An optimal framework is proposed, which is capable of taking into account the local objectives
of MGs and the objective of ESP with regard to their interaction.

The rest of the paper is organized as follows. In Section 2, the studied system structure with
coalitions of MGs is illustrated, and the energy sharing structure of MGs in the coalition is described.
In Section 3, the RESs and BESS in MGs are modeled. In addition, the power loss model and basic
optimal dispatching model of MGs and ESP are introduced in this section. Section 4 describes the
distributed optimal scheduling model and a two-level iterative algorithm based on ADMM for the
MGs and ESP in coalition. In Section 5, numerical results are given for a coalition consisting of 3 MGs
and an ESP, and the effectiveness of proposed model and algorithm in different scenarios is verified.
Finally, the conclusion is drawn in Section 6.

2. Energy Sharing Structure of MGs in Coalition

2.1. System Structure

Consider that the sources, loads, etc., in distribution grids are regarded as multiple MGs, such as
household MGs, building MGs, etc. In each time slot, if the generation of an MG is more than its
required energy, it can export energy to other MGs; if the generation of an MG cannot satisfy the load
demands, it would import energy from other MGs or purchase electricity from the main grid. From the
viewpoint of transactive energy, the MGs can be considered as sellers or buyers, which depend on the
net load curves. We assume that the import price of MGs is higher than the export price in this paper,
which can promote the consumption of renewable energy.

With the objective of reducing power loss, the adjacent MGs tend to form coalitions, which is
mainly due to the relatively close distance. Thus, the MGs try to transfer as much energy as possible
locally inside the coalition before trading with the main grid. Therefore, in this paper, we restrict our
attention to the exchange of power inside the coalitions and the power between coalition and the main
grid. An illustration of the studied system structure with coalitions of MGs is shown in Figure 1.
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Figure 1. An illustration of the studied system structure with coalitions of microgrids (MGs).
ESP: energy sharing provider.

2.2. Energy Sharing Structure of MGs

To clarify the structure inside a coalition, the energy sharing structure of MGs in the coalition
is introduced. Each MG is composed of a photovoltaic (PV) system [29], an energy management
system (EMS), loads, etc. Based on this structure, the MGs can participate in the energy sharing zone,
and their surplus power or insufficient power can be exchanged among MGs or traded with the main
grid directly.

We need a coordinator in the coalition to facilitate the organization of energy sharing and reduce
the power loss. Therefore, a virtual entity called the ESP is introduced, which acts as an agent for
the MGs in the coalition. The ESP is responsible for computing the cost caused by power loss and
minimizing the power loss cost as much as possible. In addition, the ESP is in charge of ensuring the
power balance.

Each MG is assumed to have an EMS that can collect the data of sources and loads and receive
the adjusted expected exchange power information from the ESP. Besides, the optimal scheduling of
each MG is achieved in EMS, which can decide the expected purchased power from the main grid,
the charge/discharge power of BESS and the expected exchange power among MGs.

3. Optimal Dispatching Model of MGs and ESP

3.1. RESs Model

Due to abundant resources, renewability and environmental friendliness [30], RESs are becoming
increasingly important [31], such as PVs and wind turbines (WTs). In order to facilitate engineering
application, the output power PPV of the PV module can be described as the following model [32].

PPV = PSTCGAC[1 + kt(Tc − Tr)]/GSTC (1)

where GAC is light intensity. PSTC is the maximum test power under the standard testing environment,
in which solar incident intensity is 1000 W/m2 and ambient temperature is 25 ◦C. GSTC denotes the
light intensity under standard testing environment. kt is the power temperature coefficient. Tc is
temperature of the photovoltaic cell. Tr is the reference temperature.

The relationship between the output power of WT and wind speed v can be represented as [33,34]:
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PWT =


0, v ≤ vci

av3 + bv2 + cv + d, vci < v < vr

Pr, vr ≤ v ≤ vco

0, v ≥ vco

(2)

where PWT is the output power of WT; Pr is the rated power of WT; a, b, c and d are fit parameters;
vci is the cut-in wind speed; vr is the rated wind speed; vco is the cut-out wind speed.

The RESs should be made full use of for the reduction of the operation cost. The output power of
RESs including PVs and WTs can be given as: [35].

Puc = PPV + PWT (3)

where Puc denotes the output power of RESs; PPV and PWT are the forecasting output power of PV and
WT, respectively.

3.2. BESS Model

According to [24,36], in order to simplify the model, the total loss of the charging and discharging
process is calculated in the discharging process considering that the charging and discharging process
are alternately cyclic. The cost of BESS during each discharge stage can be expressed as:

CBESS(P) = I
−hP2∆T2 + 2P∆TQ(hSOCinit + l)

2QAtotal
(4)

where I denotes the investment cost of BESS; P is the discharging power; ∆T is the length of the time
period with P; h and l are two coefficients; Q is the battery capacity; Atotal is the total cumulative Ah
throughput in the life cycle, whose unit is kWh; SOCinit is the initial state of charge (SOC). It is obvious
that this cost function is a quadratic polynomial with regard to discharging power P, which lays a good
foundation for optimal scheduling of MGs in coalition.

3.3. Model of CHP System

CHP systems can provide the thermal and electrical energy for MGs simultaneously, which can
improve the energy efficiency effectively. Its fuel cost can be described as [13]:

Cchp = pgas
Pchp∆T

ηchpLHVNG
(5)

where Cchp denotes the fuel cost of CHP; pgas is the price of natural gas; ∆T is the length of the time
slot; Pchp is the electric power of CHP; LHVNG is the low calorific value of natural gas.

The relationship between electric power and heat power is:

Hchp =
(1− ηchp − ηL)ηhδheat

ηchp
(6)

where Hchp is the heat power of CHP; ηL is the heat loss coefficient; δheat is the heating coefficient of
the LiBr chiller.

3.4. Power Loss Model

Any power transfers among MGs and power transfer between MGs and the main grid are
accompanied with a cost corresponding to the power loss over the distribution lines. Let S be the set of
MGs in a coalition. The total power loss over the distributed lines can be represented as follows [37]:
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Ploss
S = ∑

n,m∈S
Ploss

nm + ∑
n∈S

Ploss
n0 (7)

where Ploss
S is the total power loss; Ploss

nm denotes the power loss over the distributed line between MG
n and MG m; Ploss

n0 is the power loss over the distributed line between MG n and the main grid.
The transfer of power Pnm between MG n and MG m incurs a power loss Ploss

nm expressed by [37]:

Ploss
nm =

P2
nm

U2 Rnm (8)

where U is the voltage of the distribution line in the coalition; Rnm is the resistance of the distribution
line between MG n and MG m. If the tie line power Pnm is transferred from MG n to MG m, then the
power loss cost is borne by MG m.

The power loss incurred by the power transfer Pn0 between MG n and the main grid can be
calculated as:

Ploss
n0 =

P2
n0

U2
1

Rn0 (9)

where U1 is the voltage of the distribution line between MG n and the main grid, which is larger than
U; Rn0 is the resistance of the distribution line between MG n and the main grid.

The cost caused by transferring power can be described as:

Closs
S = λPloss

S (10)

where Closs
S is the total power loss cost; λ is the price of per unit of power energy.

3.5. Optimal Dispatching Model of MG

As for each MG, the generation strategies of BESS and exchange power can be made by taking the
minimum total cost as the objective based on the forecasting power of PV, WT and loads. The optimal
dispatching problem of MG n can be given as:

minCn(xn) = Cgridn(xgridn) + CBESSn(xBESSn) (11)

s.t. xgridn + xBESSn + Pucn − dn − Plossn = xin
n (12)

max(Pmax
charge, Q(SOCinit − SOCmax)/∆T) ≤ ηxBESSn ≤ 0

≤ xBESSn/η ≤ min(Pmax
discharge, Q(SOCinit − SOCmin)/∆T)

(13)

where xn = [xBESSn, xgridn] is a vector composed of charge-discharge power xBESSn of BESS and the
exchange power xgridn between MG n and the main grid; the cost of purchasing electricity from the
main grid can be calculated as Cgridn(xgridn) = Pgsxgridn; Pgs denotes the selling price of the main grid;
dn is the load demands of MG n; xin

n is the exchange power between MG n and other MGs in the
coalition, whose value is positive when the exchange power is output; η denotes the charge-discharge
efficiency of BESS. Equation (12) is the power balance constraint of individual MG. The maximum
limitations of the charge-discharge power of BESS are expressed by (13). Pmax

charge and Pmax
discharge are the

maximum and minimum charge-discharge power; SOCmax and SOCmin are the upper and lower bounds
of SOC, respectively.

Note that if there are other generation units (such as CHP) in MGs, the cost of the generation units
should be added in (11). Equation (11) corresponds to Scenario 1 in the case study, in which there are
only BESS and RESs in MGs. As for Scenario 2, in which the CHP system is considered, we need to add
the cost of the CHP system in (11), that is Cn(xn) = Cgridn(xgridn) + CBESSn(xBESSn) + Cchpn(xchpn).
xchpn is the output power of CHP in MG n.
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3.6. Basic Optimal Dispatching Model of MGs and ESP

During optimal scheduling of multi-microgrids in coalition, we assume that all MGs agree
to cooperate with one another in order to minimize the total operation cost including purchasing
electricity cost, energy storage cost and the cost caused by power loss. MGs and ESP make optimal
scheduling strategies with the consideration of purchasing electricity cost, the discharging cost of
BESS and the power loss cost. Consider a coalition consisting of N MGs through a communication
network and a power interconnection infrastructure; the optimal dispatching problem can be described
as [38,39]:

min
N

∑
n=1

Cn(xn) + g(w) (14)

s.t.
N

∑
n=1

(xgridn + xBESSn + Pucn − Plossn) =
N

∑
n=1

dn (15)

where Cn is the cost function of in MG n; g(w) is the power loss cost, which is the optimal objective
function of ESP; Plossn is the power loss borne by MG n; w is the vector composed of tie-line power Pnm,
which is transferred from MG n to MG m and tie-line power Pn0 of transferring power from MG n to
the main grid.

4. Distributed Optimal Dispatching Model and Algorithm of MGs and ESP Based on ADMM

4.1. Distributed Optimal Dispatching Model of MGs and ESP Based on ADMM

Due to the excellent performance in robustness and convergence, ADMM has been widely applied
in large-scale distributed optimization problems recently [40]. The standard form of ADMM can be
presented as:

min s(x) + t(z)

s.t. Ax + Bz = c (16)

where x ∈ Rn; z ∈ Rm; A ∈ Rp×n; B ∈ Rp×m; c ∈ Rp. According to (12), the objective function is
decomposed into two parts including s(x) and t(z), and the constraint denotes the equality constraint
of decision variable x in s(x) and decision variable z in t(z). The algorithm can converge to the
optimal solution under the condition that the convex function s is fit with Rn → R ∪ {+∞} and t is
a convex function in accordance with Rm → R ∪ {+∞} [40]. In addition, functions s and t can take
the value of +∞. Therefore, s and t not only can express specific optimization objectives, but they
also can represent some equality constraints or inequality constraints. When variables dissatisfy these
constraints, the function takes the value of zero; otherwise, the function takes the value +∞.

The optimization problem including objective function and constraints in this paper can be
converted into the standard form of ADMM, which is shown as follows:

min
N

∑
n=1

Cn(xn) + g(w) (17)

s.t.
[

xin
1 · · · xin

N xgrid1 · · · xgridN

]T
+ Bw = 0 (18)

B =

[
B1 0
0 B2

]
(19)

where B is a matrix with 2N rows and 2N columns and B1 and B2 are matrices with N rows and N
columns. As for B1, the diagonal elements are −1; the last element of first row is one; the (n− 1)-th
(n 6= 1) column element of the n-th row is one; the other elements are zero. In terms of B2, the diagonal
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elements are −1, and the other elements are zero. The constraint (18) ensures that the expected
exchange power decided by MGs is equal to the adjusted expected exchange power decided by ESP,
which indicates that optimal scheduling is achieved with a comprehensive consideration of purchasing
electricity cost, energy storage cost and power loss cost.

According to the basic principle of ADMM [40], the final iteration form of the distributed
optimization problem in this paper can be expressed as follows:

xk+1
n = arg min

x
(Cn(xn) +

ρ

2

∥∥∥∥∥
[

xin
n

xgridn

]
+

[
(Bwk)n

(Bwk)N+n

]
+

[
uk

n
uk

N+n

]∥∥∥∥∥
2

2

) (20)

wk+1 = arg min
w

(g(w) + ∑N
n=1

ρ

2

∥∥∥∥∥
[

xink+1
n

xk+1
gridn

]
+

[
(Bw)n

(Bw)N+n

]
+

[
uk

n
uk

N+n

]∥∥∥∥∥
2

2

) (21)

uk+1 = uk +
[

xink+1

1 · · · xink+1

N xk+1
grid1 · · · xk+1

gridN

]T
+ Bwk+1 (22)

where ρ is the penalty parameter; k is the iteration number; uk is the Lagrange multiplier at the
k-th iteration.

According to (20), the scheduling strategy of BESS and expected exchange power xgridn between
MGs and the main grid can be easily decided. Combined with the power balance constraint, we have
expected exchange power xin

n among MGs in coalition. Referring to (21) and considering the expected
exchange power from MGs, the tie-line power w will be updated by ESP after optimization of power
loss cost. Therefore, we have adjusted expected exchange power Bw in the case of minimum network
loss. Only expected exchanged power is needed to update the Lagrange multiplier and complete the
optimization process, which is beneficial to protect the privacy of MGs and ESP.

4.2. Convergence Condition and Distributed Optimal Algorithm

(1) Overall description of the Algorithm

Distributed optimal scheduling of MGs in coalition considering power loss is further studied in
this paper. First, distributed optimal scheduling considering power loss is carried out by MGs taking
the minimum sum of purchasing electricity cost and energy storage cost as the objective, which can
decide expected exchange power xin

n among MGs in the coalition and expected exchange power xgridn
between MG n and the main grid. Then, MGs inform about expected exchange power xin

n and xgridn
of ESP. Second, considering the expected exchange power from MGs, ESP decides adjusted expected
exchange power Bw by minimizing the power loss cost in coalition and recalculates the power loss.
If the power loss is different from the previous result, a new power loss will be added to the power
balance constraint. Then, we conduct the distributed optimization calculation again until the power
loss converges to the optimal solution.

The bidirectional interaction flowchart between MGs and ESP can be illustrated as Figure 2.
The bidirectional interaction between MGs and ESP is achieved taking into account the local objective
of each MG and the objective of ESP.

(2) Convergence condition

a. Convergence condition of the ADMM algorithm

As for distributed optimal calculation at each iteration, we will refer to sk as the dual residual at
iteration k and rk as the primal residual at iteration k according to the principle of ADMM, which can
be expressed as follows:

‖rk‖2 = ‖
[

xink+1

1 · · · xink+1

N xk+1
grid1 · · · xk+1

gridN

]T
+ Bwk+1‖2 ≤ εpri (23)
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‖sk‖2 = ‖ρB(wk −wk−1)‖2 ≤ εdual (24)

where εpri and εdual are the convergence error of the primal residual and dual residual, which take the
value of 1 × 10−2 and 1 × 10−4 in this paper, respectively.

b. Convergence condition of power loss cost

If the difference of power loss cost between the last iteration and the current iteration is limited
to a small positive value, we conclude that the power loss cost converges to the optimal solution.
The convergence condition can be described as follows:

‖Clossk+1

S − Clossk

S ‖2 ≤ ε (25)

where ε is the convergence error of the power loss cost.

xn
inBw

ESP calculates 

power lost cost

Inner 

loop

MGs updates load 
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loss of last iteration

||C
k
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k-1
||2<�

 
?

Stop 

iteration

N

Y

xgridn
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||r
k
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k
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dual 
?
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Y
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||s
k
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?
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Figure 2. The bidirectional interaction flowchart between MGs and ESP.

4.3. Optimization Solution of MGs in the Iteration Process

According to (20), the optimal dispatching model of MG needs to be solved during each iteration
of the distributed optimization of MGs in coalition. As mentioned before, in order to simplify the
calculation, we conclude that the cost of BESS can be calculated according to (4) during the discharging
stage, while the cost of BESS can be seen as zero during the charging stage. In order to find the optimal
exchange power of MGs in the coalition, it is necessary to determine the state of charge and discharge
of BESS effectively. According to (4)–(22), the scheduling strategy of MG n can be solved as follows:
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xk+1
n = arg min

x
(Cgridn(xgridn) + CBESSn(xBESSn)

+
ρ

2

∥∥∥∥∥
[

xin
n

xgridn

]
+

[
(Bwk)n

(Bwk)N+n

]
+

[
uk

n
uk

N+n

]∥∥∥∥∥
2

2

)
(26)

s.t. max(Pmax
charge,

Q(SOCinit − SOCmax)

∆T
) ≤ ηxBESSn ≤ 0 (27)

0 ≤ xBESSn
η

≤ min(Pmax
discharge,

Q(SOCinit − SOCmin)

∆T
) (28)

Figure 3 shows the flowchart of the optimization solution for individual MGs. First, we assume
that the output power of BESS is negative during the charge state, then we have CBESSn(xBESSn) = 0.
Combined with (11) and (12), the optimal scheduling strategy can be made by solving (26) and (27).
Although the cost of BESS during the charge stage can be ignored, if BESS still adopts the charging
scheme in the case of the power shortage of WT and PV, the power purchased from the main grid
will increase, which adds to the cost of MG. Therefore, it is obvious that the charging power after
optimization must be zero under the circumstances of the power shortage of WT and PV. If xBESSn < 0
in the optimization results, we can conclude that the output power of WT and PV is surplus. Therefore,
it is necessary to charge the BESS to absorb excess energy, the solution xk+1

n under which case is the
optimal scheduling result of the current iteration.

Optimal 

dispatching

Optimization 

Solution

Optimize BESS with 

charging constraint,  

xBESS0 �

xBESS<0?

Optimize BESS with 

discharging 

constraint, xBESS1 �

Y

N

Figure 3. The flowchart of the optimization solution for individual MG. BESS: battery energy
storage system.

As for the charge stage, if xBESSn = 0 in the optimization results, we can infer that the output
power of WT and PV may be insufficient, which leads to the scheduling strategy in the charge state not
being optimal. Thus, the scheduling scheme in the discharge state of BESS needs to be further calculated.
Combined with (12), the optimal scheduling scheme can be formulated by solving (26) and (28).
The optimal solution xk+1

n is the optimal scheduling strategy of the current iteration.

4.4. Distributed Optimal Algorithm

Algorithm 1 summarizes the distributed optimal algorithm of MGs and ESP in coalition, which is
shown as follows.
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Algorithm 1 Distributed optimal dispatching algorithm.

1: procedure DISPATCHING(xn, n = [1, 2, ..., N])
2: Initiate u,ρ,k,B,MAXITER
3: for j = 1 : MAXITER do
4: MGs update local loads considering power loss
5: while ‖rk‖2 > εpri or‖rk‖2 > εdual do
6: MG makes scheduling strategy using (26)–(28)
7: Compute expected exchange power xink+1

n combined power balance constraint
8: By solving (21), ESP decides adjusted expected exchange power Bw
9: Update Lagrange multiplier referring to (22)

10: Compute primal residual and dual residual according to (23) and (24)
11: k = k + 1
12: end while
13: if ‖Clossk+1

S − Clossk

S ‖2 ≤ ε then
14: Stop iteration
15: end if
16: end for
17: end procedure

Algorithm 1, which is a two-level iterative algorithm, has a good performance for minimum total
cost including purchasing electricity cost, energy storage cost and power loss cost. Procedures (5)–(12)
belong to the inner layer. In Procedures (5)–(12), MGs make optimal scheduling considering the power
loss of the last iteration and taking minimum purchasing electricity cost and energy storage cost as the
objective. In addition, power loss is updated through the inner layer. If the power loss of the current
iteration and the last iteration is eventually the same in the case of limited error, the distributed optimal
algorithm converges to the optimal solution.

More specifically, ADMM is adopted for optimal scheduling of MGs in coalition in
Procedures (5)–(12), in which electricity cost (the sum of purchasing electricity cost and energy storage
cost) and power loss cost are optimized alternately. First, the scheduling scheme is made by minimizing
the local cost of each MG based on the power loss of the last iteration. Second, expected exchange
power xin

n and xgridn can be calculated combined with the power balance constraint, which are informed
by the ESP. Third, we have adjusted expected exchange power Bw by taking the minimum power
loss cost as the objective considering the expected exchange power from MGs. At last, the Lagrange
multiplier is updated according to expected exchange power xin

n and xgridn and adjusted expected
exchange power Bw until the convergence condition is satisfied.

In general, on the basis of the satisfaction of power demand, optimal scheduling is achieved
with a comprehensive consideration of purchasing cost, energy storage cost and power loss cost.
In addition, only expected exchange power is needed in the bidirectional interaction between MGs
and ESP, which protects the privacy of MGs and ESP.

5. Case Study

5.1. Scenario 1

5.1.1. Basic Data in Scenario 1

In order to evaluate the effectiveness of the proposed model and algorithm, a coalition composed
of three MGs and an ESP is studied in this paper, which is shown in Figure 4. The parameters of
RESs and BESSs are presented in Tables 1 and 2, respectively. The other parameters are set as follows:
the voltage of the distribution line among MGs is set to U = 380 V; the voltage of the distribution line
between MGs and the main grid is set to U1 = 10 kV; the resistance of unit length distribution line
between MGs or MG and the main grid is set as 0.2 Ω/km; h = −1.5; l = 1.3; for a lead-acid battery
with capacity of Q, we have Atotal = 390Q.
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Figure 4. Structure of the MGs in coalition. PV: photovoltaic; WT: wind turbine.

Table 1. Parameters of the renewable energy sources (RESs).

RES Rated Capacity (kW)

WT1 500
PV1 500
PV2 800
WT3 500
PV3 800

Table 2. Parameters of the battery energy storage systems (BESSs).

BESS Rated Power (kW) Rated Capacity (kWh) I (Yuan)

BESS1 250 800 800,000
BESS2 350 1000 1,000,000
BESS3 400 1200 1,200,000

In order to better evaluate the effectiveness of proposed method in this paper, we have collected
the data for one week, including load, PV power and wind power of each MG. The simulation was
conducted in MATLAB2015b (the MathWorks, Natick, MA, USA) for each day of this week with a time
resolution of 15 min, thus there are 96 optimization periods in each day. Based on the forecasting
method proposed in [41], we obtain the forecasting results in each time slot of days for one week.

5.1.2. Optimal Results on Different Days for One Week

According to the proposed method in this paper, the optimal results in different days for one week
are obtained by simulation based on forecasted data, which are shown in Table 3.

In a week, there may be variations of weather and load characteristics, and the optimal scheduling
can be achieved, which indicates the proposed method has better performance and can be applied to
different days.

Due to the space constraints, here we choose two typical days (Day 1 and Day 2), whose optimal
results are given in detail, respectively.
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Table 3. Optimal results on different days for one week.

Days Total Operation
Cost (CNY)

Power Loss Cost
without Optimization of

Power Loss (CNY)

Power Loss Cost
with Optimization of

Power Loss (CNY)

Average Iteration
Number

Day 1 10,449.7 900.7 697.5 33
Day 2 5777.4 483.9 457.9 37
Day 3 8991.1 807.9 675.1 37
Day 4 10,373.1 734.2 636.2 29
Day 5 6429.2 513.9 453.8 37
Day 6 13,606.4 1431.4 1063.3 30
Day 7 11,120.8 821.6 676.9 32

5.1.3. Results and Analysis of the Distributed Optimal Dispatching on Day 1 of Scenario 1

Figure 5 represents the net electric load of each MG and the total net electric load of the coalition.
The PV power, wind power and load power in each MG are shown in Figure 6.
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Figure 5. Net power curve of each MG and total net power curve of the coalition on Day 1 of Scenario 1.
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Figure 6. The PV power, WT power and load power in each MG on Day 1 of Scenario 1 ((a) MG1;
(b) MG2; (c) MG3).

Obviously, the total net load of this coalition in the periods of 1–17, 36–61 and 91–96 is negative,
when BESS needs to absorb the excess renewable energy. While in the remaining periods when total net
load is positive, it is necessary to choose to discharge by BESSs or purchase electricity from the main
grid to satisfy the total load demand with comprehensive consideration of the purchasing electricity
cost, discharging cost of BESSs and power loss cost.
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Figure 7 represents the output power of BESSs and the power purchased from the main grid of
each MG.
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Figure 7. Scheduling results of BESS and purchasing power based on alternating direction method of
multipliers (ADMM) on Day 1 of Scenario 1 ((a) MG1; (b) MG2; (c) MG3).

As shown in Figure 5, in the periods 1–17, 36–61 and 91–96, the total load demand is less than
the total output power of RESs including WTs and PVs; thus, the BESSs are used to store the surplus
energy by means of charging. In other periods, when there is a shortage of RESs, each MG can choose
to purchase electricity from the main grid or discharge by BESS to meet the load demands for reduction
of total operation cost in coalition with a comprehensive consideration of purchasing electricity cost
and energy storage cost.

Considering that there is less cost in discharging of BESS, it is obvious to find out that BESSs
are used to discharge as the first priority in Periods 18–19 and 62–69 when the renewable energy is
insufficient. The charge-discharge power of each BESS is optimized based on distributed optimal
scheduling algorithm. In Periods 20–35 and 70–90, the output power of BESS is inadequate to satisfy
the load demands of MGs in coalition, so that MGs purchase electricity from the main grid.

In addition, Figure 8 shows the decided exchange power among MGs of each optimal scheduling
period. As shown in Figure 8, we find that the sum of decided exchange power of MGs is zero,
which ensures the power balance of the system. When the renewable energy of MG is insufficient,
it would import energy from the MG with surplus power as the first priority. For instance,
in Periods 1–17, the net load of MG2 is greater than zero, while the RESs in MG1 and MG3 are
abundant. Then, the excess power in MG1 and MG3 would be exported to MG2 for the reduction
of power loss and operation cost. If RESs of all MGs are surplus, there exists no exchange power
generally, such as Periods 41–46. Through distributed optimization based on ADMM, the optimal
problem can be solved effectively while satisfying the load demands of MGs in coalition by just sharing
the expected exchange power, which protects the privacy of the MGs and ESP.
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Figure 8. Decided exchange power among MGs on Day 1 of Scenario 1.



Appl. Sci. 2018, 8, 590 15 of 28

The efficiency of BESS in this study is set as 95%. The SOC of BESS in each optimization period
is presented in Figure 9. Combined with Figure 5 and 7, BESS can absorb the surplus renewable
energy and discharge to meet the load demands of MGs. In the periods 1–17 and 36–61, the renewable
resource is surplus, and MGs give priority to charging their BESSs. If there is energy left after a full
charge, it will be delivered to other MGs. Though only expected exchange power is communicated in
coalition during the distributed optimization process, BESSs can be effectively scheduled according to
the operation state of MGs in coalition, which ensures operating economy.
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Figure 9. The state of charge (SOC) of BESSs in MGs on Day 1 of Scenario 1.

Having gained insight into the optimal scheduling, Figure 10 shows the optimal variables and
net load in MG1. Obviously, after convergence, the sum of power purchased from the main grid,
charge-discharge power of BESS and exchange power with other MGs is equal to the net load of MG1
with the consideration of power loss. Based on the satisfaction of load demands, each MG can choose
to purchase electricity from the main grid, charge or discharge by BESS or exchange power with other
MGs to reduce the total operation cost with a comprehensive consideration of purchasing electricity
cost, energy storage cost, load characteristic and power loss cost.

In order to illustrate the effectiveness and benefits of the proposed method in this paper, the power
loss cost comparison between with and without optimization of power loss in each period is presented
in Figure 11.

1 11 21 31 41 51 61 71 81 91
-200

-100

0

100

200

300

Optimization period

P
o

w
e

r(
K

W
)

 

 

BESS1 Trading energy

Expeted exchange power Net load

Figure 10. The optimal variables and net load in MG1 on Day 1 of Scenario 1.
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Figure 11. Power loss cost comparison between with and without optimization of power loss on Day 1
of Scenario 1.

As shown in Figure 11, in Periods 18–32 and 71–90, the exchange power among MGs and the
exchange power between each MG and the main grid are greater; thus, the power loss cost is higher
in these time slots. After optimization of the power loss, the exchange power is lowered; therefore,
the power loss cost in each period is decreased.

From Table 3, it can be seen that the power loss cost is reduced by 22.56% compared to the case
without optimization power loss cost. It is clear that the proposed method in this paper can lower
power loss effectively.

To clarify the efficiency of the proposed distributed optimization algorithm based on ADMM,
we use a personal computer with Intel Core i7-6700K CPU 4.0 GHz (Intel Corporation, Santa Clara,
CA, USA), 8 G memory and MATLAB 2015b, as the testing environment. The convergence of the
primal residual and dual residual is shown in Figure 12. Figure 12 represents that the algorithm can
achieve convergence in 40–60 iterations for most optimization periods, which indicates that the ADMM
shows a faster convergence rate and better performance for the solution of this problem.

(a) Primary residual (b) Dual residual
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Figure 12. Iterative process of the primal residual and dual residual on Day 1 of Scenario 1 ((a) Primary
residual; (b) Dual residual).

5.1.4. Results and Analysis of the Distributed Optimal Dispatching on Day 2 of Scenario 1

The net power curve of each MG and total net power curve on Day 2 of Scenario 1 are represented
in Figure 13. Figure 14 shows the PV power, WT power and load power in each MG.
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Figure 13. Net power curve of each MG and total net power curve of coalition on Day 2 of Scenario 1.
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Figure 14. The PV power, WT power and load power in each MG on Day 2 of Scenario 1 ((a) MG1;
(b) MG2; (c) MG3).

Compared to Day 1, there is more wind power and less PV power on Day 2 because of weather
variations; thus, the total net load power is lower on this day. Apparently, the net load in Periods 5–20,
32–46, 49–57 and 92–96 is negative, when the excess renewable energy needs to be stored by BESS.
In other periods, the MGs would choose to discharge by BESS or purchase power from the main grid.

When the renewable energy cannot meet the power demands, discharging by BESS or purchasing
electricity from the main grid would be selected by MGs for stable operation. The scheduling results
of BESS and purchasing electricity based on ADMM in Scenario 2 are shown in Figure 15.
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Figure 15. Scheduling results of BESS and purchasing power based on ADMM on Day 2 of Scenario 1
((a) MG1; (b) MG2; (c) MG3).

In Figure 15, we can find that the storage energy of BESSs is utilized as the first priority when
there is a shortage of RESs, such as Periods 21–31, 47–48 and 60–71. Then, the MG should purchase
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power from the main grid to satisfy its local demands, such as Periods 67–91. In addition, Figure 16
shows the decided exchange power via the distribution line among MGs. The optimal variables and
net load in MG1 are represented as Figure 17.
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Figure 16. Decided exchange power among MGs on Day 2 of Scenario 1.
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Figure 17. The optimal variables and net load in MG1 on Day 2 of Scenario 1.

As shown in Figure 17, we find that MG1 can satisfy its local load by exchanging energy with
other MGs, discharging by BESS or purchasing electricity from the main grid considering purchasing
electricity cost, energy storage cost, load characteristic and power loss cost.

In order to clarify the advantages of proposed method in this paper, the power loss cost
comparison between with and without optimization of power loss is represented in Figure 18.
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Figure 18. Power loss cost comparison between with and without optimization of power loss on Day 2
of Scenario 1.
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According to Figure 18 and Table 3, we find that the power loss is reduced by 5.39% compared to
the case without optimization of power loss cost based on the same basic data. Through the method in
this paper, the power loss cost can be reduced effectively.

Figure 19 represents the iterative process of the primal residual and dual residual. It is clear
that the algorithm can achieve convergence in 30–60 iterations for most time slots, which shows that
ADMM has a better convergence performance.
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(a) Primary residual (b) Dual residual

Figure 19. Iterative process of primal residual and dual residual on Day 2 of Scenario 1 ((a) Primary
residual; (b) Dual residual).

5.2. Scenario 2

5.2.1. Basic Data in Scenario 2

To better evaluate the effectiveness of the proposed method, we conduct simulations on different
MGs, including differences in the sizes, parametrization, generators, as well as grid topologies. Due to
the space constraints, here we choose one typical scenario, whose optimal results are given in detail.
Compared with Scenario 1, the load of MGs is smaller, and the parameters of the RESs and BESSs
are different. Moreover, the CHP is considered in this scenario, and there is a CHP system in MG1.
This scenario is called Scenario 2.

In Scenario 2, the parameters of the RESs, BESSs and CHP are given in Tables 4–6, respectively.

Table 4. Parameters of the RESs.

RES Rated Capacity (kW)

WT1 400
PV1 400
PV2 600
WT3 400
PV3 500

Table 5. Parameters of the BESSs.

BESS Rated Power (kW) Rated Capacity (kWh) I (Yuan)

BESS1 250 800 800,000
BESS2 200 600 600,000
BESS3 350 1000 1,000,000
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Table 6. Parameters of combined heat and power (CHP) in MG1.

Parameter Name Parameter Value

Rated electrical power 500 kW
ηchp 0.35
pgas 1.5 CNY/kWh
ηloss 0.05
δheat 0.8

Figure 20 shows the net load of each MG and the total net load of the coalition in Scenario 2.
The PV power, WT power and load power in each MG are represented in Figure 21.

Obviously, the net load in Periods 15–16 and 32–60 is negative, so the surplus renewable energy is
used for charging. In remaining time slots, the MGs choose to generate power by CHP, discharge by
BESS or purchase power from the main grid.
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Figure 20. The net load of each MG and the total net load of the coalition in Scenario 2.
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Figure 21. The PV power, WT power and load power in each MG in Scenario 2 ((a) MG1; (b) MG2;
(c) MG3).

5.2.2. Results and Analysis of the Distributed Optimal Dispatching in Scenario 2

The generated power of CHP, the output power of BESSs and the power purchased from the main
grid of each MG are represented in Figure 22.
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Figure 22. The generated power of combined heat and power (CHP), the output power of BESSs and
the power purchased from the main grid of each MG in Scenario 2 ((a) MG1; (b) MG2; (c) MG3).

In Figure 22, as for MG1, the CHP operates in following thermal load (FTL) mode, which means
that the CHP system generates the thermal power according to heating demands of MG1, and the
electric power is a supplementary product. When there is a shortage of RESs, the power generated
by CHP can be used to satisfy the load demands of MG1, and then, MG1 chooses to discharge by
BESSs or purchase electricity from the main grid. Moreover, for MG2 and MG3, we find that the
storage energy of BESSs is utilized as the first priority when RESs are insufficient, such as Periods
61–78. Then, the MGs purchase electricity from the main grid, such as Periods 74–96. In addition,
Figure 23 shows the decided exchange power among MGs. The optimal variables and net load in MG1
are shown in Figure 24.
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Figure 23. Decided exchange power among MGs in Scenario 2.
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Figure 24. The optimal variables and net load in MG1 in Scenario 2.
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As shown in Figure 24, MG1 can satisfy its local load by generating power by CHP, exchanging
energy with other MGs, discharging by BESS or purchasing electricity from the main grid considering
the generation cost of CHP, the energy storage cost, the purchasing electricity cost, the load
characteristics and the power loss cost.

Moreover, the power loss cost comparison between with and without optimization of the power
loss is represented in Figure 25. The total power loss cost comparison between with optimization
and without optimization of the power loss cost in the objective is shown in Table 7. According to
Figure 25 and Table 7, we find that the power loss is reduced by 9.98% compared to the case without
the optimization of power loss cost based on the same basic data, which indicates that the power loss
cost can be reduced effectively through the proposed method.
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Figure 25. Power loss cost comparison between with and without optimization of the power loss in
Scenario 2.

Table 7. Total power loss cost comparison between with and without optimization of the power loss
cost in Scenario 2.

Cost With Optimization Without Optimization

Power loss cost (CNY) 207.92 230.98

Figure 26 represents the iterative process of the primal residual and dual residual. We find that
the algorithm can achieve convergence in 30–60 iterations for most time slots, which indicates that
ADMM has a better convergence performance.

10 30 50 70
0

50

100

150

200

Iteration number

P
ri

m
a

ry
 r

e
s
id

u
a
l

0 10 30 50 70
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Iteration number

D
u

a
l 
re

s
id

u
a

l

0

(a) Primary residual (b) Dual residual

Figure 26. The iterative process of primal residual and dual residual in Scenario 2 ((a) Primary residual;
(b) Dual residual).
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5.3. Comparison with the Related Work

To clarify the benefits of proposed model and algorithm, our approach is compared with several
related papers concerning multiple MGs, with regard to RESs, the power loss, BESS, the number of
MGs, the operation mode of MGs, exchanged information, the solution algorithm and the iteration
number. Table 8 shows the comparative results. The results show that the proposed method features
advantages in several aspects, as compared to the related studies.

Table 8. Comparison with several related papers.

Properties Ref. [42] Ref. [18] Ref. [38] This Paper

RESs - - PV PV WT

Optimize power loss? No No No Yes

Optimize BESS? No No No Yes

Operation mode of MGs Island mode Island mode Grid-connected Grid-connected

Exchanged information
All data of sources

and load transmitted

to control center

Price and expected

purchasing energy

quantities

Price and expected

purchasing energy

quantities

Expected exchange

power

Solution algorithm Centralized optimization Based on subgradient
statistical cooperative

power dispatching

(SCPD) algorithm

Based on alternating

direction method of

multipliers (ADMM).

Iteration number - About 100 93 Average 33.33

In this paper, PV, WT and power loss are incorporated into the model, which makes the optimal
dispatching model more realistic with respect to the practical applications. In regards to power loss,
most related literature ignores power loss, whereas this paper takes consideration of the optimization
of power loss to make the results as optimal as possible for actual operation and reduced power
loss. BESS is an important component for improving the utilization of RESs. In most literature,
BESS is not considered in the optimization. In this paper, BESS is integrated into the model, which
improves the consumption of RESs. As for operation mode, the MGs in [18,42] are both operated in
island mode, while the energy sharing framework of multiple MGs in this paper is constructed at the
distribution level.

In terms of exchanged information, [42] belongs to centralized optimization, in which all of the
data including load and generation should be transmitted to the control center. Thus, this would
result in the leakage of the privacy of MGs and more communication requirements to meet the huge
amount of data. As for [18,38], the Lagrange multipliers (i.e., price) and the expected purchasing
energy quantities should be shared with each other among MGs. However, to some extent, Lagrange
multipliers are equal to power generation information within MGs, thus the privacy protection for
MGs is limited. In this paper, the shared information among MGs is limited to expected exchange
power, which protects the local information of MGs.

With regard to iteration number, [42] belongs to centralized optimization, whereas others are
classified as distributed optimization. The work in [18] proposes a subgradient-based cost minimization
algorithm. A cooperative power dispatching algorithm of interactions among microgrids is proposed
in [38] for power sharing within the grid. In this paper, a distributed optimal algorithm based on
ADMM is proposed. In terms of the algorithm performance, the iteration number of these papers is
compared. As the basic data and scenarios in these papers are different, their simulation results are
not comparable. However, it can be roughly concluded from the table that the proposed algorithm in
this paper has a relatively superior solution among these papers.

In short, the results show that the proposed method features advantages in the model and
algorithm. From the perspective of the model, the PV, WT, CHP, BESS and power loss are taken into
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consideration by the model, which is beneficial to improve energy efficiency and make the optimal
results more realistic with respect to the practical applications. As for the algorithm, in this paper,
the shared information among MGs is limited to expected exchange power, which protects the privacy
of MGs. In addition, the proposed algorithm shows a better convergence speed and a relatively
superior solution.

5.4. Scalability Analysis

Having gained insight into the algorithm performance, we apply the model in cases with more
MGs in order to verify the scalability of the proposed method. The iterative process of the operation
cost in Period 23 is shown in Figure 27. Table 9 shows the comparison of the total operation cost and
the average iteration number between coalitions with different numbers of MGs.

0 10 20 30 40 50
0

200

400

600

800

1000

1200

Iteration number

O
p
e

ra
ti
o

n
 c

o
s
t 

in
 p

e
ri

o
d
 2

3
 (

C
N

Y
)

 

 

3  MGs 6  MGs 9  MGs 12 MGs

Figure 27. The iterative process of the operation cost in Period 23 for coalitions with different numbers
of MGs.

Table 9. The comparison of the total operation cost and average iteration number between coalitions
with different numbers of MGs.

The Number of MGs Total Operation Cost (CNY) Average Iteration Number

3 MGs 10,449.7 33.33
6 MGs 22,905.7 33.50
9 MGs 34,716.3 36.04

12 MGs 46,045.1 37.32

As shown in Figure 27 and Table 9, the algorithm with different numbers of MGs converges to
a stable state in about 40 iterations. The result indicates that the model can also be applied to a larger
cluster of MGs, and the algorithm has a better performance.

Furthermore, we evaluate MGs of different sizes to demonstrate scalability. Take three MGs as
an example: we have conducted simulation on three MGs of different sizes. Figure 28 shows the
iterative process comparison of the operation cost in Period 23 between three MGs of different sizes.
The total operation cost comparison between three MGs of different sizes is represented in Table 10.

As shown in Figure 28 and Table 10, the algorithm can be applicable to scenarios with MGs of
different sizes, which shows a good performance.
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Figure 28. The iterative process comparison of the operation cost in Period 23 between three MGs of
different sizes.

Table 10. Total operation cost comparison between 3 MGs of different sizes.

Sizes Total Operation Cost (CNY)

Size 1 6379.0
Size 2 8760.7
Size 3 10,449.7
Size 4 11,580.5

6. Conclusions

In this paper, a distributed energy sharing management method for interconnected operation
of MGs with BESS and RESs based on ADMM is presented. We define an entity named ESP to
minimize the power loss cost. A day-ahead optimal scheduling model is built by taking the minimum
total operation cost including purchasing electricity cost, energy storage cost and power loss cost as
the objective. Moreover, a two-level iterative algorithm based on ADMM for the MGs and ESP in
coalition is proposed. The simulation was conducted in different scenarios, which indicates that the
proposed method has a better performance and can be applied to different scenarios. From numerical
simulations, we have shown that each MG can choose to purchase electricity from the main grid,
charge or discharge by BESS or exchange power with other MGs to reduce total operation cost with a
comprehensive consideration of purchasing electricity cost, energy storage cost, load characteristics
and power loss cost. In addition, only the expected exchange power is needed to implement optimal
scheduling, and the privacy of MGs and ESP can also be guaranteed. The bidirectional interaction
between MGs and ESP is achieved taking into account the local objective of each MG and the objective
of ESP. Moreover, it is clear that the power loss cost can be decreased by the proposed method
effectively. Compared with the related studies, we have also shown the advantageous features in the
proposed method on modeling and algorithm performance.

There is a potential limitation for the proposed method. During the operation, we assume that
the reactive power is balanced locally in each MG. However, if one MG lacks the ability to adjust
the reactive power, it is possible to request for support from other MGs. Thus, how to achieve the
distributed optimization with both active and reactive power is a difficult problem. Furthermore,
if the MG can also provide ancillary and balancing services for the coalition, how to integrate the
ancillary services into the distributed optimization model is another interesting topic to be addressed.
Besides the technique contributions, we can discover that the direct energy trading between MGs
can effectively improve the local utilization of renewable energy. In order to facilitate the practical
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applications, the energy sharing among MGs should be supported by energy market policy in the
future development.
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Nomenclature

PPV The output power of PV
GAC Light intensity
PSTC Maximum test power under the standard testing environment
GSTC Light intensity under the standard testing environment
kt Power temperature coefficient
Tc Temperature of the photovoltaic cell
Tr Reference temperature
PWT The output power of WT
Pr Rated power of WT
a, b, c,d Fit parameters
vci Cut-in wind speed
vr Rated wind speed
vco Cut-out wind speed
Puc The output power of RESs
I The investment cost of BESS
P The discharging power of BESS
∆T The length of the time period
Q The battery capacity
Atotal The total cumulative Ah throughput in the life cycle
SOCinit The initial state of charge
Cchp The fuel cost of CHP
pgas The price of natural gas
Pchp The electric power of CHP
LHVNG Low calorific value of natural gas
Hchp The heat power of CHP
ηL Heat loss coefficient
δheat Heating coefficient of the LiBr chiller
Ploss
S The total power loss

Ploss
nm The power loss over the distributed line between MG n and MG m

Ploss
n0 Power loss over the distributed line between MG n and the main grid

Rnm The resistance of the distribution line between MG n and MG m
Rn0 The resistance of the distribution line between MG n and the main grid
Closs
S The total power loss cost

λ Price per unit of power energy
xBESSn The charge-discharge power of BESS in MG n
xgridn The exchange power between MG n and the main grid
Pgs The selling price of the main grid
dn Load demands of MG n
xin

n The exchange power between MG n and other MGs
η Charge-discharge efficiency of BESS
Pmax

charge, Pmax
discharge Maximum and minimum charge-discharge power

SOCmax, SOCmin The upper and lower bounds of SOC
ρ Penalty parameter
εpri, εdual The convergence error of the primal residual and dual residual
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