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Abstract: Chemical properties of geopolymers were evaluated from the reduction of fly ash particle
size by grinding. X-ray diffraction determined that at early curing ages new crystalline phases appear
in the matrix of the geopolymer and they remain for 28 days, with increases in intensities up to
60%. In Fourier transform infrared spectroscopy, displacements were identified in the main band of
the geopolymers at higher wavenumbers, attributed to the greater rigidity in the structures of the
aluminosilicate gel due to the increase of the reaction products in the geopolymers obtained through
fly ashsubjected to previous grinding, which is observable in the geopolymers matrix. Results indicate
that the reduction of fly ash particle size by grinding has an influence on the chemical properties
of geopolymers.
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1. Introduction

Current research by the scientific-technical community looks for alternative solutions to problems
related to energy consumption and CO2 emissions.

Global infrastructure demands require massive concrete and cement production, causing a
significant negative environmental impact since its production is responsible for 5–7% of global
anthropogenic CO2 emissions [1–3]. In addition, Portland cement production releases about 0.8 tons of
carbon dioxide for every ton of clinker produced [4]. This represents a considerable fraction of total
CO2 emissions. For this reason, it is important to propose alternative solutions with second-generation
materials, remains of other productive cycles (waste), which reduce the environmental impact and
avoid the use of new reserves. Therefore, the perspective for the future is to allow the adaptation of
new materials pertaining to concrete and Portland cement, but from a new perspective of durability, as
well as economic and social sustainability.

Fly ash (FA), metakaolin, and silica fume have been used as additions in the cement industries and
as pozzolanic materials that improve the physical, chemical, and mechanical properties of concrete [5–8].
In the last years, FA with high silica and aluminum content (Class F, ASTM C618 [9]) has made
important advances in the search for new applications [10–12]. Currently, the annual production of fly
ash worldwide is estimated to be around 700 million tons [13,14]. These achievements are aimed at the
development of binding materials due to their wide range of possible potential applications [15–17].
Alkaline cements, also called geopolymers, are obtained through a chemical process between fly ash
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and an alkaline solution at temperatures below 100 ◦C. This reaction results in the dissolution of
reactive phases of aluminosilicates. With the progress of the reaction, water is gradually removed,
and the tetrahedral groups of SiO4 and AlO4 form the polymeric precursors [18–20].

According to various studies, the physicochemical properties of geopolymers depend mainly
on the Si/Al, Na/Al ratios and water content [21,22]. Often, these ratios are investigated indirectly,
for example, by varying the activation ratio and curing conditions [23–25]. The chemical composition
in mass is largely related to the kinetics of the geopolymer matrix; therefore, FA reactivity and the
geopolymers chemical behavior depend specifically on the particle sizes and surface area [26,27].
The activation of these materials is also promoted by mechanical means, such as grinding, where
results that favor geopolymerization are obtained at low curing temperatures. Through FT-IR it is
demonstrated that FA with finer particles produce high reactivity indexes in the geopolymers and,
therefore, an increase in the reaction product of the alkaline aluminosilicate amorphous gel. This
produces an increase in compressive strength [28,29].

On the other hand, the use of X-ray diffraction (XRD) allows us to observe the formation of new
phases which are characteristics of the FA geopolymerization process, such as semicrystalline and
polycrystalline phases of inorganic polymers (especially zeolites) [30,31].

In this work, the influence of three different particle sizes of Mexican FA were comparatively
studied in the physicochemical behavior of the geopolymers, using XRD, FT-IR, and SEM.

2. Materials and Methods

2.1. Materials

FA from José López Portillo coal-fired power plant, located in Coahuila, México, was used;
its chemical composition determined by X-ray fluorescence is shown in Table 1, classifying it as a Class
F fly ash (FA-1) (ASTM C618 [9]).

Table 1. Chemical composition of fly ash.

Composition SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O SO3 TiO2 LOI *

% by weight 56.9 26.24 5.56 4.25 0.72 1.21 0.346 0.71 1.21 2.47

* Loss on ignition.

The FA was subjected to mechanical grinding using a ball mill for periods of one hour until the
highest percentage of material was passed through #200 and #325 sieves, and average particle sizes of
≤74 µm (FA-2) and ≤45 µm (FA-3) were obtained, respectively.

2.2. Experimental Design and Sample Preparation

Three sets of geopolymers G1 (G1-7, G2-14, and G3-28), G2 (G2-7, G2-14, and G2-28), and G3
(G3-7, G3-14, and G3-28) were obtained from FA-1, FA-2, and FA-3 respectively. In addition, 8M NaOH
and solution/ash ratio = 0.40 were used as the alkaline activator. The mixture was made following the
methodology established in previous work [32]. They were placed in prismatic molds and then cured
at 80 ◦C under conditions of relative humidity greater than 90% for 7, 14, and 28 days.

2.3. Characterization of FA

The distribution of FA particles is shown in Figure 1; it can be observed that 92% of the particles
in sample FA-3 are smaller than 45 µm, while FA-1 and FA-2 have a higher percentage of particles with
a size greater than 45 µm with 55% and 60%, respectively. It can also be observed that FA-1 contains
particle sizes greater than 100 µm (30%). The specific surface area obtained by Brunauer-Emmett-Teller
method (BET) of FA-1, FA-2, and FA-3 is shown in Table 2.
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The identification of phases obtained by XRD show that the main compounds in FA-1, FA-2, 
and FA-3 are the mullite (Al6Si2O13) and quartz (SiO2), respectively (Figure 2a). Shown in the 
diffractograms are their primary peaks at 16.3 and 26.7° 2θ, in addition to an amorphous phase 
between 17° and 30° of 2θ, which is characteristic of this type of material [33]. The XRD patterns 
indicated no apparent change in the mineralogy and peak intensities in the milled samples [28].  

 
Figure 2. Analysis of FA-1, FA-2, and FA-3 by: (a) X-ray diffraction (Q: quartz, M: mullite); (b) FT-IR 
spectroscopy. 

In Figure 2b the FT-IR spectra of FA-1, FA-2, and FA-3 are shown, in which no band shifts or 
significant changes of FA-1 are observed respect to FA-2 and FA-3, presenting bands at 560, 792 and 
1092 cm−1 attributed to symmetric stretching (Al-O-Si), symmetric stretching vibrations (Si-O-Si), 
and asymmetric stretching vibrations (Si-O-Si and Al-O-Si), respectively. Moreover, the bands in the 
regions of 1630 and 3437 cm−1 are attributable to stretching and deformation vibrations of O-H and 
H-O-H groups [33,34]. For this, only FA-1 was chosen as a reference for comparison with the FT-IR 
spectra of the different geopolymers (Figure 4. The transmittance spectra of FA-1 and the different 
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Figure 1. Particle size distribution of FA-1, FA-2, and FA-3.

Table 2. Specific surface area of FA-1, FA-2, and FA-3.

Sample Specific Surface Area (m2/kg)

FA-1 975
FA-2 1107
FA-3 1371

The identification of phases obtained by XRD show that the main compounds in FA-1, FA-2,
and FA-3 are the mullite (Al6Si2O13) and quartz (SiO2), respectively (Figure 2a). Shown in the
diffractograms are their primary peaks at 16.3 and 26.7◦ 2θ, in addition to an amorphous phase
between 17◦ and 30◦ of 2θ, which is characteristic of this type of material [33]. The XRD patterns
indicated no apparent change in the mineralogy and peak intensities in the milled samples [28].
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Figure 2. Analysis of FA-1, FA-2, and FA-3 by: (a) X-ray diffraction (Q: quartz, M: mullite);
(b) FT-IR spectroscopy.

In Figure 2b the FT-IR spectra of FA-1, FA-2, and FA-3 are shown, in which no band shifts or
significant changes of FA-1 are observed respect to FA-2 and FA-3, presenting bands at 560, 792 and
1092 cm−1 attributed to symmetric stretching (Al-O-Si), symmetric stretching vibrations (Si-O-Si),
and asymmetric stretching vibrations (Si-O-Si and Al-O-Si), respectively. Moreover, the bands in the
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regions of 1630 and 3437 cm−1 are attributable to stretching and deformation vibrations of O-H and
H-O-H groups [33,34]. For this, only FA-1 was chosen as a reference for comparison with the FT-IR
spectra of the different geopolymers (Figure 4 The transmittance spectra of FA-1 and the different
geopolymers over the range of 1350–850 cm−1 were subjected to a deconvolution analysis using the
Gaussian peak shape method).

3. Results and Discussion

3.1. XRD and FT-IR Analysis

The XRD of the geopolymers show a similarity in the intensity of the peaks produced by the
present crystalline phases, in relation to each type of geopolymer, highlighting quartz as the most
intense peak, present at 2θ = 27◦, attributed to the natural structure of the FA. The main crystalline
phases of FA depend on the combustion process carried out in the coal plants; however, the crystal
structures present in FA (Class F) coincide with the results of other investigations [35,36].

However, the reduction of particle size through mechanical grinding is the variable that causes a
change in the XRD of the geopolymers, which is attributed, on the one hand, to the increase of the
specific surface area, expanding the contact area with the alkaline activator, which promotes an increase
in the reactivity of the FA. It was also observed that the mechanical grinding affected the microstructure
of the FA and mainly causes a weakening in the vitreous chemical bonds of Si-O or Al-O, besides
the fact that it accelerates the dissolution of these bonds, shortening the equilibrium time, gelation,
and structuring of the new crystalline phases and of the different reaction products, specifically the
hydrated sodium aluminosilicate gel (N-A-S-H), which is known as the reaction product that gives the
mechanical properties to the geopolymer.

In Figure 3, the characteristic crystalline phases that were already present in the FA did not suffer
any change with respect to the activated samples, because sodium hydroxide did not cause alterations
in these phases due to the strong binding energies, which oscillate between 360 and 380 kcal/mol
(five times stronger than the vitreous phase) [37], through which the alkalinity of the solution is capable
of dissolving the bonds of the amorphous phase of this starting material.
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Figure 3. X-ray diffraction pattern of geopolymers (Q; quartz, M; mullite, f; faujasite, z; type Y-Zeolite,
c; sodium carbonate).
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A semicrystalline gel is produced in the geopolymers pastes, which is characteristic in these
materials and is displayed in the range of 2θ between 20◦ and 40◦. In addition, scattered peaks appear
at different intensities, located between 5◦ and 50◦ in 2θ [38]. These results are consistent with those
shown in the infrared spectra (Figure 4) that identify small bands located between 560 cm−1 and
792 cm−1, where the first can be attributed to the vibration of Al-O-Si bonds contained in the mullite
and the second to Si-O-Si bonds included in the quartz [39,40]. Considering that these bands are
maintained for each of the spectra of the activated materials (the sets G1, G2, and G3), it is confirmed
that these crystalline phases are not modified and, therefore, the signals come from the crystals of the FA.
Regarding the curing age at early ages, the sets G1 and G2 remain constant. However, set G3 presents
an increase in its intensity, and this behavior remains for 14 and 28 days, indicating the development of
polymerization of the material. This process reveals evolutions in the crystalline phases, determining
the influence that the particle sizes of the FA have on the reactivity of the geopolymers.
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Figure 4. FT-IR spectra of FA-1 and obtained geopolymers at different curing days.

As curing time passes, there is a decrease in the halo of the amorphous phase (Figure 3) located
between 20◦ and 40◦ of 2θ due to its dissolution, which promotes the formation of new products and
allows for the occurrence of the specific phases of the geopolymers.

In Figure 5, it is shown how faujasite and type Y-zeolite acquire intensities with similar tendencies.
The largest ones are concentrated in G3-14 and G3-28, and are up to 50% more intense than those in
group G1, which can be attributed to a greater development of crystallinity in its phases [41], mainly
due to a greater reactivity of the FA, because of the increase of the specific surface area induced by the
reduction of particle size by grinding, which causes the weakening of Si-O and Al-O bonds and thus
promotes the incorporation of soluble Si and Al in the crystalline chain.

The band at 3437 cm−1 is derived from the O-H stretching present in the FA. In the same way,
this band appears wider in the geopolymeric samples due to the overlapping of signals, originating
from the contribution of hydroxyl systems of the alkaline activator to the chemical structure of G1, G2,
and G3. On the other hand, the free water present in the FA shows a low transmittance at 1630 cm−1.
This is attributed to the low contained humidity; however, in G1, G2, and G3 a more intense band
appeared at 1655 cm−1 due to the presence of physically bound water (H-O-H), which was produced
by the hydrolysis that occurs from the specific equilibrium process of aluminates and silicates until the
final polymerization of the geopolymer.
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Figure 5. Intensities ratio of faujasite and type Y-zeolite phases obtained by X-ray diffraction.

The intensification of the band at 1428 cm−1 is attributed to the C-O bonds present in NaCO3

(Figure 3c) produced by the reaction of free NaOH in the geopolymers with CO2 from the environment.
At 1092 cm−1, a band corresponding to the FA-1 spectrum is observed and there is a shift towards

lower wavenumber, in the 1000 and 1016 cm−1 range, attributed to the asymmetric stretching of the
Si-O-Si and Al-O-Si bonds present in the semicrystalline gel of the specimens. The presence of this
band is considered the most important, since it provides information related to the development and
polymerization of the alkali-activated FA [23,38,42].

Spectra deconvolutions were performed (Figures 6–8) which show these shifts of the evolution of
the bands that characterize these activated materials. The assignment of bands is proposed in Table 3.
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Table 3. Characteristic IR vibrational bands of geopolymers [43].

Band (cm−1) Color Assignment
1230–1250 Asymmetric stretching (Si-O-Si and Al-O-Si)
1150–1200 Asymmetric stretching (Si-O-Si)
1050–1150 Asymmetric stretching of amorphous phase (Si-O-Si and Al-O-Si)
980–1030 Asymmetric stretching of N-A-S-H gel (Si-O-Si and Al-O-Si)

The spectra deconvolution allows us to observe the shift and the displacement of the bands of
FA-1 towards lower wavenumbers with more precision, as well as to establish the changes that occur
in the material during polymerization and ascertain with greater certainty that the FA was activated
and a geopolymer is obtained. In the spectra analyzed by this method, it can be seen that the curing
time is a factor that determines the process, but that the particle size from the first days of curing
influences the polymerization process to a greater extent through the activation of the FA. The width of
the blue band is wide because of the diversity of vibrations Si-O and Al-O produced by the amorphous
molecule of the reaction product [44,45].
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The vibrations of the bonds attributed to the vitreous phase of the FA-1 of origin, when activated,
transform and vibrations at lower wavenumbers are observed, which is characteristic of the formation
of the gel product of the polymerization of the activated material.

It can be observed that the green band cedes almost all of its color towards the darker blue;
however, sets G1 and samples G2-7 and G2-14 continue showing small green areas, indicating
the continued vibration of the amorphous material, which suggests that it is still present in some
geopolymers (see Figures 6–8). The change of color or the change of phase (the amorphous phase
of FA-1 to the semicrystalline phase of geopolymers) is derived from the precipitation of Si and
Al reactive bonds in the original FA with NaOH. The FA contains a higher percentage of Si4+ than
Al3+ and, together with the reactivity of the same and the increase in the curing time, Si4+ bonds
are gradually integrated into the environment of the aluminosilicate gel, so Si4+ begin to occupy
the spaces of Al3+ [46]. This causes displacements to higher wavenumbers, due to the higher Si-O
bond strength (80 kcal/mol) with respect to the Al-O bond strength (60 kcal/mol) [47], moving
from 1002.5 cm−1 at the lowest end (G1-7) to 1015.26 cm−1 at the highest end (G3-28). With this
information (1026 cm−1–1002 cm−1 = 100%), Figure 9 attempts to relate the highest wavenumber with
the geopolymerization of the specimens. It can be seen that the set G3 has the highest displacements,
with percentages greater than 60% in relation to the extremes. In this list, G2-14 and G2-28 are
integrated with 60% and 66%, respectively. Samples that were obtained through FA without milling
or sifting show percentages below 30%. As previously mentioned, the specific surface area of the FA
plays a more important role in relation to the curing time, since after 14 days sets G-2 and G-3 show a
high or acceptable geopolymerization.
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Figure 9. Geopolymerization by displacements (in %) of the FT-IR band (1200–850 cm), considering
that the G3-28 sample has 100% and the G1-7 sample has 0% of geopolymerization.

The band that appears in a violet color in FA-1 disappears for the samples of the geopolymers.
This behavior indicates that the Si-O and Al-O vibrations become part of the color blue or the crystalline
phase, represented by the color red. The vibrations of the bonds found in the phases of the mullite
or quartz for the FA are identified in the red band. However, this band widens considerably in the
geopolymers, which is caused by the formation of new zeolitic phases.
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3.2. Microstructure

Figure 10 shows the morphologies, structures, and phases of the geopolymers with a curing
time of 28 days, which is when significant changes and differences between the samples are observed.
The NaOH produces the phase dissolution of the FA, and forms reaction products with a homogeneous
and compact matrix that does not occur in the starting material, the main characteristic of which is
its spherical shape (Figure 10a) [48]. In the micrographs corresponding to the geopolymers, cavities
left between the reaction products can be observed, which are mostly gels formed by long chains of
silicates and aluminates balanced by the sodium ions of the NaOH used as solution. These results
consistent with other investigations [49,50]. The new structures are a consequence of alkaline attack
and thermal curing during the process of obtaining the geopolymers [51].Appl. Sci. 2018, 8, x FOR PEER REVIEW  9 of 11 
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Figure 10. SEM micrographs of: (a) FA-1, (b) G1-28, (c) G2-28, (d) G3-28.

Likewise, through these images it is also possible to observe the evolution of the reaction products
with different particle sizes of FA-1.

In Figure 10b there are fewer crystalline phases and a heterogeneous matrix without defined
structures which is related to a low crystallinity; as the particle size decreases (Figure 10c,d), the number
of crystalline products increases and is consistent with zeolitic structures attributed to the faujasite
and type Y-zeolite. These structures are present in the sets G1, G2, and G3, but with higher intensity
in G3 (Figure 5) inside an amorphous matrix attributed to the formation of gels in the activation and
geopolymerization process [51].

This influence on the achievement of the reaction products is observed in the displacement of the
bands of the FT-IR spectra and in the creation of new crystalline phases that also appear in XRD.
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4. Conclusions

1. The reduction of fly ash particle size by grinding allows a greater dissolution in the alkaline
activation of the raw material.

2. Deconvolutions show the displacement of the bands with greater precision, and in the same way
establish whether the activation process was carried out and elucidate the evolution of how the
bonds are restructured over time.

3. A smaller particle size requires less time to produce crystalline structures and gels that provide
stability to the geopolymers, as well as more homogeneity in the matrix and more rigid bonds.
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26. Erdoğdu, K.; Türker, P. Effects of fly ash particle size on strength of Portland cement fly ash mortars.
Cem. Concr. Res. 1998. 28, 1217–1222. [CrossRef]

27. Van Jaarsveld, J.G.S.; Van Deventer, J.S.J.; Lukey, G.C. The characterization of source materials in fly ash-based
geopolymers. Mater. Lett. 2003, 57, 1272–1280. [CrossRef]

28. Kumar, S.; Kumar, R. Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting
geopolymer. Ceram. Int. 2011, 37, 533–541. [CrossRef]

29. Temuujin, J.; Williams, R.P.; Van Riessen, A. Effect of mechanical activation of fly ash on the properties of
geopolymer cured at ambient temperature. J. Mater. Proc. Technol. 2009, 209, 5276–5280. [CrossRef]

30. Sun, Z.; Vollpracht, A. Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash,
metakaolin and slag. Cem. Concr. Res. 2018, 103, 110–122. [CrossRef]
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