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Abstract: In the nearest decades, the rapidly increasing demand of wireless connectivity has resulted
in the ubiquitous deployment of wireless systems as well as heavily congested wireless spectrum.
Owing to the various inherent advantages, such as spectral and bandwidth relief, no healthy
concern, high security, low cost, and low interference with Radio Frequency (RF) waves, visible
light communication (VLC) has been an emerging optical wireless data transmission approach that
can act as a good complement to and substitute for Radio Frequency. How to achieve a high-speed
data transmission is a key problem to be solved in the VLC system. This review mainly focuses on
the enabling technologies for high-speed VLC systems, including novel transmitter architectures,
blue filters and advanced modulation, and equalization technologies. And the inherent advantages,
potential applications, and some issues of VLC that need further study are presented as well. Finally,
a comprehensive survey on the recent developments and the key contributions by research groups
involved in the field of high-speed VLC is provided.
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1. Introduction

Visible Light Communication (VLC) is an emerging optical wireless data transmission approach
that using visible lights as the signal carriers. The history of Visible Light Communication could
be traced back to the 1880s, when Alexander Graham Bell developed a photophone by modulating
sunlight. This invention even pre-dates the transmission of voice data by radio. Several other works
using fluorescent lights as the light source for communication were demonstrated then with quite
low data rates. According to the reports of Jackson et al., the data rate is only fast enough to refresh
a 40-character display 2.5 times per second [1]. With the developments in man-made light sources,
the traditional fluorescent lights and incandescent bulbs are gradually being replaced by light emitting
diodes (LEDs). Due to the advantage of their lower costs, higher lifetime, low power consumption
and high switching rate, LEDs have predominantly become the most favorable light source for VLC.
In a LED-based VLC system, information is transmitted by modulating the intensity of LED at a rate
much faster than the response time of the human eyes, which offers simultaneous illumination and
high-speed data transmission. Therefore, it is regarded as an economic, secure, and ubiquitous data
transmission solution, especially a perfect last-mile solution in the future [2].
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This review mainly focuses on the enabling technologies for high-speed visible light communication
systems. It is organized as follows. Section 2 presents the inherent advantages and potential
applications of VLC. Section 3 discusses detailed the technical approaches for the improvement
of the data rate in a VLC system, including the novel transmitter architectures, optical filters, advanced
modulation, and equalization technologies. Section 4 reviews the recent developments and the
contributions by research groups involved in the field of VLC. Section 5 lists some issues that must be
addressed by in-depth study in future research, and Section 6 presents important conclusions that are
drawn from this survey as well as the prospects of the technology.

2. Potentials of VLC System

In the nearest decades, wireless connectivity has become one of the basic commodities in our
daily life. The rapidly increasing demand for it has resulted in the ubiquitous deployment of wireless
systems as well as a heavily congested wireless spectrum that has occurred as a result. In response,
VLC has been gaining in popularity as a good complement and substitute for radio frequency due to
the following motivations and inherent advantages.

(1) Bandwidth resource

RF, with a frequency band of 3 kHz to 300 GHz, is the most popular frequency band in the
modern wireless communication systems. Each wireless communication system independently uses
a frequency band to avoid interfere. Since the spectrum resources are limited, national regulation
and authorization are usually essential. However, with the rapid growth of wireless communication
applications and demand, this authorization and fixed distribution method results in an increasingly
dwindling RF spectrum. Developing alternative technologies with larger bandwidth and spectral relief
is urgent. Visible light (corresponding to a wavelength band of 380 nm to 780 nm) has 10,000 times a
greater spectrum than radio waves [3]. In addition, VLC does not require spectrum regulation and
authorization. Thus, in contrast to the RF communication, VLC has huge available and unregulated
bandwidth resource for data transmission, making it a potential solution to overcoming the crowded
RF spectrum in wireless communication.

(2) Safe

The health hazards of radio frequency have attracted increasing attention. Under long-term
exposure to strong electromagnetic radiation, the function of the human body may suffer from a certain
degree of hurt. Therefore, wireless communications generally need to limit their own transmitting
power, which can greatly affect system performance. VLC uses LEDs emitting white light for lighting,
which is the same as natural light, and almost harmless to the human body. Such advantages make
VLC communication a popular alternative when health considerations are taken into account.

(3) Security/privacy and interference

Radio waves can penetrate walls and are susceptible to eavesdropping on in-room or in-building
communications. Furthermore, radio waves are susceptible to mutual interference with electronic
devices, which greatly limits the scope of their application. Since lights can be strictly confined to an
intended area surrounded by opaque boundaries, the security of VLC is greatly enhanced. However,
recent research has shown that eavesdropping on VLC is possible, generally by capturing the light
signals that leak through the gap between the floor and door, keyhole, and even partially covered
windows [4]. Nonetheless, VLC is still a much more secure option than traditional RF communication.
In addition, VLC does not cause any interference with RF signals and has no health concerns [5].
Thus this technology is perfectly suitable for a scenario where sensitive electronic devices are used,
such as hospitals, or in industrial and aerospace applications [6].
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(4) Low cost and energy efficient

The cost of VLC devices are comparatively lower than the current RF modules. Study shows that a
Bluetooth module, which provides a data rata up to 1 Mb/s, costs about $5 while a VLC link can offer a
data rate of about 4 Mb/s with a cost of only around $1 per module [7]. Furthermore, LED-based VLC
has emerged as a green communication technology because of the excellent energy efficiency feature of
LEDs. When compared with traditional lighting technologies, LEDs use less energy [8] and generate
less heat [9]. The energy consumption of LED is only 1/10 and 1/4 of the incandescent and fluorescent
lighting, respectively. According to a report from the U.S. Department of Energy, SSL technology is
promising to conserve up to 217 terawatt-hours (TWh) save energy by the year 2025 [10].

Owing to the inherent benefits outlined above, VLC system has broad application prospects,
and different application scenarios are summarized as follows.

(1) Indoor high-speed network access: Li-Fi

The term Li-Fi was coined by Prof Harald Haas from Edinburgh University in 2011. It is a
high-speed bi-directional fully connected VLC system analogous to Wi-Fi as shown in Figure 1.
A speed of up to 10 Gb/s can be obtained using Li-Fi, which is 250 times more than the speed
of ‘super-fast’ broadband [11]. Due to the problem of interference with other RF signals, Wi-Fi is
forbidden or limited in many electromagnetic wave sensitive areas, such as aircrafts, nuclear power
plants, and hospitals. Therefore, Li-Fi can be a better solution in such environments as it does not cause
any electromagnetic interference. However, as one cannot use light bulbs to send data to fast-moving
objects, or objects behind obstacles, Li-Fi is not a competitor to Wi-Fi, but a complementary technology
that will help to free up spectrum space.

Figure 1. Example of a Li-Fi system. Reproduced with permission from [12], Elsevier, 2017. (Reprinted
from Energy Build, 149, Chew, I. etc., Smart lighting: The way forward? Reviewing the past to shape
the future. 180–191, Copyright (2017), with permission from Elsevier.)

(2) Underwater communication

Due to the salty, high conductivity, and high attenuation environment of sea water, RF signals
cannot travel well in sea water. Although sound waves travel far in the ocean, they have a low
transmission rate, limited bandwidth and high-power consumption. Furthermore, they may interfere
with marine animals such as dolphins. VLC uses the visible light of the optical transmission window
(420–510 nm) in seawater for data communication, which can effectively overcome some shortcomings
of microwave and sound waves in underwater communication. Thus, VLC can be used to send data
to submarines or divers with their head lights and other underwater devices. In 2015, Rust et al.
from Massachusetts Institute of Technology (MIT) has applied VLC to their underwater robots’
communication and localization in a non-destructive nuclear reactor inspection [13]. The underwater
use of VLC now still has some limitations, such as the data rate and distance are obviously affected
by hydrological conditions, especially turbidity. For example, Doniec et al. proposed an underwater
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VLC system called AquaOptical [14], which can obtain a data rate of 1.2 Mb/s over 30 m in clear water.
While in water with visibility estimated at 3 m, the data rates and distances dropped to 0.6 Mb/s
and 9 m.

(3) Intelligent transportation

Congestion has become an increasingly significant issue worldwide, especially in the developing
countries, and has leading to a series of problems, such as air pollution, fuel consumption and
difficulties in implementing transportation plans. Furthermore, accident risks increase with the rapid
growth of the number of vehicles. Malta et al. [15] indicated that almost three fourths of all traffic
accidents can be attributed to human error. Thus, one may predict that if there is an early warning
system in place, the probability of accidents will be greatly reduced.

The above problem can be alleviated by implementing the intelligent transportation. As shown in
Figure 2, VLC could be used to send messages with vehicle lights, traffic lights, street lights and the
other elements of the lighting infrastructure. According to the Vehicle Safety Communications Project
from the US Department of Transportation, the applications including emergency electronic brake
lights, cooperative forward collision warning, pre-crash sensing, lane change warning, curve speed
warning, stop sign movement assistant, left turn assistant, traffic signal violation warning, and so
on [16].

Figure 2. Intelligent transportation scenario.

3. Enabling Technologies for a High-Speed VLC System

A typical VLC system includes transmitter, transmission channel and receiver. The transmitter
in a VLC system might be a LED or an array of LEDs. The current that flowing through the LEDs is
controlled by a driver circuit so that the brightness of the radiated light can be modulated and coded.
The signal is transmitted in the free space and then extracted from the modulated light beam by the
receiver via signal processing, demodulation, and decoding. The receiver consists of an amplification
circuit, optical filter, optical concentrators, photodiode, and a setup for demodulation of the data.
And the photodiode can be a silicon photodiode, p-i-n photodiode (PIN) diode, avalanche photodiode
(APD) or a camera sensor which converts radiation into photo-current. Both in the transmitter and
receiver, equalization technology may be used to further enhance the system capacity. As a high-speed
VLC system requires high signal-to-noise-ratio (SNR) values, line-of-sight (LOS) paths are required for
most of the applications.

As VLC has numerous inherent advantages and wider application areas when compared to the
traditional wireless communication systems, it has drawn much attention from research institutes and
companies worldwide, and great development have been achieved as a result. However, it still has
some challenges for the VLC system in the practical process, such as a limited achievable data rate due
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to the slow modulation response of LEDs, limited transmission distance caused by the sharp decrease
in illumination with distance, multi-path dispersion (MPD), fluorescent light interference (FLI) and so
on. Among them, how to achieve high-speed data transmission is one of the hotspots as it is a key
problem to be solved in the VLC system. In this section, the possible solutions to improve the data
rate are discussed, including novel transmitter architectures, advanced modulation and equalization
technology, and optical filters.

3.1. LED Technology

White light is the most widely used form of illumination in the common communication
applications, such as color rendering [17]. And the most common and cost effective way to produce
white light is to use a blue LED with yellow phosphor coating, as shown in Figure 3a [17]. While due
to the slow relaxation time of the phosphor coating, the modulation bandwidth is on the order of
about 3 MHz [17]. And the limited bandwidth and slow modulation response of LEDs are the key
challenges which limit the achievable data rate in VLC. The White light also can be produced with a
combination of ultraviolet emitters and multi-color phosphor. Another more attractive way is using
separate red-green-blue (RGB) or red-yellow-green-blue (RYGB) emitters, namely, by using RGB or
RYGB LED. RGB LED is the most common multi-chip LED, which contains three jointly packaged LED
chips (red, green and blue) to produce white lights (see Figure 3b). By changing the light intensities
of the different chips, the color of the output light is modified. Since this kind of LEDs avoid the use
of phosphor as well as the slow relaxation time, a much higher modulation bandwidth of more than
100 MHz can be obtained. However, the multi-chip LEDs still suffer from some drawbacks, such as
having a lower Color Rendering Index3 (CRI), a more complex structure, and higher costs than the
traditional phosphor-based LEDs (ps-LEDs).

Besides the above LED technologies, some novel LED architectures and LD transmitters are
proposed to improve the modulation bandwidth of the VLC system as well.

Figure 3. Schematic diagrams of ps-LED (a) and RGB LED (b).

(1) Resonant Cavity LEDs (RC-LED)

The light extraction efficiency of the LED refers to the ratio of the output photons to the photons
generated by the electron-hole recombination in the active region. In conventional LED devices,
the light extraction efficiency is usually less than 10%, due to the factors, such as the substrate
absorption, electrode blocking, and total reflection on the out-light surface. Most photons are limited to
the inside of the device and are converted into heat, which greatly affects the performance of the device,
especially in high power LED devices. To improve light extraction, Bragg reflectors are employed in
the LED device to offer high efficiency and high bandwidth, based on the resonant cavity enhancement
effect as shown in Figure 4. The emission of RC-LED is typically at ~650 nm with a narrow line width
and can be modulated in excess of 100 MHz [18,19]. Ref [20] demonstrates a AlInGaN based RC-LED
that providing the lowest-loss transmission window, around 520 nm, and the bandwidth can level up
to 330 MHz. With RC-LED, a highly directional output and high data rates of up to 500 Mbps [21] can
be obtained, but its fabrication is challenging [22].
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Figure 4. The schematic diagram of a typical RC-LED. Reproduced with permission from [23], John Wiley
and Sons, 2004. (Reprinted from Phys. Status Solidi, 201, Dorsaz, J. etc., InGaN/GaN resonant-cavity LED
including an AlInN/GaN bragg mirror. 2675–2678, Copyright (2004), with permission from John Wiley
and Sons.)

(2) Micro LEDs (µ-LED)

Instead of a single LED, micro LEDs consist of arrays of micro-pixelated LED pixels, based
on III-nitride Technology. µ-LEDs offer better contrast, response times, longer lifetime, and energy
efficiency. More importantly, by reducing the LED active area to 100 × 100 µm2 or less, the capacitance
is decreased while the current density is increased, and this thereby contributes to a significant increase
in the modulation bandwidth. In previous reports, the typical size of each individual pixel rangs
from 14 to 84 µm, and the 3-dB bandwidth can reach 450 MHz, which contributs a data rate up to
1.5 Gb/s [24–27]. Islim et al. reported a violet micro-LED (shown in Figure 5) with electrical-to-optical
bandwidths of up to 655 MHz [28]. With further improvement of these µ-LED sources, researchers
from the University of Strathclyde has achieved a high bandwidth that exceeding 800 MHz [29].

Figure 5. Micro-LEDs proposed in Ref. [28]. Reproduced with permission from [28], Chinese Laser
Press, 2017. (Reprinted from Photonics Research, 5, Islim, M. etc., Towards 10 Gb/s OFDM-based visible
light communication using a GaN violet micro-LED. A35-A43, Copyright (2017), with permission from
Chinese Laser Press.)

(3) Laser diodes (LDs)

Since it is the photon lifetime, not the carrier lifetime that dominates the dynamics, LDs are
capable of handling a data bandwidth enlarged by one or two orders of magnitude greater than
LEDs [30]. Thus, in contrast to the limited modulation bandwidth of sub-GHz for LEDs, the modulation
bandwidth of LDs is higher than 5 GHz [20]. In addition, LDs has higher current densities and output
powers per unit wafer area than LEDs, and recent research has shown that lighting based on multicolor
LDs has no health concern on the human eye [31]. Furthermore, the output light has the feature of
coherent and collimated, which is fit for point-to-point data transmission. Thus, by leveraging the
advantages mentioned above, a LD-based white VLC system is promising to outperform the ones
based on LEDs. According to the recent studies, multi-Gigabit data rates have been achieved in VLC
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systems based on III-nitride LDs [15–19]. However, the safety concerns involving the use of LDs is the
main limitation for the rapid development of a LD-based VLC system [32].

3.2. Advanced Modulation

In VLC, the current flow through the LEDs is controlled by a driver circuit so that the brightness
of the radiated light is modulated. By applying advanced high efficient modulation, the limitations of
the modulation bandwidth and the transmission data rate are promising to be overcome. Common
single carrier modulations include On-Off Keying (OOK), Pulse Position Modulation (PPM), Pulse
Width Modulation (PWM), Pulse Amplitude Modulation (PAM) and so on, which have been widely
used in IR communications. To realize high data rates, various advanced modulations, such as
Orthogonal Frequency Division Multiplexing (OFDM), Carrier-Less Amplitude and Phase Modulation
(CAP), Color Shift Keying (CSK), Discrete Multi-Tone (DMT), and Nyquist Single Carrier (N-SC)
were proposed.

(1) OFDM

OFDM is a kind of digital multi-carrier modulation based on a frequency-division multiplexing
(FDM) scheme. In OFDM, multiple closely spaced orthogonal subcarriers transmit data on several
parallel data streams or channels simultaneously [17]. Each sub-carrier is modulated with a
conventional modulation scheme like quadrature amplitude modulation (QAM) or phase shift keying
(PSK), followed by a serial to parallel (S/P) converter. Then, they are converts from the frequency
domain input signals into time domain output signals by an Inverse Fast Fourier Transform (IFFT).
And a cyclic prefix (CP) is added to further limit the effects of inter-channel interference (ICI) and inter
symbol interference (ISI). As the VLC signals are unipolar and real, the conventional OFDM needs
some modifications. The Hermitian symmetry to generate real-time signals for implementation can be
applied at the cost of doubling the required bandwidth. Multiple kinds of modified OFDM schemes
were proposed and used in VLC, such as Asymmetrically Clipped Optical OFDM (ACO-OFDM) [33],
DC-biased (Direct Current) Optical OFDM (DCO-OFDM) [34], Asymmetrically clipped DC-biased
Optical OFDM (ADO-OFDM) [35], and adaptive bit and power loading OFDM [36]. Figure 6 shows the
schematic diagram of DCO-OFDM modulation. In ACO-OFDM, an additional DC-bias is not required
as the signal is clipped at the zero level [34]. This is because QAM symbols are only assigned to odd
subcarriers, and therefore only the even subcarriers suffer from the noise generated by the asymmetrical
clipping that occurs below the zero level, while the odd subcarriers are not [34]. Thus, ACO-OFDM
reduces the need for a DC-bias and improves the optical power efficiency, but at the cost of giving up
half of the spectrum.

Figure 6. Schematic diagram of DCO-OFDM modulation.
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By combining with higher-order modulation, OFDM bandwidth is highly efficient and can
overcome the multipath effects and ISI. However, OFDM also has some shortcomings that cannot be
ignored. The non-linearity of LED needs to be considered as it introduces amplitude and phase
distortion to significantly affect the performance of the VLC system. Such an impact is more
severe in the high order sub-carrier modulation due to a high peak-to-average-power-ratio (PAPR),
such as OFDM, and causes the increase of BER and ICI [8]. Such an impact of non-linearity can be
minimized by biasing the LEDs in the optimum operation point, limiting the peak-to-peak input signals,
and employing power reduction methods, such as signal clipping [37]. And the nonlinearity also can
be compensated by applying pre-distortion [38], post-distortion [39], or nonlinear equalization [40].

(2) CAP

CAP is a kind of high-order multi-dimensional modulation with low complexity and high spectral
efficiency, which was proposed by Bell Labs in the 1970s. In a CAP scheme, as shown in Figure 7,
the input bit stream is first mapped with Quadrature Amplitude Modulation (QAM), then up-sampled
by a factor of M, the number of samples per symbol, by inserting M − 1 zeros between two symbols.
The in-phase (I(t)) and quadrature (Q(t)) sequences are separated and the shaping filters are applied.
The outputs of the filers s(t) can be expressed as

s(t) = I(t)⊗ f I(t)− Q(t)⊗ fQ(t)

where fI(t) and fQ(t) are the filter functions of in-phase and quadrature shaping filter. The two
orthogonal signals are separated by two matched filters (matched to in-phase and quadrature shaping
filters) the. Then down-sampling and signal recovery (including equalization and de-mapping) are
carried out to extract the original bit stream. As CAP can be applied without FFT and IFFT blocks, thus,
commonly, CAP offers a simpler implementation than OFDM. However, CAP requires a flat-band
response for optimum performance, and complex equalizers are necessary for a non-flat spectral
system [41], which is less flexible than OFDM [42,43].

Figure 7. Schematic diagram of CAP modulation. a(t) and b(t) are the original bit sequence after
up-sampling. r(t) is the received bit sequence after analogue-to-digital conversion. And rI(t) and rQ(t)
are the bit sequence after in-phase and quadrature matched filtering, respectively.

(3) CSK

CSK is a new modulation method proposed for the visible light communication system that is
composed of the red, green, and blue LED sources. As shown in Figure 8, after a scrambler and channel
coding, the x/y values are transformed to pi/pj/pk according to the Color mapping constellations
(shown in Figure 9). Four color points are defined in the 4-CSK constellation, meaning that 2 bits can be
sent with each symbol. Instead of using the absolute intensity of each color in a Wave Division Multiple
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Access (WDMA), CSK uses the intensity ratio of the red, green, and blue colors in the LED source to
transmit information, thus it has a higher bandwidth efficiency and data rate, which has attracted
significant attention recently [44,45]. And CSK has been included in the IEEE 802.15.7 visible light
communication standard modulation. However, according to the above analysis, CSK modulation
requires accurate color separation at both the transmitter and the receiver, increasing the complexity of
its implementation. And obviously, CSK is not fit for the VLC systems based on pc-LEDs.

Figure 8. Schematic diagram of the CSK signal generation.

Figure 9. Color mapping constellations for x, y and 4-CSK in CIE 1931 (Color Space proposed by the
International Illumination Organization in 1931).

3.3. Equalization

Based on the characteristics of the VLC channel, the uneven channel will bring great obstacles
to the high-speed transmission of the data. Although OFDM modulation technology can improve
the system performance to a certain extent, equalization technology is necessary to further enhance
the system capacity. And it can be divided into two kinds: software equalization and hardware
equalization. The former mainly involves digital signal processing, while the latter one mainly relates
to the circuit design. Equalization applied at the transmitter (pre-equalization) is an efficient way to
increase bandwidth as well as enhance the data rate.

(1) Hardware equalization

According to the previous reports, hardware pre-equalization technology is proved to be an
effective way to improve the bandwidth of the VLC system. In 2013, Fujimoto et al. [46] introduced
pattern logic (CML) circuits and a simple resistors and capacitors (RC) pre-equalization circuit as the
driver circuit of a commercial RGB LED (data transmission using red LED). A data rate of 477 Mb/s
was achieved using a low-cost PIN photodiode and OOK-NRZ modulation scheme, and the bit error
rate is less than 10−9. In 2015, Huang et al. [47] proposed a bridge-T amplitude equalizer, which has
excellent linearity and impedance matching performance. A data rate of 2.0 Gb/s over 1.5 m free
space was achieved using a commercial phosphorescent white LED with an adaptive bit and a power
loading OFDM modulation scheme.
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(2) Software Equalization

Although hardware equalization can increase the bandwidth of the system to a certain extent,
it still suffers from some limitations. But as most of the hardware equalization technologies are
based on an analog circuit: (i) analog circuit is susceptible to interference, and its bandwidth is
limited, therefore it does not fit for high-speed signal transmission; (ii) The channel of VLC is
greatly influenced by the ambient noise, which has higher requirements for the flexibility of the
equalizer. However, the analog circuit cannot be debugged and adjusted according to the actual system
requirements. Thus, the software equalization providing more accurate and higher flexibility is more
attractive [48]. Chi’s group introduced a weighted pre-equalization technique for multi-band CAP
signals, and combining different post-equalization schemes, they have experimentally demonstrated
a 1.35 Gb/s [49], a 4.5 Gb/s [47], and an 8 Gb/s [41] high-speed indoor VLC transmission system,
respectively. In 2016, Zhou et al. applied power exponential software pre-equalization in VLC based on
a commercial phosphorescent white LED for high speed transmission. A 2.08 Gb/s VLC transmission
over a 1 m free-space distance is implemented through experimental demonstration, which is higher
than the data rate record created by applying hardware pre-equalization in a phosphorescent white
LED based VLC system [48].

3.4. Blue Filter

Blue filter is one of the effective ways to improve the data rate and transmission distance of a
ps-LED based VLC system [50,51] without increasing the computational complexity at the receiver.
And these improvements mainly come from the following two aspects.

(1) Improving the modulation bandwidth of LED. As mentioned above, the modulation
bandwidth of ps-LED is limited by the slow relaxation time of the phosphor coating. As shown
in Figure 10, the emission spectrum of the phosphor-based white LED consists of a sharp blue peak
centered at 456 nm and a fluorescence peak from 485 to 800 nm. Thus, one of the most effective ways to
improve the modulation bandwidth of a phosphor-based LED transmitter is simply removing the slow
fluorescence component from the modulated signal with a blue filter [2]. And the study of Grubor et al.
shows that by employing a blue filter in front of the receiver, the bandwidth of ps-LED can be increased
substantially from 2 up to 20 MHz [52].

(2) Restraining the ambient light. For the silicon PIN or APD photodetector, which is the common
receivers of a VLC system, the response spectrum ranges from about 400 to 1050 nm and has a
much higher responsivity in the visible and near-infrared photons than the blue ones (see Figure 10).
Therefore, sunlight or light from other artificial lighting, such as fluorescent lamps, computer or
television monitors, becomes an inevitable strong ambient light that may greatly lower the SNR and
limit the transmission distance of a VLC system [2]. By employing a blue filter, it is expected such
ambient light interference might be minimized effectively.

In 2015, the theoretical study of Stepniak et al. [53] indicated that blue filtering had a marginal
effect on the performance in ps-LED based VLC for all the investigated modulation formats, including
PAM, CAP and DMT, only except for the case of PAM with a decision feedback equalizer (a 1–2 dB
higher margin was observed without blue filtering). Wang et al. [2] proposed a high-performance
blue filter (see Figure 10) with ultrawide stopband from 500 to 1050 nm, and precisely restraining
the phosphorescent component and other ambient light. As shown in Figure 11, the experimental
results demonstrated that both the data rate and the transmission distance were greatly improved.
Huang et al. [54] has applied this kind of wide stopband blue filter in a high speed VLC system. A data
rate of 1.6 Gb/s was successfully achieved over a 1 m free-space transmission with a PIN photodiode
using 16QAM-OFDM modulation.
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Figure 10. Calculated and measured transmission spectra of the blue filter, as well as the normalized
emission spectrum of a phosphor-based white LED and the typical spectral response of a Si-based
receiver for reference [2]. Reproduced with permission from [2], IEEE, 2015. (Reprinted from IEEE
Wireless Communications, 22, Wang, S. W. etc., A high-performance blue filter for a white-led-based
visible light communication system. 61–67, Copyright (2015), with permission from IEEE.)

Figure 11. Measured BERs of downlink with no filter, common blue filter and filter versus (a) data rata
and (b) distance. Reproduced with permission from [2], IEEE, 2015. (Reprinted from IEEE Wireless
Communications, 22, Wang, S.-W. etc., A high-performance blue filter for a white-led-based visible
light communication system. 61–67, Copyright (2015), with permission from IEEE.)

4. State of Art

In 1999, Pang et al. from Hong Kong University proposed the concept of using fast switched
LEDs for communication for the first time [55]. And LED-based VLC began to take shape in the early
2000s in Japan, pioneered by Tanaka et al. [5] at Keio University. Enthusiasm for this research topic has
soon spread worldwide and attracted the attention from various institutions and universities. Active
research groups include Keio University, Nagoya University, Nakagawa Laboratory, Germany Heinrich
Hertz Institute, Siemens Labs, Oxford University, University of Edinburgh, University of Strathclyde,
University of Sunnybird, Boston University, University of California, China Taiwan Jiaotong University,
Industrial Technology Research Institute, Far East University of Science and Technology, Fudan
University, Beijing University of Posts and Telecommunications, Southeast University, Institute of
Semiconductors, Chinese Academy of Sciences, Huazhong University of Science and Technology, Jinan
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University, and so on. In November 2003, the Visible Light Communication Consortium (VLCC) was
established in Japan to explore different applications of VLC. After Japan, many other large research
projects have also been launched, including the Omega Project (2008, European Commission), Smart
Lighting Engineering Research Center (2008, USA), Center for Ubiquitous Communication by Light
(UC-Light, 2010, USA), Li-Fi Consortium (2011), Center on Optical Wireless Applications (2011, USA)
and Canadian Research in VLC (2012). In the recent decade, rapid developments were got, and an IEEE
standard (IEEE 802.15.7) was finalized in 2011 [56], enhancing the prospects for commercializing VLC.

Table 1 details the recent efforts by various groups in attaining higher speeds using VLC. Type of
transmitters, receivers, modulation, and equalization used in each case are also stated for ease
of comparison. As shown in Table 1, several demonstrations have shown that it is possible to
construct Gb/s class VLC links. And the type of transmitter is an important factor that affects
the data rate. While blue filters, modulation, and equalization technologies can improve the system
performance to a certain extent. In 2016, using commercial phosphorescent white LEDs and low-cost
PIN photodiodes (PDs), a high-speed VLC transmission at >1 Gb/s over a free-space link of 0.6 m in
a 2 × 2 multiple-input multiple-output (MIMO) visible light communication (VLC) system [57] was
achieved. And a 2.08 Gb/s transmission data rate over 1 m free-space transmission distance is achieved
by further applying adaptive bit and power loading OFDM [48]. Multi-chips can greatly improve the
bandwidth of LED. Ref [58] presented the proof-of-concept of the RGB 2 × 2 MIMO VLC system with a
data rate of 6.36 Gb/s over a free-space link of 1 m in a RGB LED-based 2 × 2 polarization-multiplexing
MIMO VLC system. And an aggregate data rate of 8 Gb/s is successfully achieved over 1 m indoor
free space transmission with RYGB LEDs by the hybrid equalizer [41]. A novel violet micro-LED array
with two sets of inner and outer pixels is reported in Ref [28]. The electrical-to-optical bandwidth is
up to 655 MHz at an optical output power of 2.3 mW. And a data transmission rate of 7.36 Gb/s is
achieved in an adaptive bit and energy loading OFDM-based VLC system using a single pixel of the
proposed violet micro-LED. In 2017, Huang et al. realized a 17.6 Gb/s transmission in a GaN LD based
VLC system with impedance-matched transmission-line circuit board and a UFMC additive 16-QAM
OFDM [30]. And this is the highest data rate ever obtained in high-speed VLC systems till now. Besides
the common transmitters, VLC systems based on other transmitters, such as the combinations of LD
and phosphors, µ-LED and polymer color converter as well as RC-LED and µ-LEDs also can achieve
Gb/s class transmission data rates with proper system setups.

Table 1. Survey of practical demonstrations of high-speed VLC systems.

Year Transmitter Receiver Modulation Data Rate Distance Comments Ref.

2017 Blue LD Ultrafast
photodiode(UPD)

UFMC additive
16-QAM OFDM 17.6 Gb/s 16 m / [30]

2017 RYGB LDs Imaging Diversity
Receiver OOK 10 Gb/s / / [59]

2017 NUV LD+ RGB
phosphors APD OOK-NRZ 1.25 Gb/s 15 cm / [60]

2017 µ-LED PIN OFDM 7.91 Gb/s / / [28]

2017 µ-LED APD PAM(spatial) 7 Gb/s 0.5 m 9 × 9 MIMO system
Post-equalization [61]

2017 RGB LED PIN OFDM(adaptive bit
loading) 6.36 Gb/s 1 m 2 × 2 MIMO system [58]

2017 Red LED silicon PN OOK 600 Mb/s 6 m 2 × 2 imaging MIMO system
Pre- and Post-equalization [62]

2016 LD / OOK 1 Gb/s / / [63]

2016 Red RC-LED and blue
and green µ-LEDs PIN OFDM(WDM) 10 Gb/s 1.5 m / [64]

2016 µ-LED / DCO-OFDM 5 Gb/s / [29]

2016 µ-LED / PAM 3.5 Gb/s Post-equalization [29]

2016 µ-LED APD PAM 2 Gb/s 0.6 m Pre-equalization [65]

2016 RGB-LED APD QAM-OFDM 1 Gb/s 100 m / [66]

2016 ps-LED PIN OFDM (adaptive bit
and power loading) 2.08 Gb/s 1 m Pre-equalization [48]
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Table 1. Cont.

Year Transmitter Receiver Modulation Data Rate Distance Comments Ref.

2016 ps-LED PIN OFDM (bit-loading) 1 Gb/s 0.6 m 2 × 2 MIMO System
Pre-equalization [57]

2015 RGB LDs PIN OFDM(WDM) 14 Gb/s 2.8 m / [67]

2015 RGB LDs APD OFDM(WDM) 4.4 Gb/s 0.2 m / [68]

2015 Blue LDs APD OFDM 9 Gb/s 5 m / [69]

2015 Blue LD + phosphor / OFDM (adaptive bit
and power loading) 6.52 Gb/s 0.35 m / [70]

2015 Blue LD + phosphor APD OFDM 5.2 Gb/s 0.6 m / [71]

2015 Blue LD + phosphor APD OFDM 4 Gb/s 0.5 m / [72]

2015 Blue LD + phosphor APD OOK 4 Gb/s / / [73]

2015 µ-LED + polymer
color converter APD DCO-OFDM

(WDM) 2.3 Gb/s / / [74]

2015 RYGB LED PIN CAP(WDM) 8 Gb/s 1 m Pre- and Post-equalization [41]

2015 RYGB LED APD OFDM(WDM) 5.6 Gb/s 4 m [75]

2015 RGB LED PIN CAP 4.5 Gb/s 2 m Pre-equalization [47]

2015 RGB LED APD QAM-OFDM 750 Mb/s / Pre-equalization [47]

2015 LED PIN OFDM(Spatial) 1.4 Gb/s 2.5 m 2 × 2 imaging MIMO-VLC system [76]

2015 ps-LED APD OFDM(adaptive bit
and power loading) 2 Gb/s 1.5 m Pre-equalization [36]

2015 ps-LED PIN OFDM 1.6 Gb/s 1 m Pre-equalization
Blue filter [54]

2015 ps-LED APD QAM-OFDM 1.4 Gb/s 0.8 m Pre-equalization [77]

2015 ps-LED APD OFDM(Spatial) 1.3 Gb/s 0.4 m / [78]

2015 ps-LED PIN PAM 1.1 Gb/s / Post-equalization [79]

2015 ps-LED PIN QAM-OFDM 682 Mb/s 1 m Pre-equalization [80]

2014 µ-LED PD OFDM(adaptive bit
and power loading) 3 Gb/s 5 cm / [81]

2014 µ-LED + polymer
color converter(white) APD OFDM 1.68 Gb/s 3 cm / [82]

2014 RGB LED APD QAM (Wavelength) 4.22 Gb/s / / [83]

2014 RGB LED APD CAP(WDM) 1.35 Gb/s 0.3 m Pre- and Post-equalization [49]

2014 RGB-LED APD 16-QAM
(Polarisation) 1 Gb/s / Post-equalization [84]

2014 Blue-LED APD 4-QAM(Spatial) 500 Mb/s 0.3 m 2 × 2 non-imaging MIMO System
Post-equalization [85]

2014 ps-LED PIN OOK-NRZ 550 Mb/s 0.6 m Pre- and Post-equalization [86]

2014 ps-LED PIN OOK-NRZ 340 Mb/s 0.43 m Post-equalization
Blue filter [87]

2014 ps-LED PIN OOK-NRZ (Spatial) 50 Mb/s 2 m Pre-equalization
4 × 4 Non-imaging MIMO system [88]

Note: / represents not mentioned in the article.

5. Limitations

In the gradually mature and practical path of VLC, there are still some issues that need to be
addressed by in-depth study in future researches:

(1) Thermal management of high power LEDs. The junction temperature of the LED may be
changed with the variation of self-heating, drive current, ambient temperature and so on. Thus, in the
VLC system, especially the ones run at high drive currents or where hundreds of LEDs are integrated,
the high junction temperature may affect the dominant wavelength [89], spectral width [90], the internal
efficiency, and finally leads to the degradation of signal power and reduces the SNR [7]. In addition,
when the LEDs are suffered from long-term excessive heat, both the stability and the lifetime of the
LED are drastically reduced [91]. Therefore, how to effectively monitor and reduce the LED junction
temperature is a key issue of effective VLC implementation.

(2) Bi-Directional Transmission. Basically, VLC is a kind of broadcast transmission, thus, how to
provide an uplink path to realize a bi-directional transmission is challenging. To achieve the uplink
path, several approaches have been proposed. For example, Komine et al. [92] proposed a corner
cube modulator for the uplink VLC path. The modulator is basically a retro-reflecting modulator,
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i.e., the reflected LED light by the corner cube reflector acts as the media for uplink communication.
Hou et al. [93] described an uplink using RF. While in some RF restricted areas, this approach is
not feasible. Liu et al. [94] experimentally demonstrated a bi-directional transmission link using a
LED-based VLC for both downlink and uplink paths. And a Time-division-duplex (TDD) was applied
to eliminate the reflection interference. Results show that a 2 m bi-directional transmission with
BER < 10−5 is achieved.

(3) Lights Off Mode. Since the VLC aims to offer simultaneous illumination and high-speed data
transmission, how to transmit data when the lights are turned off is a significant problem to be solved,
especially for the indoor VLC applications. Utilizing the feature of limited perception to light intensity
of human eyes, some data transmission may be realized by making the emitted light perceptibly off.
Borogovac et al. [95] suggest the perceptibly of off light intensity is sufficient to maintain data rates of
several Mb/s. While in order to obtain a high data transmission in lights off mode, a hybrid scheme of
VLC and RF or IR is necessary. And how to achieve such a hybrid scheme with low complexity and
cost is an important issue to deal with.

6. Conclusions

Owing to the various inherent advantages, such as spectral and bandwidth relief, no healthy
concern, high security, low cost and low interference with RF waves, VLC have emerged as one of the
most energy efficient and promising wireless communication approaches. How to achieve a high-speed
data transmission is a key problem to be solved in the VLC system. In this review, the possible
solutions to improve the data rate, including novel transmitter architecture, advanced modulation
and equalization technology and blue filter were elaborately discussed elaborately. And recent
progresses show that the type of transmitter is an important factor that affects the data rate. Modulation
and equalization technologies can improve the system performance to a certain extent. Blue filter
has a marginal effect for the ps-LED based VLC system, and can improve its performance without
increasing the computational complexity at the receiver. Till now, the highest data rate achieved
in a commercial phosphorescent white LED-based VLC system is 2.08 Gb/s over a 1 m free-space
transmission distance. And the data rate is up to 17.6 Gb/s transmission in a GaN LD based VLC
system with impedance-matched transmission-line circuit board and UFMC additive 16-QAM OFDM.
In the gradually mature and practical path, there are still some issues that need to be addressed by
in-depth study in future researches, such as LED thermal management, bi-directional transmission,
data transmission in lights off mode and so on. Despite this, with the development of new devices and
related technologies, VLC is foreseen to be readily implemented into general lighting infrastructures to
achieve various exciting and beneficial applications.
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