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Abstract: Human action recognition in videos is an important task with a broad range of applications.
In this study, we improve the performance of recurrent attention convolutional neural network
(RACNN) by proposing a novel model, “attention-again”. We consider the nature of video frames as
sequences, which will cause the change of regions of interest in the frame, thus we cannot use an
attention mechanism similar to that in images. “Attention-again” model is a variant from traditional
attention model for recognizing human activities and is embedded in two long short-term memory
(LSTM) layers. Different from hierarchal LSTM which change the LSTM structure to combine the
hidden states from two LSTM layers, our proposals introduce “attention-again” model to avoid the
change of LSTM structure. Furthermore, this model not only learns the relations in each frame,
but also obtains the relations among all frames, and these relations instruct the next learning
stage. Therefore, our proposed model outperform the baseline and is superior to methods with
the same experimental conditions on three benchmark datasets: UCF-11, HMDB-51 and UCF-101.
To understand how the model works, we also visualize the region of interest in the frame.

Keywords: human action recognition; attention; recurrent attention convolutional neural
network; LSTM

1. Introduction

Human action recognition in videos is one of the fundamental challenging tasks in computer
vision. Since studies in images have had great success, researchers are paying more attention to video.
In the literature, recognizing actions plays a vital role in several applications, such as multimedia
contexts [1,2], video surveillance [3,4], video streaming [5–7], health care systems [8] and smart indoor
security systems [9–11]. Recently, human action recognition has achieved great success in depth video
and sensor [12–18]. In this work, we focus on RGB video sequences from single camera.

Unlike action recognition in images, action recognition in videos relies on motion dynamics in
addition to visual appearance. Traditional approaches use hand-crafted features, and then input
the aggregated features to the classifier. In contrast, the recent surge of deep neural networks
(DNNs) achieve a significant advancement in extracting features. Among them, convolutional
neural networks (CNNs) have shown a great ability to produce a rich representation of the input
and achieve promising results on several challenging tasks, including image classification, object
detection, machine translation, and tracking [19–21]. For this task, a direct approach to recognize
action is to arm the convolutional operation with temporal information such as 3D convolutional
networks [22,23]. Although they acheive great performance, these works are still missing much
temporal information. Recurrent neural networks (RNNs), another branch of DNNs, are a class of
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artificial neural networks, where the recurrent architecture allows the networks to exhibit dynamic
temporal behavior. Since the video frames are sequential, RNNs might be more suitable for this kind
of task. Thus, many works [24,25] have combined RNN with CNN for action recognition and have
shown good results. Specifically, LSTM [26] has been proven by Donahue et al. [27], Shi et al. [28]
and Ng et al. [29] to be effective for action recognition task from video sequences. In [25], they stack
three LSTM layers and get great performance, however, they only fed the bottom hidden states of
LSTM to top layers.Baradel et al. [30] are aware of weakness of this simply structure, thus, they embed
the input feature maps with spatial attention model and change the structure of LSTM to fit the
different input. Moreover, these changes improve the performance and then [30] outperform [25].
Attention mechanism mentioned in above method has obtained many interests from computer vision
community and received a great achievement in caption generation, neural machine translation
and image recognition. By attention mechanism, a model can learn where should be paid attention
to, for example, in Figure 2 , the boy is juggling soccer, attention mechanism leads the model to
focus on the leg and football which are important factors to classify the video into “soccer_juggling”.
The attention mechanism due to great performance of catching region of interest is also introduced to
action recognition [25,27,31]. For example, Sharma et al. [25] transferred the attention mechanism on
the spatial domain to action recognition.

Although the above DNN architectures with attention mechanisms have achieved great
performance, we believe that attention mechanisms in video are not the same as that in images.
For instance, in the task of image caption, the model with attention mechanisms learns to pay
attention to the part of image from the previous state, which focus on the other part of image.
However, images are different from videos, which consist of many frames. Therefore, the regions
where activities are happening will be changing, and the interesting areas in previous frames might
not be the main portions in next video frame. In addition, the intermediate feature vectors are limited
as they are generated by only looking at previous frames in order. If we simply utilize this attention
mechanisms into videos, we would only focus on the spatial information, and take less global state
into consideration. In [32], they inspired by human behavior of reading document that they cannot
understand some words in first read. Therefore, they introduce a simple mechanism that first reads the
input sequence before committing to a representation of each word, and then, they propose a simple
copy mechanism that is able to exploit very small vocabularies. Taking this mechanism into account,
we find that understanding videos is also similar to reading, thus, we aim to develop a model to obtain
great performances for action recognition in videos.

Therefore, in this study, we propose “attention-again” model to combine the neighboring frames
with current frame to get the interesting part of the frame. This model has two LSTM layers. In the
bottom layer of LSTM, we use the traditional attention mechanisms and generate the hidden state of
LSTM unit from previous hidden state and current input. Next step, we integrate the hidden state of
previous LSTM unit in top layer, current input feature and the current output from the bottom layer of
LSTM unit. By this way, we could capture spatial relations by bottom LSTM layer and obtain more
global information from top LSTM layer. Consequently, we not only consider the information from
current state, but also fuse context information. Besides, we incorporate our proposed “attention-again”
model with DNN framework. Our architecture is named recurrent attention convolutional Neural
Network (RACNN) and is shown in Figure 1, where CNNs encode the input video frames into
feature sequences.

The contributions of our proposals can be summarized as follows: (1) We introduce a novel
deep learning model “attention-again” for action recognition in videos which can pay attention to the
important region in video. Compared with traditional attention mechanisms, this model has improved
performance. (2) An extensive set of experiments were conducted to demonstrate that the proposed
model “attention-again” outperform the methods with the same experimental condition on three
benchmark datasets: UCF-11 [33], HMDB-51 [34] and UCF-101 [35].
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The rest of the paper is organized as following: In Section 2, we review the related work. We also
present the development of action recognition and show some state-of-the-art work. The proposed
model and the principle of our method is presented in Section 3. Experimental results and some
implied training details are discussed in Section 4. Finally, Section 5 concludes this paper.
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Figure 1. The architecture of the proposed recurrent attention convolutional neural network
(RACNN) model. It contain three major components: (1) convolutional feature extraction; (2) long
short-term memory (LSTM) sequence modeling and attention model; and (3) “attention-again”
model. convolutional neural networks (CNNs) encode the input video frames into feature sequences.
Traditional attention model in bottom layer refine the input feature sequences. The proposed model
“attention-again” will get more information from input and hidden state.

2. Related Work

Human action recognition is a longstanding topic in computer vision community and is a well
studied problem with various standard benchmarks. The literature on action recognition in video is
vast and too broad for us to cover here completely. In this work, we present some related works on
ConvNet architecture, LSTM-like architecture and attention mechanism.

2.1. ConvNet Architecture

Following the great success of CNNs for image classification, image segmentation and
other computer vision tasks, deep learning algorithms have been used in video based human
action recognition and have been proven that features learned from CNN are much better than
hand-crafted features. In contrast to hand-craft shallow video representation, recent efforts try to
learn the representation of video automatically from large scale labeled video data. For example,
Karpathy et al. [23] directly applied CNNs to multiple frames in each sequence and obtain the
temporal relations by pooling using single, late, early and slow fusion. Nevertheless, the results
of this scheme are just marginally better than those of a single frame baseline, and indicate that
motion features are difficult to obtain by simply and directly pooling spatial features from CNNs.
To ameliorate this shortcoming, Simonyan et al. [36] proposed a two-stream ConvNet architecture,
which combines optical flow and RGB video frames to train CNN and achieves comparable results with
the state-of-the-art hand-craft based methods. Furthermore, dense trajectory pool CNN that combines
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improved Dense Trajectories (iDT) [37] and two stream CNNs via the pooling layer achieves the
state-of- the-art performance. Wang et al. [38] proposed a novel framework, temporal segment network
(TSN), inspired from long-range temporal structure modeling, and obtained the state-of-the-art
performance on the datasets of HMDB51 and UCF101. Another paradigm of action recognition,
3DCNNs, when solving above issues receive much attention from the community, which regard the
video as a spatiotemporal blobs and train 3D filters to recognizing action. 3DCNNs is first introduced
by Ji et al. [22] and learned 3D convolution kernels in both spatial and temporal space based on
a straightforward extension of the established 2DCNNs. However, the performance of this method
has been harder to scale for multi-stream methods. CNN based methods cannot accurately model the
dynamics by simply averaging the scores across the temporal domain, even if the appearance features
already achieve remarkable performance on other computer vision tasks.

2.2. LSTM-Like Architecture

To model the dynamics between frames, RNNs, particularly LSTM, have been considered in
video based human action recognition. LSTMs are recurrent modules which can learn long-term
dependencies using a hidden state augmented with nonlinear mechanisms to allow the state to
propagate without modification. Most recent activity recognition methods [25,27,29] have CNNs
underlying the LSTMs to mine the information in the feature map. Donahue et al. [27] proposed LSTMs
that explicitly model short snippets of ConvNet activations. Meanwhile, Ng et al. [29] demonstrated
that two-stream LSTMs outperform improved dense trajectories (iDT) [39] and two-stream CNNs,
although they need to pre-train their architecture on sports 1-M videos. Srivastava et al. [24] also
utilized pre-training on hundreds of hours of sports video, but they proposed an interesting LSTM
based unsupervised training method and then fine-tuned this unsupervised pre-training LSTM to
adapt human action recognition tasks. More importantly, they used an encoder LSTM to map an input
sequence into a fixed-length representation, and used single or multiple decoder LSTMs to perform
reconstruction of the input sequence or prediction of the future sequence. Then, Mahasseni et al. [40]
proposed training LSTMs that are regularized using the output of another encoder LSTM (RLSTM-g3)
grounded on 3D human-skeleton training data. Baccouche et al. [41] proposed a two-step learning
method in which 3D features are extracted from CNNs, and then an RNN is trained to classify each
sequence by considering the temporal evolution of the learned features.

2.3. Attention Mechanism

To address this, attention models was introduced to capture where the model is focusing its
attention when performing this task. Karpathy et al. [23] used a multi-resolution CNN architecture to
perform action recognition in videos. They mentioned the concept of fovea but they fixed attention to
the center of the frame. More recently, Jaderberg et al. [42] proposed a soft-attention mechanism called
the Spatial Transformer module which they added between the layers of CNNs. Instead of weighting
locations using a softmax layer, which we do, they applied affine transformations to multiple layers
of their CNN to attend to the relevant part and get state-of-the-art results on the Street View House
Numbers dataset. Yeung et al. [43] performed dense action labeling using a temporal attention based
model on the input-output context and report higher accuracy and better understanding of temporal
relationships in action videos. Fantastic work by Sharma [25] and Xu et al. [44] used both soft attention
and hard attention mechanisms to generate descriptions. Our work directly builds upon these works.
Iin this paper, we use a soft attention mechanism for action recognition in videos. Combined with
proposed “attention-again” model, our model outperforms theirs.

3. The Proposed Method

The overall architecture of the proposed method is illustrated in Figure 1. We will describe the
three major components of our method in detail in this section: (1) convolutional feature extraction;
(2) LSTM sequence modeling and attention model; and (3) “attention-again” model.
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3.1. Convolutional Features Extractor

CNN has shown a good ability to produce a rich representation of the input image by embedding
it into a fixed feature vector. In many tasks, it is natural to use CNN as the encoder to extract the
features and networks which are pre-trained on ImageNet dataset might obtain great performance.
In general, our architecture can adapt any deep convolution networks for feature extraction, thus,
we conduct our encoder network with GoogLeNet, VGG and ResNet-101,152.

First, we employ the opencv toolkit to split each video into 16 video frames with fixed interval,
and then, we resize all frames into 224 × 224 and extract feature cubes from the different layers in
different networks. For example, in GoogLeNet, we pick up the last convolutional layer, and we extract
feature cubes from the last pooling layer and in both ResNet-101 and ResNet-152, also known as ,
block4 unit3 conv2. Simply, we represent these feature cubes as D× K× K (e.g., 512 × 14 × 14 used in
VGG Net). Especially, K× K is the size of feature map of the input image and D is the number of the
feature dimensions. Hence, at each time-step t, we extract K2 D-dimensional vectors. We refer to these
vectors as feature slices into a feature cube, and denoted as:

Xt = [Xt,1, · · · , Xt,K2 ]

Xt,i ∈ RD (1)

where each vertical feature vector is the same region of feature map in different dimensions. At time
step t, these K2 vertical feature slices to different overlapping regions in the input space and our model
chooses to focus its attention on these K2 regions.

3.2. LSTM Sequence Modeling and Attention Model

3.2.1. LSTM Sequence Modeling

Since the video is a sequence of frames, we establish a model p(y|Xt, ht−1) with RNNs.
After extracting the features in videos, we input all Xt in LSTMs. The LSTMs have been proven to get
great performance in many tasks, thus, we utilize LSTMs to process the features. In this subsection,
we briefly describe the LSTMs unit which is the basic part of our model. LSTM relies on a fantastic
structure of gates (it, ft, ot, gt) to control the flow of information to the hidden neurons and has the
ability to preserve sequence information over time and capture long-term dependencies. Moreover,
recent advances in computer vision also suggest that LSTM has potential to model videos for action
recognition [25]. We follow the LSTM implementation in [45], which is given as follows:

it = σ(Wixxn,t + Wimht−1 + bi)

ft = σ(W f xxn,t + W f mht−1 + b f )

ot = σ(Woxxn,t + Womht−1 + bo)

gt = tanh(Wgxxn,t + Wgmht−1 + bg)

ct = ft � ct−1 + it � gt

ht = ot � tanh(ct)

(2)

where it is the input gate, ft is the forget gate, ot is the output gate, and gt is calculated, as shown
in Equation (2). ct is the memory cell state at t, ht is the hidden state at t, and xn,t stands for input
features at t. σ means the sigmoid function and� denotes the element-wise multiplication. The weight
matrices are denoted by Wij and biases bj, which are the trainable parameters. The cores of the LSTM
unit are a memory cell ct and three gates it, ot, and ft. Memory cell ct encodes the information of
previous memory cell ct−1 and current input by employing these three gates, which control the
flow of information in LSTM units. For convenience, we denote ht, ct = LSTM(xt, ht−1, ct−1) as the
computation function for updating the LSTM internal state.
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In [42], they conduct a hierarchical structure with two LSTM layers, which is similar to our
method. However, they change the structure of LSTM to fit different input. Compared with [42],
we take the traditional LSTM as our loop-connected processor, and attention-again model is used to
solve the problem of input state.

To converge faster, we use the following initialization strategy (see Xu et al. [44]) for the cell state
and the hidden state of the LSTM:

c0 = finit,c(
1
T

T

∑
t=1

(
1

K2

K2

∑
i=1

Xi,t))

h0 = finit,h(
1
T

T

∑
t=1

(
1

K2

K2

∑
i=1

Xi,t))

(3)

where finit,c and finit,h are two multilayer perceptrons and T is the number of time-steps in the model.
These values are used to calculate the first location softmax a1

t,i (see Section 3.2.2) which determines
the initial input xn,1.

3.2.2. Attention Model

In an image, the key to recognize what is in it is to find the important parts or regions of interest.
In other words, different parts of the image have different weights. Compared with an image, not only
the regions in a video, but also the frames in a video play different roles. Sharma et al. [25] obtained
great achievement with attention mechanism and they have proven that soft attention could gain the
performance in CNN-RNN model for action recognition task. To obtain this information, we employ
soft attention mechanism.

The relations in each frame are of great importance for recognizing action. To discovery these
relations, we incorporate attention mechanism with LSTM. In this layer, hidden state h1

t−1 generated
from LSTM integrates input features X1

t extracted from ConvNet. Then, we design a function that
takes h1

t−1 and X1
t as the input and returns the unnormalized relevance score at time step t, which is

shown in below:
e1

t,i = WT
1 tanh(W1

a h1
t−1 + U1

a X1
t + b1

a) (4)

Once all relevance scores for feature sequence are computed, we normalize them to obtain the a1
t,i:

a1
t,i =

exp(e1
t,i)

∑K×K
j=1 exp(e1

t,j)
i ∈ 1...K2 (5)

The K2 vectors in the appearance feature cubes correspond to K2 regions in the t-th frame and
our model chooses to focus its attention on these K2 regions. a1

t,i is a softmax over K× K locations and
denotes weight of the i-th region. At each time step, we update the parameters of attention model,
and get the input x1

t by the following function:

x1
t =

K×K

∑
i=1

X1
t,ia

1
t,i (6)

After weighting the features from ConvNet, we get x1
t and input it into LSTM,

h1
t , c1

t = LSTM1(x1
t , h1

t−1, c1
t−1).

The illustration of the above process at the time step t is shown in Figure 2. In Equation (4),
the WT

1 , W1
a , U1

a and b1
a are estimated together in model training procedure.
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Figure 2. The illustration of attention process. a1
t,i is generated from hidden state and input, and then

refines the input of first layer of LSTM through attention weight.

3.3. “Attention-Again” Model

“Attention-again” model combines the neighboring frames with current frame to get the
interesting part of the frame. In other words, it could obtain more information than tradition attention
model. To incorporate “attention-again” model into our framework, we stack another LTSM layer.
Then, we utilize the current state in bottom LSTM network, the previous hidden state in top LSTM
network and the current input features to generate unnormalized relevance score at time step t:

e2
t,i = WT

2 tanh(W2
pah2

t + W2
a h2

t−1 + U2
a X2

t + b2
a) (7)

Similar to Equation (5), we normalize relevance score at time step and get a2
t,i

a2
t,i =

exp(e2
t,i)

∑K×K
j=1 exp(e2

t,j)
i ∈ 1...K2 (8)

where h1
t is hidden state generated from bottom layer at time t, and h2

t−1 represents hidden state
generated from top layer at time t − 1. In Equation (7), the WT

2 , W2
pa, W2

a , U2
a and b2

a are estimated
together in model training procedure. After that, we obtain the input of top LSTM, which is determined
by Equation (9):

x2
t =

K×K

∑
i=1

X2
t,ia

2
t,i (9)

Then, we feed this x2
t as features into top LSTM layer, h2

t , c2
t = LSTM2(x2

t , h2
t−1, c2

t−1) .
In Section 4.3.1, we discuss the number of layer with “attention-again” model.

3.4. Decode Network

After embedding attention mechanism into our framework, we then input the result of above
LSTM2 to decode network. The main methods consider all hidden state, and set so f tmax result as the
final category, which is shown in below function:

y ∼ argmaxSo f tmax(Wyh2
t + by) (10)

In our work, we only consider the hidden state from the last LSTM unit in top LSTM layer and
acheive great performance. In addition, the loss will converge fluently compared to the main methods.
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y ∼ (Wh2
n + b) (11)

4. Experiments

4.1. Datasets

To verify the effectiveness of our methods, we conduct experiments mainly on three public action
recognition benchmark datasets, namely UCF-11 (YouTube Action), HMDB-51 and UCF-101, which are
currently challenging annotated action recognition datasets.

UCF-11 dataset, also known as the YouTube Action dataset, consists of 1600 videos and 11 actions:
basketball shooting, biking/cycling, diving, golf swinging, horse back riding, soccer juggling, swinging,
tennis swinging, trampoline jumping, volleyball spiking, and walking with a dog. The clips have
a frame rate of 29.97 fps and each video has only one action associated with it. We use 1120 videos for
training and 480 videos for testing (70% for training and 30% for testing).

HMDB51 dataset is a large collection of realistic videos from various sources, including movies
and web videos. It is composed of 6766 video clips from 51 action categories, with each category
containing at least 100 clips. These clips are labeled with 51 classes of human actions such as Clap,
Drink, Hug, Jump, Somersault, Throw and many others. This dataset is more challenging than others
because it contains scenes with more complex backgrounds. It has similar scenes in different categories,
and it has a small number of training videos. HMDB-51 have three split settings to separate the dataset
into training and testing videos. Our experiments follow the original evaluation scheme, but only
adopt the first training/testing split. In this split, each action class has 70 clips for training and 30 clips
for testing.

UCF101 dataset is composed of about 13,320 realistic user-uploaded video clips and 101 action
categories, with each category containing at least 100 clips. The database is particularly interesting
because it gives the largest diversity in terms of actions and with the presence of large variations in
camera motion, object appearance and pose, object scale, viewpoint, cluttered background, illumination
conditions, etc, and it is the most challenging dataset to date. There are three splits for training and
testing (70% training and 30% testing). We tested our model on the first training/testing split in the
experiments. Classification accuracy is used as evaluation measure.

4.2. Training Details

As shown in Figure 1, we use a CNN-RNN network structure as in [25] to get our final prediction.
It is believed that training a good deep convolutional neural network for videos understanding is
more challenging. Similar to [25], we only train all the hyper-parameters in RNNs by inputing features
extracted from pre-trained ConvNet.

In detail, the dimensionality of the LSTM hidden state, cell state, and the hidden layer were set to
1024. To avoid overfitting, we use dropout (similar to Srivastava et al. [24]) of 0.5 at all non-recurrent
connections. After that, we employ Adam optimization algorithm (from Kingma et al. [46]) to train all
models. Next step, the learning rate starts from 0.003, then we use exponential decay algorithm which
was implied in TensorFlow toolbox and the decay rate is set to 0.9.

We implement our model with TensorFlow [47], and our experiments are carried out on a workstation
with a 4GHz Intel(R) Core (M) i7-4790 CPU, 128G RAM and an NVIDIA(R) GeForce 1080 GPU. In the
process of training and testing, our model uses CUDA to accelerate the experimental process. For UCF-11
dataset, we set batch size as 16, while the batch size of both HMDB-51 and UCF-101 is set as 8.

4.3. Results and Analysis

In this part, we analyze our experiment in two aspects. (1) Quantitative analysis: We compare the
result measured on three benchmark datasets with other state-of-art works under the same condition;
(2) Qualitative analysis: We show some examples that illustrate the attention in the frame vividly.
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4.3.1. Quantitative Analysis

The Effect of Different CNN Encoders

In the famous imageNet competition, ResNet have get great performance due to deep
structure. Since action recognition is not the same as image classification, we verify the result of
different CNN encoders. To date, there are four widely used CNN encoders, namely GoogLeNet,
VGG, ResNet-101 and ResNet-152, to extract visual features. In this sub-experiment, we study the
influence of different versions of CNN encoders on our framework. The experiments are conducted
on RGB data on the UCF11 and first split of HMDB51 and UCF101 datasets. The results are shown
in Table 1. These above networks are all pre-trained on imageNet dataset. We can easily find that,
by taking ResNet-152 as the visual decoder, our method perform best with 91.2% on UCF11, 54.4% on
HMDB51 and 87.7% on UCF101.

Table 1. Convolutional neural networks (CNNs) encoder analysis on UCF11 and first split of HMDB51
and UCF101. Classification accuracy is used as evaluation measure which represented as recognition
accuracies (%). The bold text represents the best result.

Model UCF11 HMDB51 UCF101

GoogLeNet 89.7 52.3 85.4
VGG 90.1 52.6 85.8

ResNet-101 90.9 53.8 87.2
ResNet-152 91.2 54.4 87.7

The Effect of Every Component

The baseline of these methods is a simple “encode–decode” model with CNN encoding the input
videos and LSTM decoding features into categories. In [48], they compare baseline performance of
LSTM, Attention-LSTM (ALSTM), ConvLSTM [49] and ConvALSTM. In Table 2, we list the performance
of all these LSTM variants and our main component for action recognition. To conduct a fair comparison,
we use VGG net as our encode network and conduct experiment on split 1 of UCF-101 and HMDB51.
Our proposed method significantly outperforms the variants on each dataset. From the component
analysis, we find that the three LSTM layers would perform worse than two LSTM layers, thus we use
two LSTM layers as our architecture. Moreover, attention mechanism greatly improves the performance,
and “attention-again” model gains the result of recognizing actions.

Table 2. Performance of LSTM variants and different components on first split of HMDB51 and UCF101.
Classification accuracy is used as evaluation measure which represented as recognition accuracies (%).

Model HMDB51 UCF101

LSTM 41.3 77.5
ALSTM 40.9 77.0

ConvLSTM 41.8 77.6
ConvALSTM 43.3 79.6

ConvLSTM + hierarchical LSTM (Three layers) 45.2 81.7
ConvLSTM + hierarchical LSTM (Two layers) 46.6 82.4

+ attention mechanism 50.9 84.1
+ “attention-again” model 52.6 85.8

Furthermore, in decode network, we only use the output of the last LSTM unit. To verify the
performance of this small change, we compare with conventional methods which make softmax
operation among the outputs of every LSTM unit. Then, we conduct experiments on UCF11 and use
the same encode network (VGG). The results are shown in Figure 3. The loss is shown in Figure 3a,
while Figure 3b represents accuracy. The red and blue lines in Figure 3 represent our method and
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softmax method, respectively. From Figure 3, it is easily concluded that our method is more fluent than
softmax. More importantly, the accuracy of our method is higher than softmax. Therefore, this structure
of decode network can be proven.

(a) (b)

Figure 3. The comparison of the result of output of the last LSTM unit with softmax operation among
the outputs of every LSTM unit: (a) comparison of loss; and (b) comparison of accurary. The red line
represents our method, and blue line denotes softmax.

Comparison with LSTM-like architecture

In this sub-experiment, we list all state of the art methods that use a LSTM-like architecture
for action recognition tasks by only using RGB data. To present the comparison completely and
clearly, we elaborate on some factors, such as pre-training type and network architecture. In Table 3,
our proposed method clearly performs the best among the LSTM-like architectures.

Table 3. State-of-the-art comparison with LSTM-like architectures. Classification accuracy is used as
evaluation measure which represented as recognition accuracies (%). The bold text represents the
best result.

Method Pre-Train Networks UCF11 HMDB51 UCF101ImageNet GoogLeNet VGG-M VGG16

LRCN [27] � - � - - - 82.9
Soft-attention [25] � � - - 84.86 41.31 77
VideoLSTM [48] � - - � - 43.3 79.6

JAN [50] � - - � - 50.2 81.6
L2STM [51] � - - � - * 83.2

Ours � - - � 90.1 52.6 85.8

The performance of RGB data from HMDB51 dataset are not shown in [51].

Comparison with state of the art

In addition to the LSTM-like comparison in Table 3, another state of the art algorithm comparison
is presented in Table 4, which shows the results from RGB data.

It is obvious that our “attention-again” model outperforms these above methods significantly
in three datasets. Although there are some other methods that combine the RGB data and flow data
together to improve the performance in benchmark datasets, our model performs competitively against
RACNN models in its category (models using RGB features only).
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Table 4. Comparison with state of the art methods, the result from RGB data only. The bold text
represents the best result.

Method UCF11 HMDB51 UCF101

Soft attention model [41] 84.96 41.31 77
TSN [38] - 51. 0 84.5

Average pooling [52] - 52. 2 -
Attention-again model (our model) 91.2 54.4 87.7

4.3.2. Qualitative Analysis

In this part, we show some test examples of what our model is paying attention to in the videos.
As we know, attention model will teach network to focus on regions of interesting. Figure 4 shows the
correct example in test on UCF-11 dataset, where we can see that our model mainly focuses on where
the action is happening. Figure 4a is a horse-riding example; our model pays attention to the leg and
head of horse, and the leg of human is also given attention. Figure 4b is soccer example; our model
mainly attend to the person who is playing soccer as well as the ball. Figure 4c shows two man playing
volleyball; our model focuses on the net and surrounding in addition to players. Wang et al. [53]
suggest that the true meaning of an action lies in “‘the change or transformation an action brings to the
environment”, e.g., kicking a ball. Thus, to recognize action, we not only need the feature from the
human, but also need the feature of environment. In other words, we have to combine the foreground
and background together to gain better performance. Fortunately, our model tackles this problem by
using attention-again model. For example, in Figure 4b, our model not only attends to the person who
is playing soccer, but also focuses on the playground. It is naturally believed that, when people judge
whether the man in the image is playing soccer, the information of man with a ball is not enough; other
contextual information such as playground plays a critical role. Similar to Figure 4b, Figure 4c shows
that our model pays more attention to the net and surrounding information. Additionally, it is obvious
to observe that the person in Figure 4b,c is not as highlighted as that in Figure 4a.

Simultaneously, we can also better understand failures of the model using the attention mechanism.
Figure 5a shows the incorrect example (Ground truth: biking; Result:tennis), while Figure 5b is correct
example of tennis and Figure 5c is correct example of biking. We could understand how the model performs
the wrong result to some extent by reviewing Figure 5b,c. As Figure 5b shows, our model attempts to focus
on the person playing tennis and some surroundings to recognize “‘tennis”, and the interesting regions
are mostly located in the red blocks. In Figure 5c, our model pays attention to the position of bike, apart
from region of where the person appears. Meanwhile, the interesting regions actually belong to not the
red blocks but the yellow ones. However, we could find that the model only focuses on the person and
cannot concentrate on where the bike appears in Figure 5a, thus our model incorrectly classifies the biking
into tennis.

(a)
Figure 4. Cont.
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(b)

(c)

Figure 4. The illustration of some correct examples: (a) horse-riding example; (b) soccer example;
and (c) volleyball example.

(a)

(b)
Figure 5. Cont.
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(c)

Figure 5. The illustration of difference between incorrect example and correct example. The label of (a)
is biking, but our model recognizes it as tennis, while (b) is correct example of tennis and (c) is correct
example of biking. The red case labels the location of person and the yellow one represents the location
of bike in image.

5. Conclusions

In this paper, we present a human-inspired model, namely “attention-again”, for action
recognition in videos. “Attention-again” model is a variant of the normal attention mechanism for
classification and recognition of human activities in videos. Our framework consists of three major
components: (1) convolutional feature extraction; (2) LSTM sequence modeling and attention model;
and (3) the proposed “attention-again” model. We conduct several experiments on three benchmark
datasets to demonstrate the great performance of model. From results shown in Section 4, we can easily
conclude that our model outperform the state-of-the-art work with RGB data. Moreover, we visualize
the region our model focuses on to understand how the model works. In future work, we will conduct
our model using other state-of-the-art works and combine the advantages of different works to improve
the accuracy of action recognition.
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