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Abstract: We propose a gauge-invariant formulation of the channel orbital-based time-dependent
configuration interaction singles (TDCIS) method [Phys. Rev. A, 74, 043420 (2006)], one of the
powerful ab initio methods to investigate electron dynamics in atoms and molecules subject to
an external laser field. In the present formulation, we derive the equations of motion (EOMs) in the
velocity gauge using gauge-transformed time-dependent, not fixed, orbitals that are equivalent to the
conventional EOMs in the length gauge using fixed orbitals. The new velocity-gauge EOMs avoid
the use of the length-gauge dipole operator, which diverges at large distance, and allows us to exploit
computational advantages of the velocity-gauge treatment over the length-gauge one, e.g., a faster
convergence in simulations with intense and long-wavelength lasers, and the feasibility of exterior
complex scaling as an absorbing boundary. The reformulated TDCIS method is applied to an exactly
solvable model of one-dimensional helium atom in an intense laser field to numerically demonstrate
the gauge invariance. We also discuss the consistent method for evaluating the time derivative of
an observable, which is relevant, e.g., in simulating high-harmonic generation.

Keywords: high-harmonic generation; Attosecond science; TDCIS

1. Introduction

Time-dependent configuration interaction singles (TDCIS) method is one of the powerful ab
initio methods to investigate laser-driven electron dynamics in atoms and molecules [1–24]. In the
TDCIS method, the time-dependent electronic wavefunction is given by the configuration interaction
(CI) expansion,

Ψ(t) = ΦC0(t) +
occ

∑
i

vir

∑
a

ΦiaCia(t), (1)

where Φ is the ground-state Hartree-Fock (HF) wavefunction, and Φia is a singly-excited
configuration-state function (CSF), replacing an occupied HF orbital φi in Φ with a virtual (unoccupied
in Φ) orbital φa, and the electron dynamics is described through the time evolution of the CI
coefficients, C0 and {Cia}. The virtual orbitals {φa} consist, in theory, of an infinite number of
bound and continuum orbitals. In practice, one needs to work within a given, finite number of basis
functions or numerical grids to represent orbitals; however, the real-space implementation with an
appropriate absorbing boundary has been proved to correctly model both bound and continuum
states, allowing to describe electron dynamics involving both (single) excitations and ionizations [4].
Compared to more involved ab initio wavefunction-based approaches [25] such as time-dependent
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multiconfiguration self-consistent-field (TD-MCSCF) methods [26–33], time-dependent R-matrix based
approaches [34–36], or time-dependent reduced density-matrix approach [37,38], distinct advantages
of the TDCIS method include a low computational cost and the conceptual simplicity to analyze
simulation results. Furthermore, an effective one-electron theory with coupled channels has been
developed [2], which introduces the orbital-like quantity, called channel orbital,

χi(r, t) = ∑
a

φa(r)Cia(t), (2)

and equivalently rewrites EOMs for CI coefficients with those for channel orbitals {χi(r, t)}
with no individual reference to virtual orbitals. This reformulation removes the bottleneck of
the CI coefficient-based TDCIS method to compute all (or, at least sufficiently many, including
bound and continuum) virtual orbitals prior to the simulation, and thus particularly useful in
grid-based simulations.

Despite this advantage, numerical applications of the channel orbital-based TDCIS method has
been limited to Ref. [2,14,15] for a one-dimensional Hamiltonian and Ref. [1] for noble gas atoms
with a Hartree-Slater potential, as far as we know, and the vast majority of applications to date have
adopted the CI coefficient-based approach [3–13,16–24] , except for the use of {χi} as intermediate
quantities in evaluating photoelectron spectra [18]. The preference of CI coefficient-based approach
might be partially due to the high symmetry of atomic systems, for which the stationary Hartree-Fock
operator decouples for different angular momenta [4], making it a relatively feasible task to obtain
all virtual orbitals (within a given radial grids or radial basis functions) for the lowest few angular
momenta. The channel orbital-based approach would be more suited, on the other hand, to simulations
of electron dynamics with intense and/or long-wavelength laser fields, requiring much longer angular
momentum expansion [39–41], and moreover to grid-based molecular applications, where obtaining
a sufficient spectrum of virtual levels could be unacceptably expensive.

However, the TDCIS method, whether in the CI coefficient-based or channel orbital-based
formulation, suffers from the lack of gauge invariance, as a general consequence of relying on truncated
CI expansion with time-independent orbitals, or fixed orbitals. Previously, the length gauge (LG)
has been employed, e.g., in Ref. [1–16], and the velocity gauge (VG) in Ref. [17–24]. Although gauge
dependence of the TDCIS method using fixed orbitals has been noted already in Ref. [2], comparative
assessment of the LG and VG treatments (within the grid-based TDCIS) has not been reported to
the best of our knowledge, except for being briefly mentioned in Ref. [42]. In particular, the channel
orbital-based approach [2] has been applied only in the LG [1,2,14,15], and as shown below in this
paper, the VG treatment with fixed orbitals is not very appropriate for applications to high-field
phenomena. This is a serious drawback, since for an efficient simulation of molecules, it is highly
appreciated to take advantage of the velocity-gauge treatment, e.g., the feasibility of exterior complex
scaling [43,44] as an absorbing boundary, to reduce the computational cost related to the number of
grid points.

In the present work, we propose a gauge-invariant reformulation of the channel orbital-based
TDCIS method. To this end, instead of applying the fixed-orbital TDCIS ansatz to the velocity-gauge
time-dependent Schrödinger equation (TDSE), we adopt the formulation using unitary-rotated orbital
|φ′p(t)〉 = Û(t)|φp〉, where Û(t) is the gauge transformation operator connecting the (exact) solution of
TDSE in the LG and VG. The resulting EOMs in the reformulated VG is equivalent to the LG ones with
fixed orbitals by construction, and at the same time allows to exploit advantages of the velocity-gauge
simulations as mentioned above.

This paper proceeds as follows. In Section 2, after defining the target Hamiltonian and the
gauge transformation in Section 2.1 and reviewing the TDCIS method using fixed orbitals both in the
CI coefficient-based (Section 2.2) and channel orbital-based (Section 2.3) approaches, we present the
gauge-invariant reformulation in Section 2.4, and a consistent method for evaluating the time derivative
of one-electron observables in Section 2.5. Then in Section 3 we apply the channel orbital-based
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TDCIS method, using LG with fixed orbitals, VG with fixed orbitals, and the reformulated VG, to the
model one-dimensional (1D) Hamiltonian to compare the results of various TDCIS approaches with
numerically exact TDSE results, and demonstrate the importance of non-Ehrenfest method to compute
dipole acceleration. Finally, concluding remarks are given in Section 4. The Hartree atomic units are
used throughout unless otherwise noted.

2. Theory

2.1. System Hamiltonian and Gauge Transformation

Let us consider an atom or a molecule consisting of N electrons interacting with an external
laser field. In this work, we restrict our treatment in the clamped-nuclei approximation and the
electron-laser interaction within the electric dipole approximation. Then the exact description of the
system dynamics is given by the solution ΨL(t) of TDSE,

i∂tΨL(t) = HL(t)ΨL(t), (3)

with the system Hamiltonian HL(t) = H0 + Hext
L (t), where H0 is the field-free electronic Hamiltonian

H0 =
N

∑
k=1

h(rk, pk) +
N

∑
k=1

N

∑
l>k

1
|rk − rl |

, (4)

where rk and pk = −i∇k are the coordinate and canonical momentum of an electron,
h(r, p) = 1

2 p2 + vn(r), with vn being the electron-nucleus interaction. Here we are considering the LG
treatment, where the electron-laser interaction Hext

L is given by

Hext
L (t) = E(t) ·

N

∑
k=1

rk, (5)

where E(t) is the laser electric field.
As is well known, the system dynamics is equivalently described in the VG, of which the

wavefunction ΨV is connected with the LG one through

ΨV(t) = U(t)ΨL(t), (6)

with a unitary transformation

U(t) = exp

[
−i

N

∑
k=1

{
A(t) · rk −

1
2

∫ t

−∞
dt′|A(t′)|2

}]
, (7)

where A(t) = −
∫ t
−∞ E(t′)dt′ is the vector potential, and we arbitrarily include the second term

in the exponential, which is a c-number, to avoid appearance of terms proportional to |A|2
in subsequent equations. Then we substitute ΨL = U−1ΨV into the LG TDSE, Equation (3),
use dU/dt = i ∑N

k=1(E · rk + |A|2/2)U, and note UpkU−1 = pk + A to derive the VG TDSE,

i∂tΨV(t) = HV(t)ΨV(t), (8)

with HV(t) = H0 + Hext
V (t), and

Hext
V (t) = A(t) ·

N

∑
k=1

pk. (9)
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One should carefully note that the present proof of equivalence of the LG and VG treatments,
Equations (3) and (8), with the transformation of Equation (7), applies only to the exact solution
of TDSE. See e.g., Ref. [45–47] for deeper discussions on the gauge transformation within TDSE,
and Ref. [25] for the gauge invariance of TD-MCSCF methods.

For a compact presentation of the many-electron theory, we rewrite the system Hamiltonian in
the second quantization,

ĤL(t) = Ĥ0 + Ĥext
L (t), ĤV(t) = Ĥ0 + Ĥext

V (t), (10)

Ĥ0 = ĥ +
1
2

↑↓

∑
στ

∑
pqrs
〈pr|qs〉ĉ†

pσ ĉ†
rτ ĉqτ ĉsσ, (11)

Ĥext
L (t) = E(t) · r̂, Ĥext

V (t) = A(t) · p̂, (12)

where {ĉ†
pσ} and {ĉpσ} are the creation and annihilation operators, respectively, for the set of

spin-orbitals given as a direct product {φp} ⊗ {s↑, s↓} of orthonormal spatial orbitals {φp} and
up-spin (down-spin) functions s↑ (s↓). The operators ĥ, r̂, and p̂ are defined, respectively,
as ĥ = ∑↑↓σ ∑pq hpq ĉ†

pσ ĉqσ, r̂ = ∑↑↓σ ∑pq rpq ĉ†
pσ ĉqσ, and p̂ = ∑↑↓σ ∑pq ppq ĉ†

pσ ĉqσ, where hpq, rpq, and ppq

are the matrix elements of h, r, p, respectively, in terms of {φp}, and

〈pr|qs〉 =
∫

dr1

∫
dr2φ∗p(r1)φ

∗
r (r2)r−1

12 φq(r1)φs(r2). (13)

The TDSE of the LG, Equation (3), and VG, Equation (8), read

i∂t|ΨL(t)〉 = ĤL(t)|ΨL(t)〉, i∂t|ΨV(t)〉 = ĤV(t)|ΨV(t)〉, (14)

with the transformation

|ΨV〉 = Û(t)|ΨL〉, (15)

Û(t) = exp
[
−i
{

A(t) · r̂− N̂
2

∫ t

−∞
dt′|A(t′)|2

}]
, (16)

where N̂ = ∑µ ∑↑↓σ ĉ†
µσ ĉµσ is the number operator. Here and in what follows, we distinguish equivalent

operators in the first quantization O and in the second quantization Ô by appending hat on the latter.
In this work, we consider a closed-shell system with even number of electrons, and choose as

{φp} the time-independent Hartree-Fock (HF) orbitals satisfying the canonical, restricted HF equation

f̂ |φp〉 ≡ ĥ|φp〉+ 2 ∑
j

Ŵ
φj
φj
|φp〉 −∑

j
Ŵ

φj
φp
|φj〉 = εp|φp〉, (17)

where εp is the orbital energy, and Ŵφ
φ′ is the electrostatic potential of a product φ∗(r)φ′(r) of given

orbitals, defined in the real space as

Wφ
φ′(r1) =

∫
dr2

φ∗(r2)φ
′(r2)

|r1 − r2|
. (18)

As usual, we separate the full set of HF orbitals {φp} into the occupied orbitals {φi} which are
occupied in the HF ground-state wavefunction (also referred to as the reference) |Φ〉 = ∏i ĉ†

i↑ ĉ
†
i↓|〉 (|〉 is

the vacuum.), and the virtual orbitals {φa} which are unoccupied in |Φ〉.
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2.2. Review of CI Coefficient-Based TDCIS with Fixed Orbitals

We write the second-quantized version of Equation (1), for the LG case, as

|ΨL(t)〉 = |Φ〉C0(t) +
occ

∑
i

vir

∑
a
|Φia〉Cia(t), (19)

where |Φia〉 = ∑↑↓σ ĉ†
aσ ĉiσ|Φ〉/

√
2. The equations of motion for the CI coefficients have been derived [2]

by inserting Equation (19) into the LG TDSE, the first of Equation (14), and closing from the left with
the reference and singly-excited CSFs,

〈Φ|(ĤL−i∂t){|Φ〉C0+∑
jb
|Φjb〉Cjb} = 0, (20a)

〈Φia|(ĤL −i∂t){|Φ〉C0+∑
jb
|Φjb〉Cjb} = 0. (20b)

Conceptually more proper derivation of Equation (20) is based on the Dirac-Frenkel variational
principle, which considers the Lagrangian

LL(t) = 〈ΨL|(ĤL−i∂t)|ΨL〉, (21)

and requires ∂LL/∂C∗0 = ∂LL/∂C∗ia = 0. Substituting ĤL of Equation (10) into Equation (20), using
the Slater-Condon rule for the Hamiltonian matrix elements, and noting the canonical condition
fpq = εpδpq, the EOMs for the length gauge are derived as [2]

i∂tC0 =
√

2E ·∑
jb
〈φj|r̂|φb〉Cjb, (22a)

i∂tCia = 〈φa|{∑
b
(F̂i + E · r̂)|φb〉Cib +

√
2E · r̂|φi〉C0} − E ∑

j
Cja · 〈φj|r̂|φi〉. (22b)

where the action of the operator F̂i on a given orbital φ is defined as

F̂i|φ〉 = ( f̂ − εi)|φ〉+ ∑
j
(2Ŵ

φj
φ |φi〉 − Ŵ

φj
φi
|φ〉). (23)

References [17–24] have used the same expansion in terms of fixed CSFs also in the VG case,

|ΨV(t)〉 = |Φ〉D0(t) +
occ

∑
i

vir

∑
a
|Φia〉Dia(t), (24)

and required Equation (20) to hold, with ĤL, C0, and Cia replaced with ĤV, D0, and Dia. This is
equivalent to consider the following Lagrangian,

LV(t) = 〈ΨV|(ĤV−i∂t)|ΨV〉, (25)

and to require ∂LV/∂D∗0 = ∂LV/∂D∗ia = 0, which derives

i∂tD0 =
√

2A ·∑
jb
〈φj|p̂|φb〉Djb, (26a)

i∂tDia = 〈φa|{∑
b
(F̂i + A · p̂)|φb〉Dib +

√
2A · p̂|φi〉D0} − A ∑

j
Dja · 〈φj|p̂|φi〉. (26b)
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2.3. Review of Channel Orbital-Based TDCIS with Fixed Orbitals

As mentioned in Section 1, an interesting reformulation of the above-described TDCIS method
has been proposed in Ref. [2], which introduces the time-dependent channel orbitals |χi〉 that collects
all the single excitations originating from an occupied orbital |φi〉,

|χi〉 = ∑
a
|φa〉Cia(t), (27)

and rewrites the EOMs in terms of C0 and {|χi〉} as

i∂tC0 =
√

2E ·∑
j
〈φj|r̂|χj〉, (28a)

i∂t|χi〉 = P̂{(F̂i + E · r̂)|χi〉+
√

2E · r̂|φi〉C0} −∑
j
|χj〉〈φj|E · r̂|φi〉, (28b)

where P̂ = 1̂− ∑j |φj〉〈φj|. According to these EOMs and the initial conditions [C0(t → −∞) = 1,
and {Cia(t→ −∞) = 0} ⇐⇒ {χi(t→ −∞) ≡ 0}], the channel orbitals |χi〉 get gradually populated
along with the laser-electron interaction, measuring an excitation of an electron out of |φi〉. See Ref. [2]
for interesting properties of the channel orbitals.

It is also possible to formulate the channel orbital-based scheme based on the velocity gauge TDCIS
using fixed orbitals, though not previously considered. We, therefore, introduce the analogous quantity

|ηi〉 = ∑
a
|φa〉Dia(t), (29)

and rewrite Equation (26) as

i∂tD0 =
√

2A ·∑
j
〈φj|p̂|ηj〉, (30a)

i∂t|ηi〉 = P̂{(F̂i + A · p̂)|ηi〉+
√

2A · p̂|φi〉D0} −∑
j
|ηj〉〈φj|A · p̂|φi〉. (30b)

Hereafter, we refer to the method based on Equation (28), i.e., the channel orbital-based TDCIS
in the length gauge with fixed orbitals, simply as LG method, and that based on Equation (30),
i.e., the channel orbital-based TDCIS in the velocity gauge with fixed orbitals, as VG method,
for notational brevity.

2.4. Channel Orbital-Based TDCIS in the Velocity Gauge with Rotated Orbitals

The gauge dependence of the LG and VG treatments, Equations (28) and (30), results from the
fact that the ansatz of Equations (19) and (24), both using fixed orbitals, cannot be connected with
the transformation, Equation (16), as is generally the case for truncated CI expansion using fixed
orbitals. For a method to be gauge invariant, the underlying Lagrangian in LG and VG cases should
be numerically the same when evaluated with the solution of respective EOMs, which does not hold
in the present case, LL(t) 6= LV(t), with Equations (21) and (25).

Thus we define the total wavefunction |Ψ′V(t)〉, transformed from |ΨL(t)〉 to the velocity gauge, as

|Ψ′V(t)〉 = Û(t)|ΨL(t)〉 = |Φ′〉C0(t) +
occ

∑
i

vir

∑
a
|Φ′ia〉Cia(t), (31)

with |ΨL(t)〉 constructed with the solution of CI coefficient-based EOMs in the LG, Equation (22).
Here |Φ′〉 = Û(t)|Φ〉 and |Φ′ia〉 = Û(t)|Φia〉 = ∑σ ĉ′†aσ ĉ′iσ|Φ′〉/

√
2 are the reference and singly-excited

CSF constructed with unitary rotated orbitals, i.e., |φ′p〉 = Û|φp〉 and ĉ′pσ = Û(t)ĉpσÛ−1(t). It should
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be noted that |Ψ′V〉 cannot be rewritten into the form of Equation (24) in general. Associated with this
wavefunction, we consider the following Lagrangian,

L′V(t) = 〈Ψ′V|(ĤV−i∂t)|Ψ′V〉. (32)

The equivalence of this approach to the LG treatment is readily confirmed by seeing

L′V(t) = 〈ΨL|Û−1(ĤV−i∂t)Û|ΨL〉 = 〈ΨL|(ĤL−i∂t)|ΨL〉 = LL(t). (33)

One may naively expect that L′V of Equation (32), which differs from LV of Equation (25) only
by the replacement of ΨV with Ψ′V, leads to the EOMs of Equation (26) with D0, {Dia},{φp} replaced
with C0, {Cia},{φ′p}. This is not the case, however, due to the time dependence of the rotated CSFs,
e.g., 〈Φ′|∂t|Φ′ia〉 = iE(t) · 〈Φ′|r̂|Φ′ia〉, and after extracting these time dependence, Equation (32) reads

L′V(t) = 〈Ψ′V|{ĤV + E(t) · r̂− i∂c
t}|Ψ′V〉, (34)

where ∂c
t time differentiates CI coefficients only. Now requiring ∂L′V/∂C∗0 = ∂L′V/∂C∗ia = 0,

or equivalently, substituting the back transformation |φp〉 = Û−1|φ′p〉 into Equation (22) derives

i∂tC0 =
√

2E ·∑
jb
〈φ′j|r̂|φ′b〉Cjb, (35a)

i∂tCia = 〈φ′a|{∑
b
(F̂′i + A · p̂ + E · r̂)|φ′b〉Cib +

√
2E · r̂|φ′i〉C0} − E ∑

j
Cja · 〈φ′j|r̂|φ′i〉. (35b)

where F̂′i is given by Equation (23) with {φj} replaced with {φ′j}. Equation (35) are the CI coefficient-based
TDCIS EOMs based on the Lagrangian of Equation (32). Although this approach is guaranteed to
be equivalent to the CI coefficient-based LG TDCIS, it brings no numerical gain over Equation (22),
peculiarly including both E · r and A · p, and requiring extensive gauge transformation of all occupied
and virtual orbitals.

Nonetheless, a useful method can be derived, if one switches to the channel orbital-based scheme
by defining the rotated channel functions,

|χ′i(t)〉 = Û(t)|χi〉 = ∑
a
|φ′a〉Cia. (36)

Then we use dÛ/dt = i(E · r̂ + |A|2N̂/2)Û, and note Û p̂Û−1 = p̂ + AN̂ to derive

i∂tC0 =
√

2E ·∑
j
〈φ′j|r̂|χ′j〉, (37a)

i∂t|χ′i〉 = P̂′{(F̂′i + A · p̂)|χ′i〉+
√

2E · r̂|φ′i〉C0} −∑
j
(|χ′j〉〈φ′j|E · r̂|φ′i〉+ |φ′j〉〈φ′j|E · r̂|χ′i〉), (37b)

where P̂′ = 1−∑j |φ′j〉〈φ′j|. Equations (37) are the main results of this work, which are called the rotated
velocity-gauge (rVG) EOMs for brevity. The rVG scheme is equivalent to the LG scheme with fixed
orbitals by construction, while replacing the length-gauge dipole operator E · r̂ (the second term of
Equation (28b)) with the spatially uniform A · p̂ (the second term of Equation (37b)). Although several
terms in the EOMs still involve the dipole operator, they all apply to the rotated occupied orbitals
{φ′i} which are localized around nuclei (to the same extent as {φi} since the transformation e−iA·r is
a local phase change), thus posing no difficulty in enjoying the same advantages of VG propagations
of orbitals [39–41].
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2.5. Evaluation of the Time Derivative of an Observable

Let us next consider how to compute expectation value of a one-electron operator
〈Ô〉(t) = 〈Ψ(t)|Ô|Ψ(t)〉, and its time derivative d〈Ô〉/dt. For exact solution of TDSE, ∂t|Ψ〉 = −iĤ|Ψ〉,
the time derivative is given by

d
dt
〈Ψ|Ô|Ψ〉 = 〈Ψ|Ô|∂tΨ〉+ 〈∂tΨ|Ô|Ψ〉 (38a)

= −i〈Ψ|[Ô, Ĥ]|Ψ〉, (38b)

known as the Ehrenfest expression (where for simplicity a trivial, explicit time-dependence of
the operator has been dropped). For an approximate method, however, the Ehrenfest theorem,
Equation (38b), generally does not hold, and one should explicitly evaluate the time derivative as
Equation (38a). Important exceptions include those theories using time-dependent orbitals that have
evolved to satisfy the time-dependent variational principle, such as time-dependent Hartree-Fock
(TDHF), TD-MCSCF, and time-dependent density functional theory. See Ref. [41] for more details.

The TDCIS expectation value of a one-electron operator Ô is given [2] by

〈ΨL|Ô|ΨL〉 = 2 ∑
j
〈φj|Ô|φj〉+ ∑

j
〈χj|Ô|χj〉+ 2

√
2 Re [C∗0 ∑

j
〈φj|Ô|χj〉]−∑

ij
〈χi|χj〉〈φj|Ô|φi〉, (39)

in the LG case. That for the VG is given by replacing C0 with D0 in the above equation, and for the rVG
by replacing {φj, χj} with {φ′j, χ′j}. The expression for the time derivative, in the LG case, is derived by
using Equation (28) in Equation (38a) as

d〈ΨL|Ô|ΨL〉
dt

= 2 Re

[
∑

j
〈χj|Ô|χ̇j〉+

√
2(Ċ∗0 〈φj|Ô|χj〉+ C∗0 〈φj|Ô|χ̇j〉)−∑

ij
〈χi|χ̇j〉〈φj|Ô|φi〉

]
, (40)

where Ċ0 ≡ ∂tC0 and |χ̇j〉 ≡ ∂t|χj〉. The VG expression is also given by the above equation with C0
replaced with D0, and that for the rVG is

d〈Ψ′V|Ô|Ψ′V〉
dt

= 2 Re

∑
j
〈χ′j|Ô|χ̇

′
j〉+
√

2(Ċ∗0 〈φ′j|Ô|χ
′
j〉+ C∗0 〈φ′j|Ô|χ̇

′
j〉)−∑

ij
〈χ′i |χ̇

′
j〉〈φ

′
j|Ô|φ

′
i〉

 (41)

+
√

2 Im

2E ·∑
j

C∗0 〈φ′j|r̂Ô|χ′j〉+ |A|
2 ∑

j
C∗0 〈φ′j|Ô|χ

′
j〉

− iE ·∑
ij
(2δij − 〈χ′i |χ

′
j〉)〈φ

′
j|[r̂, Ô]|φ′i〉.

Although Equations (40) and (41) look rather complicated, their evaluations are straightforward
given the time derivatives of working variables C0, {χi}, etc, which are necessary, in any case,
to propagate the EOMs.

3. Numerical Examples

In this section, we numerically apply the channel orbital-based TDCIS method in the LG, VG,
and rVG to the 1D model Helium atom, using the computational code developed by modifying
an existing TDHF code used in our previous work [30,33,48]. The field-free electronic Hamiltonian is
given by

H0 =
2

∑
k=1

−1
2

∂2

∂z2
k
− 2√

z2
k + 1

+
1√

(z1 − z2)2 + 1
, (42)

for two electronic coordinates z1 and z2, and the laser-electron interaction E(t) · r and A(t) · p
are replaced with E(t)z and A(t)pz = −iA(t)∂/∂z, respectively, in Equations (28), (30) and (37).
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Orbitals are discretized on equidistant grid points with spacing ∆z = 0.4 within a simulation box
−1000 ≤ z ≤ 1000, with an absorbing boundary implemented by a mask function of cos1/4 shape at
10% side edges of the box. Each EOM is solved by the fourth-order Runge-Kutta method with a fixed
time step size (1/10,000 of an optical cycle). Spatial derivatives are evaluated by the eighth order finite
difference method, and spatial integrations are performed by the trapezoidal rule. We consider a laser
electric field given by

E(t) = E0 sin(ω0t) sin2
(

π
t
τ

)
, (43)

for 0 ≤ t ≤ τ, and E(t) = 0 otherwise, with a wavelength λ = 2π/ω0 = 750 nm, a foot-to-foot
pulse length τ of three optical cycles, and a peak intensity I0 = E2

0 for I0 = 5× 1014 W/cm2 and
I0 = 1015 W/cm2. The 1D Hamiltonian, computational details, and the applied laser field are the same
as used in Ref. [48] to facilitate comparison with TDSE results in Ref. [48].

First, we compare the time-dependent dipole moment 〈z〉(t) = 〈Ψ(t)|(z1 + z2)|Ψ(t)〉 obtained
with TDCIS approaches with that of TDSE in Figure 1, which immediately reveals a strong gauge
dependence of fixed-orbital approaches, i.e., the large difference between LG and VG results.
One should note that the comparison of LG and VG results alone can tell nothing about the preference
of either approach; TDCIS method in both LG and VG are the first approximation in the hierarchy of
CI expansions, which, at the full-CI limit, would be gauge invariant. The point here is that the LG
scheme outperforms the VG scheme in comparison to the exact TDSE result as clearly seen in Figure 1,
which convinces one of an empirical preference of the LG treatment. On the other hand, the results of
LG and rVG agree perfectly within the graphical resolution, numerically demonstrating the theoretical
gauge invariance.
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Figure 1. Time evolution of the dipole moment of 1D-He exposed to a laser pulse with a wavelength of
750 nm and an intensity of (a) 5 × 1014 W/cm2 and (b) 1 × 1015 W/cm2. Comparison of the results
with time-dependent configuration interaction singles (TDCIS) in the length gauge (LG), velocity gauge
(VG), and rotated velocity-gauge (rVG) with that of the time-dependent Schrödinger equation (TDSE).
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Next, we consider the dipole acceleration 〈a〉(t) defined as the time derivative of the
kinematic momentum,

〈a〉(t) = d〈π〉
dt

, (44)

where 〈π〉 = 〈Ψ|(pz1 + pz2)|Ψ〉 for the LG, and 〈π〉 = 〈Ψ|(pz1 + pz2)|Ψ〉+ 2A(t) for the VG. In the
exact TDSE case, applying Equation (38) for Ô = p̂z proves that 〈a〉 = 〈a〉Ehrenfest, with

〈a〉Ehrenfest(t) = −〈Ψ|
(

∂vnuc

∂z1
+

∂vnuc

∂z2

)
|Ψ〉 − 2E(t), (45)

where ∂vnuc/∂z = −∂/∂z2(z2 + 1)−1/2 = 2z(z2 + 1)−3/2 for the 1D Hamiltonian. Numerically
achieving the theoretical equivalence of Equations (44) and (45), even for the exact TDSE method,
requires a simulation to be converged with respect to computational parameters (time-step size, etc.).
Therefore, we first applied both Equations (44) and (45) in the TDSE simulation, and confirmed
a perfect agreement (not shown), suggesting the convergence of the simulation. Then we compare the
results of TDCIS in the LG, using Equations (44) (i.e., Equation (40) with Ô = p̂z) and (45), with that
of TDSE in Figure 2, clearly showing a better agreement of the results of the former approach with
that of TDSE. From this result, and also by the fact that being based on Equation (44) guarantees that
the high-harmonic generation (HHG) spectra obtained from the velocity 〈π〉(t) and the acceleration
〈a〉(t), at the convergence, properly relate to each other [45], we consider that Equation (44), together
with Equation (40) or Equation (41), should be adopted as a consistent method for evaluating the dipole
acceleration.
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Figure 2. Time evolution of the dipole acceleration of 1D-He exposed to a laser pulse with a wavelength
of 750 nm and an intensity of (a) 5 × 1014 W/cm2 and (b) 1 × 1015 W/cm2. Comparison of the results
with TDCIS in the LG adopting Equations (44) and (45) with that of TDSE.

Then we compare the time evolution of the dipole acceleration (Figure 3) and the HHG spectrum
(Figure 4) obtained as the modulus squared of the Fourier transform of the dipole acceleration obtained
with TDCIS method in LG, VG, and rVG (based on Equation (44)) with those of TDSE. We observe that
(1) the LG and rVG results are identical to each other within the scale of the figure, (2) they also show
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a good agreement with TDSE results, (3) and in contract, the VG results strongly deviate from all the
other results. Especially, Figure 4 shows a remarkable agreement of the TDCIS spectra in the LG and
rVG and the TDSE one, suggesting that the TDCIS method would be a useful computational method
for studying HHG process in more complex atoms and molecules, in particular, when the present rVG
treatment is combined with advanced, velocity gauge-specific computational techniques.
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Figure 3. Time evolution of the dipole acceleration of 1D-He exposed to a laser pulse with a wavelength
of 750 nm and an intensity of (a) 5 × 1014 W/cm2 and (b) 1 × 1015 W/cm2. Comparison of the results
with TDCIS in the LG, VG, and rVG with that of TDSE.
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in the LG, VG, and rVG with that of TDSE.



Appl. Sci. 2018, 8, 433 12 of 14

4. Conclusions

In this work, we propose a gauge-invariant formulation of the channel orbital-based TDCIS
method for ab initio investigations of electron dynamics in atoms and molecules. Instead of using
fixed orbitals both in length-gauge and velocity-gauge simulations, we adopt, in the velocity-gauge
case, the EOMs derived with unitary rotated orbitals |φ′p(t)〉 = Û(t)|φp〉 using gauge-transforming
operator Û(t), which replaces the length-gauge operator E · r appearing in the length-gauge EOMs
with the velocity-gauge counterpart A · p, while retaining the equivalence to the length-gauge
treatment. This would make it possible to take advantages of the velocity-gauge simulation over the
length-gauge one, e.g., the faster convergence of simulations of atoms interacting with an intense
and/or long-wavelength laser field, with respect to the maximum angular momentum included to
expand orbitals, and the native feasibility of advanced absorbing boundaries such as the exterior
complex scaling. Numerical assessment of the present method for real atoms and molecules with the
three-dimensional Hamiltonian will be presented elsewhere.
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