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Abstract: This paper proposes a note-based music language model (MLM) for improving note-level
polyphonic piano transcription. The MLM is based on the recurrent structure, which could model the
temporal correlations between notes in music sequences. To combine the outputs of the note-based
MLM and acoustic model directly, an integrated architecture is adopted in this paper. We also
propose an inference algorithm, in which the note-based MLM is used to predict notes at the blank
onsets in the thresholding transcription results. The experimental results show that the proposed
inference algorithm improves the performance of note-level transcription. We also observe that
the combination of the restricted Boltzmann machine (RBM) and recurrent structure outperforms
a single recurrent neural network (RNN) or long short-term memory network (LSTM) in modeling
the high-dimensional note sequences. Among all the MLMs, LSTM-RBM helps the system yield the
best results on all evaluation metrics regardless of the performance of acoustic models.

Keywords: polyphonic piano transcription; note-based music language model; recurrent neural
network; restricted Boltzmann machine

1. Introduction

Automatic music transcription (AMT) is a process that aims to convert a music signal into
a symbolic notation. It is a fundamental problem of music information retrieval and has many
applications in related fields, such as music education and composition. AMT has been researched for
decades [1], and the transcription of polyphonic music remains to be unsolved [2]. The concurrent
notes overlap in the time domain and interact in the frequency domain so that the polyphonic signal
is complex. Piano is a typical multi-pitch instrument and has a wide playing range of 88 pitches.
As a challenging task in polyphonic AMT, piano transcription has been studied extensively [3].

The note is the basic unit of music, as well as of notations. The main purpose of AMT is to
figure out which notes are played and when they appear in the music, corresponding to a note-level
transcription. The approaches to note extraction can be divided into frame-based methods and
note-based methods. The frame-based approaches estimate pitches in each time frame and form
frame-level results. The most straightforward solution is to analyze the time-frequency representation
of audio and estimate pitches by detecting peaks in the spectrum [4]. Short time Fourier transform
(STFT) [5,6] and constant Q transform (CQT) [7] are two widely-used time-frequency analysis methods.
Spectrogram factorization techniques are also very popular in AMT, such as non-negative matrix
factorization (NMF) [8] and probabilistic latent component analysis (PLCA) [9,10]. The activations
of factorization indicate which pitch is active at the given time frame. Recently, many deep
neural networks have been used to identify pitches and provided satisfying performance [11–13].

Appl. Sci. 2018, 8, 470; doi:10.3390/app8030470 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://dx.doi.org/10.3390/app8030470
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 470 2 of 15

However, the frame-level notations do not strictly match note events, and an extra post-processing
stage is needed to infer a note-level transcription from the frame-level notation.

The note-based transcription approaches directly estimate the notes without dividing them
into fragments, which are more popular than frame-based methods currently. One solution is
integrating the estimation of pitches and onsets into a single framework [14,15]. Kameoka used
harmonic temporal structured clustering to estimate the attributes of notes simultaneously [16].
Cogliati and Duan modeled the temporal evolution of piano notes through convolutional sparse
coding [17,18]. Cheng proposed a method to model the attack and decay of notes in supervised
NMF [19]. Another solution is employing a separate onset detection stage and an additional pitch
estimation stage. The approaches in this category often estimate the pitches using the segments
between two successive onsets. Costantini detected the onsets and estimated the pitches at the note
attack using SVM [20]. Wang utilized two consecutive convolutional neural networks (CNN) to detect
onsets and estimate the probabilities of pitches at each detected onset, respectively [21]. In this category,
the onset is detected with fairly high accuracy, which benefits the transcription greatly; whereas the
complex interaction of notes limits the performance of pitch estimation, especially the recall. Therefore,
there are some false negative notes that cause “blank onsets” in notations.

Models in the transcription methods mentioned above are analogous to the so-called acoustic
models in speech recognition. In addition to a reliable acoustic model, a music language model (MLM)
may potentially improve the performance of transcription since musical sequences exhibit structural
regularity. Under the assumption that each pitch is independent, hidden Markov models (HMMs) were
superposed on the outputs of a frame-level acoustic classifier [22]. In [22], each note class was modeled
using a two-state, on/off, HMM. However, the concurrent notes appear in correlated patterns, so the
pitch-specific HMM is not suitable for polyphonic music. To solve this problem, some neural networks
have been applied to modeling musical sequences, since the inputs and outputs of networks can be
high-dimensional vectors. Raczynski used a dynamic Bayesian network to estimate the probabilities of
note combinations over adjacent time steps [23]. With an internal memory, the recurrent neural network
(RNN) is also an effective model to process musical sequential data. In [24], Boulanger-Lewandowski
used the restricted Boltzmann machine (RBM) to estimate the high-dimensional distribution of notes
and combined the RBM with RNN to model music sequences. This model was further developed
in [25], where an input/output extension of the RNN-RBM was proposed. Sigtia et al. also used
RNN-based MLMs to improve the transcription performance of a PLCA acoustic model [26]. Similarly,
they proposed a hybrid architecture to combine the RNN-based MLM with different frame-based
acoustic models [27]. In [28], the RNN-based MLM was integrated with an end-to-end framework,
and an efficient variant of beam search was used to decode the acoustic outputs at each frame.

To our knowledge, all the existing MLMs are frame-based models, which are superposed on
frame-level acoustic outputs. Poliner indicated that the HMMs only enforced smoothing and duration
constraints on the acoustic outputs [22]. Sigtia also concluded that the frame-based MLM played a
role of smoothing [28]. This conclusion is consistent with that in [29]. To evaluate the long short-term
memory network (LSTM) MLM, Ycart and Benetos did the prediction experiments using different
sample rates. Their experiments showed that a higher sample rate leads to a better prediction in music
sequences, because self repetitions are more frequent. They also indicated that the system would
repeat the previous notes when note changes had occurred. Therefore, the frame-based MLM is unable
to model the note transitions in music. Besides, the existing MLMs could only be used along with
frame-based acoustic models. The process of decoding over each frame costs much computing time
and storage space. In general, the frame-based MLM is not optimal to model music sequences or
improve the note-level transcription.

In this paper, we focus on the note-based MLM, which could be integrated with note-based
transcription methods directly. In this case, the note event is the basic unit, so the note-based MLM
could model how notes change in music. We explore the RNN, RNN-RBM and their LSTM variants as
note-based MLMs in modeling high-dimensional temporal structure. In addition, we use a note-based
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integrated framework to incorporate information from the CNN-based acoustic model into the MLM.
An inference algorithm is proposed in the testing stage, which repairs the thresholding transcription
results using the note-based MLMs. Rather than decoding at the overall note sequence using the
original outputs of the acoustic model, the inference algorithm predicts notes only at the blank onsets.
The results show that the proposed inference algorithm achieves better performance than traditional
beam search. We also observe that the RBM is proper to estimate a high-dimensional distribution, and
the LSTM-RBM MLM improves the performance the most.

The outline of this paper is as follows. Section 2 describes the neural network MLMs used in the
experiments. The proposed framework and inference algorithm are presented in Section 3. Section 4
details the model evaluation and experimental results. Finally, conclusions are drawn in Section 5.

2. Music Language Models

It has been shown that a good statistical model of symbolic music would benefit the transcription
process. However, the common language models used in speech recognition are inapplicable to
multi-pitch music transcription, such as N-grams. Some approaches have used neural networks as
frame-based MLMs and proved they are more suitable to model polyphonic sequences than other
probabilistic models. In this section, we employ the neural network models for note-level language
modeling. Given a note sequence y = y1, y2, ..., yN , the note-based MLM is used to define a distribution
of this sequence:

P(y) = P(y1)
N

∏
n=2

p(yn|yτ<n) (1)

where yn is a high-dimensional binary vector that represents the notes being played at the n-th onset
and yτ<n is the note sequence before the n-th onset.

2.1. Recurrent Neural Network

RNNs are effective models designed to process sequential or temporal data. They are characterized
by recursive connections. Specifically, given the sequence of notes y = y1, y2, ..., yN , the hidden state of
an RNN MLM with a single hidden layer is defined as follows:

hn = σ(Wyhyn−1 + Whhhn−1 + bh) (2)

where Wyh and Whh are the trainable weights, bh is the hidden bias and σ is a non-linear activation
function applied to each element. The output note vector at the n-th onset is calculated in the
following manner:

yn = f (Whyhn) (3)

where Why are weights and f is an element-wise activation function. Here, we adopt the sigmoid
function to yield independent pitch probabilities. In this way, the multi-pitch note vector yn can be
predicted conditioned on the input yn−1. Then, the distribution of this note sequence can be calculated
through Equation (1).

However, the hypothesis that the concurrent pitches are independent of each other is unrealistic.
For example, a harmonic set of notes appears more frequently than others, which is the so-called
chord. Instead of predicting the independent distributions, we need an extra estimator for
high-dimensional data.

2.2. Recurrent Neural Network-Restricted Boltzmann Machine

An RBM is an energy-based method to estimate distributions of high-dimensional binary data [24].
Given the visible vector v as input, the joint probability of v and hidden vector s is:

P(v, s) = exp(−bT
v v− bT

s s− sTWv)/Z (4)
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where bv, bs are the biases, W is the weight matrix and Z is a normalizing constant. The observed
vector v is also the output of RBM. The marginalized probability of v can be calculated as follows:

F(v) = −bT
v v−∑

i
log(1 + exp(bs + Wv))i (5)

P(v) ≡ exp(−F(v))/Z (6)

where i is the index of hidden units and F(v) represents the free energy.
The RBM and recurrent structure are combined as the MLM in order to estimate high-dimensional,

temporal distributions [24]. The joint model can be understood as a sequence of RBMs conditioned
on an RNN, with the relationship that the parameters of the RBM at each onset time depend on the
hidden state of RNN. Here, we only consider the RBM’s biases:

bn
s = bs + Whshn−1 (7)

bn
v = bv + Whvhn−1 (8)

where Whs and Whv are weight matrices connecting RNN’s hidden states and RBM’s biases. The hidden
units of a single layer RNN are defined as:

hn = σ(Wvhvn + Whhhn−1 + bh) (9)

In this case, the parameters of RNN-RBM are W, bv, bs, Whs, Whv, Wvh, Whh, bh. Similarly to
Equation (4), the RNN-RBM is defined by its joint probability P(vn, sn|hn−1). Therefore, the inference
of the RNN-RBM is propagating the value of hidden units in the RNN portion and sampling vn from
the n-th RBM. The graphical structure of the RNN-RBM is presented in Figure 1.

Figure 1. The graphical structure of RNN-RBM.

The basic RNN and RNN-RBM capture limited temporal dependencies because of the exploding or
vanishing gradient. LSTMs are developed to solve the gradient problem of standard RNNs. The LSTM
cell is better at memorizing information in sequences than a RNN cell. Therefore, converting the RNN
cells to LSTM cells may potentially improve the MLM’s ability to represent longer term patterns in the
music sequence.

3. Proposed Framework

In this section, we describe how to combine the note-based acoustic model with the MLM to
improve the transcription performance. The note-based acoustic model is described first, followed by
the integrated architecture. At last, an inference algorithm for the testing stage is introduced.
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3.1. Acoustic Model

Apart from the MLM, the note-based acoustic model is another part of the proposed framework.
The acoustic model is used to identify pitches in the current input. Given xn as the feature input at
the n-th onset, the acoustic model can estimate the probability of pitches p(yn|xn). Therefore, the note
sequence y can be obtained preliminarily through feeding a sequence of feature inputs x = x1, x2, ..., xN
to the acoustic model.

Here, we employ the hybrid note-based model in [21], which contains an onset detection module
and a pitch estimation module. As shown in Figure 2, one CNN is used to detect onsets, and another
CNN is used to estimate the probabilities of pitches at each detected onset.

CNN CNN

Onset Dection Pitch Etimation

Audio Transcription

Figure 2. Diagram for the note-based acoustic model.

We trained a CNN with one output unit as the onset detector, giving binary labels to distinguish
onsets from non-onsets. The CNN takes a spectrogram slice of several frames as a single input, and
each spectrogram excerpt centers on the frame to be detected. Feeding the spectrograms of the test
signal to the network, we can obtain an onset activation function over time. The frame whose activation
function is greater than the threshold is set as the detected onset.

The onset detector is followed by another CNN for multi-pitch estimation (MPE), which has
the same architecture except for the output layer. Its input is a spectrogram slice centered at the
onset frame. The CNN has 88 units in the output layer, corresponding to the 88 pitches of the piano.
To make sure the multiple pitches can be estimated at the same time, all the outputs are transformed
by a sigmoid function. In this case, a set of probabilities of 88 pitches at detected onsets is estimated
through this network.

3.2. Integrated Architecture

The integrated architecture is constructed by applying the model in [27,28] to the note-level
transcription. The model produces a posterior probability p(y|x), which can be represented using
Bayes’ rule:

p(y|x) = p(x|y)p(y)/p(x) (10)

where p(x) and p(y) are the priors and p(x|y) is the likelihood of the sequence of acoustic inputs x
and corresponding transcriptions y. The likelihood can be factorized as follows:

p(x|y) = p(x1|y)
N

∏
n=2

p(xn|xt<n, y) (11)

Similarly to the assumptions in HMMs, the following independence assumptions are made:

p(xn|xτ<n, y) = p(xn|yn) (12)

p(x) =
N

∏
n=1

P(xn) (13)

Under these assumptions, the probability in Equation (11) can be written as:
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p(x|y) =
N

∏
n=1

p(xn|yn)

= p(x)
N

∏
n=1

p(yn|xn)/p(yn)

(14)

Based on Equations (10) and (14), the posterior probability produced by the integrated architecture
can be reformulated as follows:

p(y|x) = p(y)
N

∏
n=1

p(yn|xn)/p(yn) (15)

where p(yn) is prior statistics analyzed on the training data. In Equation (15), the term p(yn|xn)

is obtained from the acoustic model, while the prior p(y) can be calculated from the MLM
using Equation (1). Therefore, the acoustic model and the MLM are combined directly in the
integrated architecture.

3.3. Inference Algorithm

The integrated model can be trained by maximizing the posterior of training sequences.
The process is easy because training of the acoustic model and the MLM is independent. In the
test stage, we also aim to find the note sequence y maximizing the posterior p(y|x), which can be
reformulated as a recursive form:

p(yτ<n+1|xτ<n+1) = p(yτ<n|xτ<n)p(yn|yτ<n)p(yn|xn)/p(yn) (16)

However, the test inference is rather complex. To estimate yn in the note sequence, we need to
know the history yτ<n and the acoustic output p(yn|xn). Here, the history yτ<n is not determined,
and the possible configurations of yn are exponential in the number of pitches. Therefore, greedily
searching for the best solution of y is intractable.

Beam search is an algorithm for decoding, which is commonly used in speech recognition.
There are two parameters when it scales to note sequences: K is the branching factor, and w is the
width of the beam. The algorithm considers only K most possible configurations of yn according to the
acoustic output p(yn|xn). At each inference step, no more than w partial solutions are maintained for
further search. As shown in Equation (16), the K candidates for yn should be configurations maximizing
p(yn|yτ<n)p(yn|xn)/p(yn), and w is the number of partial solutions maximizing p(yτ<n+1|xτ<n+1) or
p(yτ<n|xτ<n).

Similar to the frame-based inference in [30], the beam search algorithm can be used to decode
globally using the raw outputs of the note-based acoustic model and the MLM. This method will be
referred to as global beam search (GBS). As described in Algorithm 1, the K candidates at each onset
are sampled from the posterior probability p(yn|xn). The simplified process is effective because the
possible configurations of yn can be easily enumerated through the independent acoustic outputs.

In the proposed inference algorithm (Algorithm 2), we adopt the beam search algorithm to repair
the thresholding transcription results locally. Applying a proper threshold to the acoustic outputs,
the note-based acoustic model produces a preliminary transcription. However, the fixed threshold
leads to some false negative notes at the detected onset. Rather than decoding at each onset of the
note sequence, the beam search algorithm is used to predict notes only at the blank onsets. At the
non-blank onset, yn is determined through applying a threshold to the pitch probabilities p(yn|xn).
The determined notes without using MLM could avoid the accumulation of mistakes in a sequence
over time. At each blank onset, we choose the top K candidates for yn maximizing p(yn|xn). Under the
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rule of maximizing the posterior p(y|x), notes at the blank onsets are predicted using the context
information.

Algorithm 1 Global beam search (GBS).

Input: The acoustic model’s outputs pa(yn|xn) at onset n ∈ [1, N];
The beam width w; the branching factor K.

Output: The most likely note sequence y = yτ≤N .
beam∗ ← new beam object
beam.insert(0, {}, mml)
for n = 1 to N do

beam_tmp← new beam object
for l, s, mml in beam do

for k = 1 to K do
y′ = pa(yn|xn).k-th_most_probable()
l′ = log pml(y′|s) + log pa(y′|xn)− log p(y′)
m′ml ← mml with yn := y′
beam_tmp.insert(l + l′, {s, y′}, m′ml)end for

end for
beam_tmp←min-priority queue of capacity w∗∗
beam← beam_tmp

end for
return beam.pop()
∗ Beam object is a queue of triple {l, s, mml}, where at onset n, l is the accumulated posterior
probability p(yτ<n|xτ<n), s is the partial candidate note sequence yτ<n and mml stands for the music
language model taking yτ<n as the current input.
∗∗ A min-priority queue of fixed capacity w maintains at most w highest values.

Algorithm 2 Local beam search (LBS).

Input: The acoustic model’s outputs pa(yn|xn) at onset n ∈ [1, N]; The beam width w;
The branching factor K; the threshold T applied to the acoustic outputs.

Output: The most likely note sequence y = yτ≤N .
beam∗ ← new beam object
beam.insert(0, {}, mml)
for n = 1 to N do

beam_tmp← new beam object
for l, s, mml in beam do

y′ = pa(yn|xn).exceed the threshold T
if y′.isEmpty() then

for k = 1 to K do
y′′ = pa(yn|xn).k-th_probable()
l′ = log pml(y′′|s) + log pa(y′′|xn)− log p(y′′)
m′ml ← mml with yn := y′′
beam_tmp.insert(l + l′, {s, y′′}, m′ml)end for

else
l′ = log pml(y′|s) + log pa(y′|xn)− log p(y′)
m′ml ← mml with yn := y′
beam_tmp.insert(l + l′, {s, y′}, m′ml)end if

end for
beam_tmp←min-priority queue of capacity w∗∗
beam← beam_tmp

end for
return beam.pop()

∗ Beam object is a queue of triple {l, s, mml}, where at onset n, l is the accumulated posterior
probability p(yτ<n|xτ<n), s is the partial candidate note sequence yτ<n and mml stands for the music
language model taking yτ<n as the current input.
∗∗ A min-priority queue of fixed capacity w maintains at most w highest values.
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4. Experiments

4.1. Dataset

The experiments are conducted on the MAPS database [31]. It is a complete piano dataset that
contains audio recordings, related aligned MIDI files and annotated text files. There are nine categories
of recordings corresponding to different piano types and recording conditions. Each category consists
of isolated notes, chords and 30 pieces of music.

In the transcription experiments, we only use the full music pieces in MAPS and divide them into
training, validation and test splits. To evaluate the performance of the MLM, the training data and test
data contain no overlapping contents. Here, we choose the categories “StbgTGd2” and “ENSTDkCl”
as the test set, which consists of 60 musical pieces. Category “StbgTGd2” is produced by the default
software piano synthesizer, and “ENSTDkCl” is obtained from a real Yamaha Disklavier upright piano.
In the other seven categories of MAPS, there are 179 pieces of music, which are different from the
contents in test data. For these 179 pieces, we select 90% for training (161 pieces) and the remaining
10% for validation (18 pieces). Details for the data partitions are presented in Appendix.

To evaluate the proposed system, we also use the whole LabROSA piano transcription dataset
as another test set [22]. There are 29 pieces of music in this database, along with aligned MIDI files.
The MIDI data are collected from Piano-midi.de, and piano recordings are made using a Yamaha
Disklavier playback grand piano.

4.2. Experimental Settings

The acoustic model takes the spectrograms of CQT as input. The audio signal is segmented
with a frame length of 100 ms and a hop size of 10 ms. A context window of nine frames is applied
to the 267 dimensional CQTs so that we could obtain a spectrogram slice. The two CNNs have the
same structure, except for the output layer. The model configurations for the CNNs are presented
in Table 1. For the spectrogram slices of 267× 9, the first convolutional layer with 10 filters of size
16 × 2 computes 10 feature maps of size 252 × 8. The next layer performs max-pooling of 2 × 2,
reducing the size of maps to 126× 4. The second convolutional layer contains 20 filters of size 11× 3,
and the max-pooling size of the second pooling layer is also set to 2× 2. The fully-connected layer
contains 256 units, and the number of units in the output layer changes with the task. In the CNN for
onset detection, the output layer has a single unit. In the CNN for multi-pitch estimation, the output
layer has 88 units and employs the sigmoid as the activation function to yield 88 independent pitch
probabilities. The CNNs were trained using mini-batch gradient descent with size 256. The Adam
algorithm was used in the training [32]. An initial learning rate of 0.01 was decreased to zero over
100 epochs. To prevent over-fitting, a dropout of 0.5 was applied to each network. We also used the
method of early stopping, in which training was stopped if the cost (cross entropy) did not decrease
for 20 epochs.

Table 1. Model configuration for the CNNs.

Type Patch Size/Stride Input Size

Conv 1 16 × 2/1 267 × 9
Pool 1 2 × 2/2 252 × 8 × 10
Conv 2 11 × 3/1 126 × 4 × 10
Pool 2 2 × 2/2 116 × 2 × 20

Fully-connected 256 58 × 1 × 20

As mentioned in Section 2, we take the RNN, RNN-RBM and their LSTM variants as MLMs.
Both the RNN and LSTM have one single hidden layer, which contains 100 hidden nodes. In the
RNN-RBM or LSTM-RBM, the number of recurrent hidden nodes is also 100, and the RBM has
50 hidden units. The training pieces are divided into sub-sequences of length 20. All these MLMs
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were trained using the note sequences by back-propagation through time (BPTT). We used mini-batch
of size 100 and the Adam algorithm for gradient updating. The initial learning rate was set to 0.01,
which was linearly reduced to zero over 100 iterations. In addition to dropout, we also adopted early
stopping to prevent over-fitting.

Note-based metrics are employed to assess the performance of the proposed system. A note event
is regarded as right if its pitch is correct and its onset is within a ±50 ms range of the ground truth
onset. These measures are defined as:

P =
NTP

NTP + NFP
(17)

R =
NTP

NTP + NFN
(18)

F =
2 ∗ P ∗ R

P + R
(19)

where P, R, F correspond to the precision, recall and F-measure, respectively, and NTP, NFP and NFN
are the numbers of true positives, false positives and false negatives, respectively.

4.3. Results

The transcription experiments are performed with various configurations. The CNN-based
acoustic model yields a sequence of probabilities for 88 individual pitches, and various post-processing
methods are used to transform the probabilities into binary notations. The first method is simplest,
which applies a threshold to the acoustic outputs. We select the threshold that maximizes the F-measure
over the validation set and use the threshold of 0.5 for the following testing. In the proposed
architecture, the other two methods are implemented using simple RNN MLMs. As mentioned
in Section 3, the GBS algorithm searches for the partial solutions at each detected onset, whereas
the proposed inference algorithm predicts notes only at the blank onsets in the thresholding
transcription results.

Experimental results on the software piano “StbgTGd2” are presented in Table 2. In Table 2,
we display the note-based recall, precision and F-measure for systems using the three post-processing
methods. The acoustic model with the simplest thresholding yields a high F-measure over 90%, which
indicates that the CNNs are effective in onset detection and multi-pitch estimation. Compared with
the thresholding method, the global decoding post-processing of GBS results in worse transcription on
the F-measure. The transcriptions produced by the GBS contain fewer notes, so the recall is lower than
that of the thresholding results. This is probably due to the MLM, which is trained to predict notes
using the true history. In the GBS algorithm, we take the previous w candidate solutions as the history,
which are estimated using outputs of the acoustic model and the MLM. The drawback of prediction
accumulates over time, so that the performance of transcription is unsatisfactory. The proposed
algorithm yields a better performance than the GBS on the recall and F-measure, since the determined
notes at non-blank onsets can help reduce the accumulation of errors. The improvement of recall is at
the cost of a loss of precision. The proposed algorithm also outperforms the thresholding method on
recall, which illustrates that the note-based MLM could model note sequences to some extent.

Table 2. Transcription results on the software piano “StbgTGd2”. GBS, global beam search.

Post-Processing Recall Precision F-Measure

Thresholding 0.8839 0.9169 0.9001
GBS (RNN) 0.8592 0.9184 0.8878

Proposed (RNN) 0.8946 0.9111 0.9027
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Table 3 displays the transcription results on the real piano “ENSTDkCl”. As shown in Table 2,
a similar trend can be seen in Table 3, where the best performance is achieved using the proposed
algorithm. All the note-based metrics in Table 3 are worse than those in Table 2. This is because the
notes produced by the real piano are not as regular as the notes from the software. Additionally,
there are some deviations and noises when the real piano is played. Therefore, there are many
accumulated errors in the decoding of GBS. This partly explains why the GBS generates the worst
results on all metrics.

Table 3. Transcription results on the real piano “ENSTDkCl”.

Post-Processing Recall Precision F-Measure

Thresholding 0.6765 0.8115 0.7374
GBS (RNN) 0.6693 0.7919 0.7225

Proposed (RNN) 0.6991 0.7942 0.7436

Table 4 presents the transcription results on the LabROSA dataset of real piano recordings.
In Table 4, the differences between the results of these three post-processing methods are obvious.
We can draw the same conclusion that the proposed inference algorithm improves the performance of
transcription using the RNN MLM.

Table 4. Transcription results on the real piano of LabROSA.

Post-Processing Recall Precision F-Measure

Thresholding 0.4667 0.7688 0.5884
GBS (RNN) 0.4507 0.7352 0.5626

Proposed (RNN) 0.5368 0.7101 0.6114

Figure 3 shows the threshold’s influence on the performance of the thresholding method and
proposed algorithm. The threshold of 0.5 is reasonable for the three test sets. We also observe that the
performance difference between the thresholding method and the proposed algorithm increases with
the increase of the threshold. A higher threshold value will bring more blank onsets, so the superiority
of the proposed algorithm for the thresholding method is more obvious. Through Tables 2–4 and
Figure 3, we also observe that the superiority of the proposed algorithm compared to the other
two methods is more obvious when the acoustic model has a poorer performance in transcription.
At the threshold of 0.5, we further perform a paired t-test over 10-fold cross-validation on the MAPS
dataset. The t-test is used to check whether the proposed algorithm outperforms the thresholding on
the F-measure. The p-value of 0.0472 demonstrates that the improvement of the proposed algorithm
over the thresholding method is statistically significant.

Figure 4 shows the transcriptions of the three post-processing methods along with the
corresponding ground truth piano roll. The excerpt is a part of track bach_847MINp_align in the
LabROSA dataset. As shown in the ground truth, the polyphony at each time is two. In the results
of thresholding, there are five blank onsets from 31.9 s–33.3 s. From the bottom subfigure, we can
see that the proposed algorithm predicts notes at these five onsets. Although there is no blank onset
in the results of GBS, some notes could not be predicted. For example, compared with the other
two subfigures, there are false negative notes at the first and the last two onsets in the middle subfigure.
This example demonstrates that the proposed algorithm can achieve better performance than other
two post-processing methods.
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Figure 3. F-measure on the three test sets as a function of the threshold.

(a)

(c)

(b)

Figure 4. Binary piano-roll transcription of an example track obtained through the thresholding method
(a), the GBS algorithm (b) and the proposed Local beam search (LBS) algorithm (c).

To further evaluate the performance of note-based MLMs, more transcription experiments are
conducted using the proposed inference algorithm. Table 5 presents the transcription results of
software piano “StbgTGd2”. As shown in Table 5, the performance is improved slightly when we
replace the RNN cells with LSTM cells in the MLMs. This is largely attributed to the fact that the LSTM
could model longer term dependencies in note sequences than RNN. The RBM-based joint models
outperform the single RNN or LSTM, which indicates that combining the RBM and recurrent structure
as the MLM can estimate high-dimensional, temporal distributions better.
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Table 5. Results for MLMs on the software piano “StbgTGd2”. MLM, music language model.

MLM Recall Precision F-Measure

RNN 0.8946 0.9111 0.9027
RNN-RBM 0.8954 0.9112 0.9032

LSTM 0.8948 0.9114 0.9030
LSTM-RBM 0.8960 0.9112 0.9035

The evaluation results on the real piano “ENSTDkCl” are displayed in Table 6 correspondingly.
Adding RBM to the RNN or LSTM improves the MLM’s performance in all respects. However, the
LSTM has no superiority over RNN without the RBM. The main reason is that the acoustic model
achieves a poor performance on transcribing the real piano. In this case, there are many errors in the
thresholding results or history solutions. Therefore, the LSTM’s advantage of longer memory does not
work here. The combination of RBM and LSTM can alleviate the problem because the distribution
estimator RBM has the attribution of denoising.

Table 6. Results for MLMs on the real piano “ENSTDkCl”.

MLM Recall Precision F-Measure

RNN 0.6991 0.7942 0.7436
RNN-RBM 0.6999 0.7952 0.7445

LSTM 0.6991 0.7940 0.7435
LSTM-RBM 0.7009 0.7952 0.7451

Table 7 shows the transcription results of the LabROSA dataset. As shown in Table 6, similar
results can be seen in Table 7 where the best performance is achieved by the LSTM-RBM. We also
observe the differences between the results of LSTM and other MLMs. In the results of thresholding,
the error rate is rather high. Therefore, the LSTM accumulates more errors than RNN and leads to the
worst performance.

Table 7. Results for MLMs on the real piano of LabROSA.

MLM Recall Precision F-Measure

RNN 0.5368 0.7101 0.6114
RNN-RBM 0.5371 0.7105 0.6117

LSTM 0.5339 0.7063 0.6082
LSTM-RBM 0.5377 0.7108 0.6123

5. Conclusions

In this paper, we propose note-based MLMs for modeling note-level music structure.
These note-based MLMs are trained to predict notes at the next onset, which is different from
the smoothing operation of existing frame-based MLMs. An integrated architecture is used to
combine the outputs of the MLM and the note-based acoustic model directly. We also propose
an inference algorithm, which uses the note-based MLM to predict notes at the blank onsets in the
thresholding transcription results. The experiments are conducted on the MAPS and LabROSA
databases. Although the proposed algorithm only achieves an absolute 0.34% F-measure improvement
on the synthetic data, it reaches absolute 0.77% and 2.39% improvements on two real piano test
sets, respectively. We also observe that the combination of RBM and recurrent structure models the
high-dimensional sequences better than a single RNN or LSTM does. Although the LSTM shows no
superiority to other MLMs in transcribing the real piano, the LSTM-RBM always helps the system
yield the best results regardless of the performance of acoustic models.
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Overall, the improvement of the proposed algorithm over the thresholding method is small.
One of the possible reasons is the limited training data. The MLMs are trained using only 161 pieces
in the MAPS database, and the small amount of data may lead the neural networks to over-fitting.
The abundance of musical scores can provide a way to solve the problem. Besides, the note sequences
are indexed using the onset in the current system. Actually, the temporal structure of musical sequences
should contain how the notes appear and last correlatively. Ignoring the note’s offset or duration time,
the representation of musical sequences is partial. Therefore, the MLMs in this paper cannot model
the temporal structure of note sequences completely. In the future, we will search for a proper way to
represent the note-level musical sequences. One possible solution is to add a duration model to the
current MLMs, such as an HMM.
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Appendix A

Table A1. Details for data partitions of the MAPS dataset.

Set Contents

Training

alb_esp3 alb_esp4 alb_esp5 alb_esp6 alb_se3
alb_se4 alb_se6 alb_se7 alb_se8 appass_1
appass_3 bk_xmas2 bk_xmas3 bach_846 bach_847
bach_850 bor_ps1 bor_ps2 bor_ps5 br_im2
br_im5 br_im6 burg_quelle chp_op18 chpn_op7_1
chpn_op10_e01 chpn_op10_e05 chpn_op10_e12 chpn_op25_e2 chpn_op25_e3
chpn_op25_e4 chpn_op27_1 chpn_op27_2 chpn_op33_2 chpn_op33_4
chpn_op35_1 chpn_op35_3 chpn_op66 chpn-p1 chpn-p3
chpn-p4 chpn-p6 chpn-p8 chpn-p9 chpn-p10
chpn-p11 chpn-p12 chpn-p13 chpn-p14 chpn-p15
chpn-p16 chpn-p20 chpn-p21 chpn-p24 deb_pass
gra_esp_2 gra_esp_3 grieg_elfentanz grieg_halling grieg_kobold
grieg_waechter grieg_wanderer grieg_zwerge hay_40_1 liz_et_trans4
liz_et1 liz_et2 liz_et3 liz_et4 liz_et5
liz_rhap02 liz_rhap10 liz_rhap12 mendel_op53_5 mond_1
mond_2 mond_3 muss_1 muss_2 muss_4
muss_5 mz_330_1 mz_331_1 mz_332_1 mz_333_1
pathetique_2 pathetique_3 schu_143_1 schu_143_2 schub_d760_1
schub_d760_3 schub_d960_3 schumm-1 schumm-2 schumm-3
schumm-6 schuim-3 scn15_2 scn15_3 scn15_5
scn15_6 scn15_7 scn15_9 scn15_13 scn16_2
scn16_5 scn16_7 ty_dezember ty_februar ty_januar
ty_juli ty_juni ty_november ty_oktober ty_september
waldstein_1 waldstein_3

Validation
alb_esp2 burg_perlen chp_op31 chpn-p2 chpn-p7
gra_esp_4 grieg_walzer mendel_op62_5 mos_op36_6 muss_3
waldstein_2

Test

alb_se2 bk_xmas1 bk_xmas4 bk_xmas5 bor_ps6
chpn-e01 chpn-p19 deb_clai deb_menu grieg_butterfly
liz_et_trans5 liz_et6 liz_rhap09 mz_311_1 mz_331_2
mz_331_3 mz_332_2 mz_333_2 mz_333_3 mz_545_3
mz_570_1 pathetique_1 schu_143_3 schuim-1 scn15_11
scn15_12 scn16_3 scn16_4 ty_maerz ty_mai
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