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Abstract: In order to simplify the hardware design and reduce the resource requirements, this paper
proposes a novel implementation of a convolutional auto-encoder (CAE) in a field programmable
gate array (FPGA). Instead of the traditional framework realized in a layer-by-layer way, we designed
a new periodic layer-multiplexing framework for CAE. Only one layer is introduced and periodically
reused to establish the network, which consumes fewer hardware resources. Moreover, by fixing the
number of channels, this framework can be applicable to an image of arbitrary size. Furthermore,
to effectively improve the speed of convolution calculation, the parallel convolution method is used
based on shift registers. Experimental results show that the proposed CAE framework achieves good
performance in image compression. It can be observed that our CAE framework has advantages
in resources occupation, operation speed, and power consumption, indicating great potential for
application in digital signal processing.
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1. Introduction

Convolutional auto-encoder (CAE), a kind of convolutional neural network (CNN), adopts an
unsupervised learning algorithm for encoding [1–5]. David E. Rumelhart first proposed the concept
of an auto-encoder [6] and employed it to process data with large dimensions, which promoted
the development of neural networks. In 2006, Hinton et al. [7] improved the original shallow
auto-encoder and proposed the concept of a deep learning neural network as well as its training
strategy, which can be used in the signal processing field for applications such as feature extraction [8],
image compression [9–11], classification [12,13], image denoising [14], prediction [15], and so on.
Wang et al. [16] proposed a rapid 3D feature learning method named a convolutional auto-encoder
extreme learning machine (CAE-ELM), and the features extracted were superior to other previous
deep learning methods. In [17], a three-layer multilayer perceptron structure was presented for image
compression, which verified the applicability of the neural network in the field of image compression.
Kim et al. [18] performed sonar image noise reduction with the CAE and obtained sonar images of
superior quality with only a single continuous image. However, there is the same problem that the
above applications running on CPU are all inefficient and time-consuming. To address this problem,
GPU has been employed to accelerate the neural network [19,20], but the power consumption of GPU
is too large.

A field programmable gate array (FPGA) breaks through the sequential execution mode of
general-purpose processors, and is able to implement a neural network with high speed. In [21,22],
two deep convolutional neural network (DCNN) accelerators were proposed which optimized the
energy efficiency of the system by reducing the complexity of data transmission. Zhou et al. [23] used
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a fixed-point data type to represent parameters for computation based on FPGA, which achieved better
performance and lower resource usage. To further enhance the performance, some researchers exploited
the inherent parallelism of neural networks and utilized the multi-hardware and multi-product unit
on FPGA to realize the network framework [24,25]. From the above references [21–25], we conclude
that it is promising to accelerate neural networks by employing FPGA, which can make full use of
the parallel processing characteristic of FPGA and the parallel computing framework of the neural
network. However, the finite resource of FPGA makes it difficult to realize a neural network on a
large scale.

To enhance the processing speed and reduce the power consumption and resource occupation,
we propose a novel CAE using a periodic layer-multiplexing method, which periodically reuses only
one layer to establish the network. On the one hand, by fixing the number of channels, this framework
can be applicable to images of arbitrary size. On the other hand, to effectively improve the speed of
convolution calculation, the parallel convolution method is used based on shift registers. The image
compression is taken as an example to evaluate the performance of the proposed CAE framework.
Experimental results show that our framework has advantages in terms of resource occupation,
operational speed, and power consumption.

The rest of the paper is arranged as follows. In Section 2, the CAE framework and its key
techniques are described in detail. In Section 3, experimental results and discussion are given. Finally,
some conclusions are drawn in Section 4.

2. FPGA Implementation of the CAE

In essence, CAE is a multilayer CNN including convolution layers and pooling layers.
The model of CAE used is shown in Figure 1, where the image compression is taken as an example.
The convolution layers are mainly used to extract the features of inputs and the neurons in these
layers share the weight parameters. The pooling layers are used to retain the main features and
reduce the parameters, which also prevent overfitting and improve the generalization ability of the
model. The upsampling process is performed to obtain the image in original resolution, which can be
considered the inverse process of pooling.

Figure 1. Classical model of a convolutional auto-encoder (CAE).

The model is divided into two parts: an encoder and a decoder. The encoder contains three
convolutional layers and three pooling layers. The ReLU function and the maximum pooling operation
are used. The decoder, which performs the reverse operation of the encoder, consists of four
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convolution layers and three upsampling layers. The ReLU function and the sigmoid function are
used in the first three and the last convolution layers, respectively.

From Figure 1, it can be seen that the layers of CAE have a certain regularity and periodicity,
so we implement their functions by proposing the periodic layer-multiplexing framework based on
FPGA. The hardware framework and the relative key techniques are described as follows.

2.1. Hardware Framework

As shown in Figure 2, the encoder part of the proposed CAE framework contains five main
modules: zero padding, a channel distributor, convolutional encoding, a channel arbitrator, and an
output controller. The detailed explanation is as follows:

Figure 2. The encoder of the proposed CAE hardware framework. The different colors marked in
the zero padding module indicate different filling methods: the first and the last row are filled all
zeroes, while the intermediate matrix is padded zeroes only at the beginning and the end of each
row. The different colors marked in the channel arbitrator module represent the corresponding four
channels for packaging.

(1) Zero Padding Module

To prevent losing the boundary information during the convolution operation, the zero padding
module is employed to fill zeros around the input matrix. The obtained matrix is defined as the zero-
padding matrix in this paper.

(2) Channel Distributor Module

The zero-padding matrix is sent to the channel distributor module, which contains a channel
judger and four first-in, first-out (FIFO) memories. The channel judger interleaves every two single-
channel data points and then sends them to the FIFOs in sequence. The FIFOs buffer the interleaved
data, and then divide them into eight channels.

(3) Convolutional Encoding Module

The work process of this module is summarized as follows: First, the convolution layers in this
module execute the convolution calculation in eight channels at the same time. The convolution kernels,
obtained by training CAE, are stored directly in the internal LUT resources. By this means, the frequent
data interaction between FPGA and external memory is avoided, and the transmission latency is
reduced significantly. Then, in order to introduce nonlinear factors after the convolution calculation,
activation functions are integrated into the convolution layers. Specifically, the ReLU function is
employed for fast convergence and high accuracy. Finally, the maximum pooling is chosen to
retain the main features. The first set of eight-channel data is transformed to the three-channel data
after the pooling operation, while the subsequent sets of eight-channel data are transformed to the
four-channel data.
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(4) Channel Arbiter Module

The output data of the convolutional encoding module are orderly packaged as the single-channel
data, and then sent to the next module by the channel arbiter module for judgment.

(5) Output Controller Module

This module is used to judge whether the data stream is processed completely. The above modules
process continuously until the ending data of the zero-padding matrix are handled.

2.2. Design of Convolutional Encoding Module

Convolutional encoding is the most important module in the framework; therefore, its structure
is further discussed below. To effectively enhance the compatibility of our framework and control the
utilization of hardware resources reasonably, the number of input channels is fixed to eight rather
than the maximum number of neurons in a certain layer. To realize the simultaneous convolution
calculation of eight channels, the parallel channels method is developed by caching the input data.

The operational process of the method is shown in Figure 3. Four identical processing elements
(PEs) are used to process the input data, and the ones with identical sequence number are the same.
These PEs are independent of each other so they can operate simultaneously. Therefore, all the
convolutional results of the eight channels can be calculated simultaneously by inputting the data
in sequence. The RAM1 and RAM2 are used to cache the last two-channel data of every eight
inputs, which can avoid loading repetition of the input and improve the efficiency of data utilization.
In Figure 3, 8 × i + j (i = 1, . . . , dM/8e − 1 and j = 1, 2, ..., 8) represents the index of channel.
Meanwhile, M represents the total number of rows of zero-padding matrix, and the symbol de
represents a rounding-up operation.

At stage 1 (the black box in Figure 3), the first two inputs are transmitted to the first two channels
of PE1, while the next two inputs are transmitted simultaneously to the other channels of PE1 and
the first two channels of PE2. The next two inputs are provided to both the last two channels of PE2
and the first two channels of PE3. The last two inputs are sent to the last two channels of PE3 and
RAM1 at the same time. The RAM1 is employed to buffer data, so that these data can be recycled
without re-entering from outside. As shown in Figure 3, once the first set of eight-channel data from
the zero-padding matrix has been processed at stage 1, the subsequent set of eight-channel data is sent
to PEs at stage 2 (red box in Figure 3). At stage 2, the data in RAM1 and the subsequent inputs are sent
to PEs, and a similar operation is undertaken as that at stage 1.

Figure 3. Parallel channels method by caching input data.

2.3. Design of PE

The PEs employed by the periodic layer-multiplexing framework are used to implement the
operation of multiplication and addition required by convolution calculation. To reduce the time
consumption of convolution calculation, a parallel convolution method based on shift registers is
presented for the design of PE.
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There are four input channels in one PE, and the 16-bit unsigned numbers in the four channels
can be inputted to the corresponding 32-bit shift registers per clock cycle. These 32-bit shift registers
act as the convolution window, which can slide arbitrarily. We first assume that the data are inputted
to these shift registers immediately after reset. Then, the convolution calculations begin in the second
clock cycle. A 4 × 4 convolution window of the PE is shown as the colorful square in Figure 4.

Figure 4. The 4× 4 convolution window (the red dotted box) contains four 3× 3 sub-windows: Slide_1,
Slide_2, Slide_3, and Slide_4, which are marked with different colors or streaks, respectively.

For storage convenience, a total of nine 8-bit signed numbers of each convolution kernel are
combined in a row to form an integrated data with a width of 72 bits. When the convolution calculation
starts, the convolution window begin to slide so that convolution operations can be performed in
the four sub-windows simultaneously under one clock cycle. Then every 8-bit convolution kernel is
multiplied by the data in the shift register, as shown in Figure 5. After that, the outputs of multipliers
are obtained under the third clock cycle. All these outputs of multipliers are summed and exported
under the fourth clock cycle. Some nonlinear factors are introduced into these results by operating
the ReLU activation function. The outputs of all the ReLU functions are transmitted to the pooling
module, and then three comparators in this module start to perform comparison operation among the
four values and output the maximum, which consumes two clock cycles.

Figure 5. Convolution operation process in PE.
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The pseudo-code of the operation is as follows (algorithm 1):

Algorithm 1. The algorithm of convolution operation process in PE.

Initialization: Reset the system and cache the parameters.
Input: The eight channels image data: data_in, are inputted.
Shift: data_shift [31:0] = {data_shift [15:0], data_in};
Convolution: for(row = 0, row ≤ 1, row++){

for(col = 0, col ≤ 1, col ++){
for(p = 0, p ≤ 2, p++) {
for(q = 0, q ≤ 2, q++){

data_convolution [row][col]+ = kernel[p] [q] × data_shift [row + p] [col + q];}}}
Activation: Execute the ReLU function.
Pooling: Compare and then give the max value. (0 ≤ {row,col} ≤ 1)
Return: Output the pooling result.

3. Experimental Results and Discussion

In order to test the performance of the proposed implementation of CAE, an application of image
compression is carried out. We use Keras, which is a Python deep learning library, to establish the
framework. There are 7000 digital images with a dimension of 256 × 256 × 3 employed to train
the network and obtain the parameters. During training, the epoch of iteration is chosen to be 1500,
while the batch size is chosen to be 4. The binary_crossentropy cost function, which can avoid the
training process being too slow, is selected as the loss function. It has a non-negative character and
when the real output is close to the expected output, the function value is close to 0. The learning rate
is chosen to be Adadelta, which is an adaptive learning rate method. The test starts once the training
is finished. In this paper, 1000 additional images are employed to verify the performance of image
compression based on the proposed CAE.

In this experiment, the Xilinx KCU105 evaluation board (Xilinx, San Jose, CA, USA) with a
XCKU040-2FFVA1156E FPGA chip (Xilinx, San Jose, CA, USA) is employed to act as the hardware
platform. The photograph of the implemented prototype is shown in Figure 6, from which we can
see that the evaluation board is connected to a computer by JTAG cable and PCI-e bus. FPGA is
programmed and debugged through the JTAG cable, while the data are transferred between the
computer and FPGA through the PCI-e bus.

Figure 6. The hardware platform.

In order to measure the performance of our compression framework, we can use some typical
metrics, such as compression ratio, Peak Signal to Noise Ratio (PSNR), and Multi-scale structural
similarity (MS-SSIM). The image compression ratio obtained from a CAE can be expressed as

S = Ni/No, (1)
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where Ni is the neuron numbers of input layer and No represents the neuron numbers of the encoding
output. According to Equation (1), the image compression ratio for our CAE is calculated. PSNR [26]
is often used to assess the quality of signal reconstruction. The formula of PSNR is as follows:

PSNR = 10· log10

(
MAX2

I
MSE

)
, (2)

where MAXI represents the maximum value of the image color. MSE is the mean square error between
the original image and the reconstructed image. MSE is expressed as shown below:

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0
‖I(i, j)−K(i, j)‖2, (3)

where m and n represent the length and the width of an image. Meanwhile, I(i,j) and K(i,j) represent
the pixel values of the original and reconstructed images, respectively. MS-SSIM index is another
image quality evaluation algorithm that is based on the assumption that the human visual system
is highly adapted for extracting structural information from the scene, and therefore a measure of
structural similarity can provide a good approximation of perceived image quality [27].

We randomly selected 12 images in the image dataset for testing, and the original and
reconstructed images are shown in Figure 7. The numerical parameters of PSNR and MS-SSIM
are also shown under the corresponding image in Figure 7. By comparison, we can conclude that
our implementation of CAE based on FPGA works well and has good image compression and
reconstruction effects.

Figure 7. Original and reconstructed images.
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By using Verilog hardware description language, our hardware procedure is synthesized and
implemented using the Xilinx Vivado2016.2 design suite (Xilinx, San Jose, CA, USA), which provides a
full solution for Xilinx programmable devices. According to the device utilization summary given by
the design suite, the utilization of the main hardware resources is shown in Table 1. With the numbers
of network layers and weight parameters set at 13 and 68,227, respectively, we can see that the main
resources, such as LUT and FF, take a very small percentage.

Table 1. Device utilization summary.

Resource Utilization Available Utilization%

LUT 22,441 242,400 9.26
FF 27,100 484,800 5.59

BRAM 55.50 600 9.25
IO 120 520 23.08

BUFG 8 480 1.67
MMCM 2 10 20

Our CPU platform is Intel i7-6700K CPU (Intel, Santa Clara, CA, USA) at 4 GHz with a 16 GB
RAM. The GPU platform is NVIDIA GTX TITAN Xp (NVIDIA, Santa Clara, CA, USA). A 150 MHz
system clock is used for the framework on FPGA. In the experiment, “time.clock()” instruction of
Keras is used to obtain the computing time while running on either CPU or GPU. The computing time
of FPGA is calculated by counting the number of clock cycles consumed from input to output. As for
the power consumptions of GPU, CPU, and FPGA, they are acquired from the “nvidia-smi” command
provided by NVIDIA, the electro-instruments, and the power analyzer integrated in Vivado2016.2,
respectively. A performance comparison of FPGA, CPU, and GPU is shown in Table 2.

Table 2. Comparison of performance when running on the FPGA, CPU, and GPU.

Performances FPGA CPU GPU

Computing time (ms) 15.73 115.29 13.65
Power consumption (W) 2.762 32 44

Computing performance (GOPS) 73.18 3.25 76.38
Computing performance per Watt (GOPS/W) 26.49 0.101 1.73

As the experimental results show, in terms of compression speed, it consumes 15.73 ms running
on FPGA and 115.29 ms running on CPU. In terms of the computing performance per watt, it is
26.49 GOPS/W running on FPGA, which is far beyond that of CPU and GPU.

4. Conclusions

An implementation of CAE based on FPGA is presented in this paper, which newly introduces a
periodic layer-multiplexing framework. The encoder part of the proposed CAE framework, which is
similar to the decoder, contains five modules, zero padding, a channel distributor, convolutional
encoding, a channel arbitrator, and an output controller. In order to enhance the compatibility
of the framework and further enhance the speed of convolution calculation, a parallel channels
method caching input data and a parallel convolution method based on shift registers are developed,
respectively. To evaluate the performance of the CAE framework, an example of image compression
is carried out. The experimental results of image compression show that the framework works well
and takes up fewer hardware resources, especially as the resource utilization of LUT is just 9.26%.
In terms of the compression speed, it consumes 15.73 ms running on FPGA and 115.29 ms running
on CPU. In terms of the computing performance per watt, it is 26.49 GOPS/W running on FPGA,
which is far beyond that of CPU and GPU. In future work, more multiplexing techniques, like encoder
multiplexing, can be adopted to enhance the CAE performance.
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