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Abstract: Real time quantum dynamics of the spontaneous translational symmetry breakage in the
early stage of photo-induced structural phase transitions is reviewed and supplementally explained,
under the guide of the Toyozawa theory, which is exactly in compliance with the conservation laws of
the total momentum and energy. At the Franck-Condon state, an electronic excitation just created by
a visible light, is in a plane wave state, which is extended all over the crystal. While, after the lattice
relaxation having been completed, it is localized around a certain lattice site of the crystal, as a new
excitation. Is there a sudden shrinkage of the excitation wave function, in between? No! The wave
function never shrinks, but only the spatial (or inter lattice-site) quantum coherence (interference)
of the excitation disappears, as the lattice relaxation proceeds. This is nothing but the spontaneous
breakage of translational symmetry.

Keywords: real time quantum dynamics; spontaneous translational symmetry breakage; early stage
of photo-induced structural phase transitions; conservation laws of the total momentum and energy

1. Introduction

The spontaneous symmetry breakage is one of the most important problems of great interest
in the solid state physics for these several decades. As already well-known, this problem is closely
related, not only to the various mechanisms of crystalline magnets, but also to the BCS mechanism of
the superconductivity, and even to the Higgs mechanism of the elementary particle physics [1].

The mechanism for the ferromagnetism of itinerant electrons in a conductive crystal within the
mean field approximation [2] is most easy for us to understand the spontaneous symmetry breakage.
At first, we start from a hypothetical paramagnetic state of itinerant electrons. It is perfectly symmetric,
in the sense that un-spin electrons and down-spin ones equally occupy all of the lattice sites of the
crystal, resulting in no macroscopic magnetic (spin) moment, without an externally applied magnetic
field. In the next, we hypothetically assume a spatially uniform, but finite unequal, occupation.
Under this condition, we estimate the total free energy of the system within the mean field theory.
Finally, we determine the real value of this hypothetical finite unequal occupation, so that it will give
the lowest free energy. If this lowest energy is even lower than the starting paramagnetic state, without
an externally applied magnetic field, we can get a ferromagnetic state that has a spontaneous and
macroscopic magnetic (spin) moment. Thus, we can get the symmetry breaking in the space of the
electron spin.

It should be noted that, during this symmetry breaking transition from the paramagnetic state to
the ferromagnetic one, the whole system is assumed to be always in the thermal equilibrium, and hence,
the speed of the transition has to be infinitely slow, according to the principle of the thermodynamics.

Keeping this point in mind, let us now proceed to the optical region spectroscopy of insulating
crystalline solids. In this research field, according to the rapid progress of time resolved laser techniques,
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real time quantum dynamics of optically created electronic excitations is gradually clarified in detail
up to a pico- or femto-second time scale. This advantageous experimental technology has also
been intensively applied even to the present spontaneous symmetry breaking problem. As a result,
experimental and theoretical studies for this problem have been intensively developed, although
it is quite a different way than mentioned above. That is, the real time quantum dynamics of the
symmetry breakage.

One of its typical results is the spontaneous (self-) localization of an exciton in insulating crystals.
The exciton is already well known to be the most elementary optical excitation across the energy gap of
insulating crystalline solids [3,4]. Just after the optical excitation, the exciton is always in a plane-wave
state extending all over the crystal. After the lattice relaxation having been completed, however, it is
in a localized state, being trapped by the self-induced local lattice distortion around it, provided that
the exciton-phonon coupling is short ranged and sufficiently strong. This concept was initiated by
Rashba [5] and Toyozawa [6] independently, and also developed afterwards rather independently [4,7].

This localization is intrinsic in the sense that it occurs without extrinsic trapping potentials, say, due
to impurities in the crystal [7]. Thus, it is nothing but the spontaneous translational symmetry breakage.
Usually, this self-localized exciton still remains within the energy gap of the original insulating crystal,
and it is luminescent. Hence, it finally disappears after radiating another photon whose energy is a
little smaller than that used for the initial excitation [8]. However, if the exciton-phonon coupling is
further strong, it remains frozen as a non-luminescent localized electronic excited state with a large lattice
distortion round it [9].

One can now say, it is a tiny photo-induced structural phase transition (PISPT). As already well
known, there discovered a new class of many solids, which, being shone only by visible photons,
become pregnant with a macroscopic excited domain that has new structural and electronic orders that
are quite different from the starting ground state [10,11]. This phenomenon is called PISPT [10], and the
present frozen non-luminescent localized electronic excited state is nothing but a PISPT, although the
domain size of the new phase is the possible minimum.

The purpose of the present paper is to review and supplementally explain this spontaneous
translational symmetry breakage in the very early stage of the PISPT. It was once reviewed only
shortly [12], and the explanation was also quite insufficient.

2. Adiabatic Nature of Exciton Self-Localization

As shown by Toyozawa [9], the PISPT phenomenon is closely related to the aforementioned
self-localization of an exciton in an insulating crystal. It can be simply described by the following
model Hamiltoninan (≡ HF,} = 1) for an exciton,

HF = −TF ∑
<l,l∗( 6=l)>

[
F+

l∗Fl + h.c.
]
+ ∑

l

(
Eg + 6TF −ω0SQl

)
F+

l Fl +
ω0

2 ∑
l

(
− ∂2

∂Q2
l
+ Q2

l

)
(1)

Here, TF (>0) is the resonant transfer (energy) of an exciton from a lattice site l to its nearest
neighbouring sites l∗ in a simple cubic crystal. The bracket <l, l∗> in Equation (1) denotes that
these two lattice sites l and l∗ are nearest neighbours with each other. F+

l in Equation (1) is the
creation operator of this exciton at the lattice site l. It is not the charge transfer type excitation, but
a Frenkel type (intra-atomic, or intra-molecular) one that is well localized only in each lattice site.
As schematically shown in Figure 1a, Eg in Equation (1) denotes the energy gap of this insulator,
while S is the dimensionless coupling constant of this exciton to a site localized phonon, of which
enegry and dimensionless coordinate areω0 and Ql , respectively. In this section, the kinetic energy
of this phonon is negelected, because of the adiabatic approximation. Usually, Eg, 6TF and ω0S are
quantities of the order of eV, whileω0 is 10 meV or so.
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Figure 1. The adiabatic potential energy surface of an exciton, at the Franck-Condon excited state (the 
red upward vertical arrows), and the self-localized exciton (STE), as a function of the Q଴. (a) The 
Luminescent case. (b) The photo-induced structural phase transition (PISPT) case. 

Within the adibatic approximation, the eigen-state (	≡ |Ψ(Q௟) >,< Ψ|Ψ >	= 1	) of this H୊ will 
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the total number of the exciton is just one, ∑ F௟ାF௟	௟ = 1. After formally taking the average of H୊ with 
respect to this unknown |Ψ >, we can apply the Hellmann-Feynman theorem to Equation (1), and 
can get as, డழஏ|ୌూ|ஏவడ୕೗ = 0, < Ψ|F௟ାF௟|Ψ > = ୕೗ୗ . (2)
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where Ψ is omitted in the averages < ⋯ >, for simplicity. We should note that this Equation (3) 
holds only at local minimum (or extremum) points in the multi-dimentional coordinate space 
spanned by Q௟, since it is obtained by using Equation (2).  

When the exciton-phonon coupling is sufficiently strong, 6T୊ < (ω଴Sଶ)/2 , according to 
Shinozuka and Toyozawa [7], we have only two types of minima in the adiabatic potential energy 
surface of the excited state, as schematically shown in Figure 1a. The first minimum is the global one 
with < F௟ାF௟ >	= δ௟,଴, being localized, say, at the origin l = 0 with a large lattice displacement, Q଴ = S. 
Its electronic energy ቀ൫E୥ + 6T୊൯ − ω଴Sଶቁ, given by the second term of Equation (1), formally starts 
from the exciton band center ൫E୥ + 6T୊൯ , but goes below the exciton band, as a local lattice 
displacement Q଴  is self-induced 	(0 → S) . It is called the self-trapped, or self-localized exciton  
(STE) state.  

The second local minimum is < F௟ାF௟ >= 1/N, where N denotes the total number of the lattice 
sites in the crystal. This is the plane-wave state of the exciton whose wave-vector (≡ k) is zero,  
k = 0, and its energy is just the energy gap E୥ . Thus, the final state of the Franck-Condon (FC) 
excitation by light (the red vertical upward arrows), is this plane wave state, being the lowest one 
within the exciton band, as shown in Figure 1. While, after the lattice relaxation, as schematically 
shown by the dashed red allows in Figure 1, the whole system reaches the STE state. We should also 
note that, at this largely displaced lattice configuration, even the elastic energy of the ground state, as 
well as that of the STE, increases upto ω଴Sଶ/2, since the lattice distortion (the last term of Equation (1)) 
is common to all states. If the total energy of this STE state is above the ground state one at this  
lattice configuration,  

Figure 1. The adiabatic potential energy surface of an exciton, at the Franck-Condon excited state
(the red upward vertical arrows), and the self-localized exciton (STE), as a function of the Q0.
(a) The Luminescent case. (b) The photo-induced structural phase transition (PISPT) case.

Within the adibatic approximation, the eigen-state (≡ |Ψ(Ql) >,< Ψ|Ψ > = 1) of this HF will be
given as a function of Ql . It is unknown at present, but we determine it under the condition that the
total number of the exciton is just one, ∑l F+

l Fl = 1. After formally taking the average of HF with
respect to this unknown |Ψ > , we can apply the Hellmann-Feynman theorem to Equation (1), and can
get as,

∂< Ψ|HF|Ψ >

∂Ql
= 0, < Ψ

∣∣F+
l Fl
∣∣Ψ > =

Ql
S

. (2)

Substituting this Equation (2) into the original Equation (1), we also get

< HF > =
(
Eg + 6TF

)
− TF ∑

<l,l∗( 6=l)>

[
< F+

l Fl∗ >+< F+
l∗Fl >

]
− ω0S2

2 ∑
l
< F+

l Fl >
2, (3)

where Ψ is omitted in the averages < · · · >, for simplicity. We should note that this Equation (3) holds
only at local minimum (or extremum) points in the multi-dimentional coordinate space spanned by Ql ,
since it is obtained by using Equation (2).

When the exciton-phonon coupling is sufficiently strong, 6TF <
(
ω0S2

)
/2, according to

Shinozuka and Toyozawa [7], we have only two types of minima in the adiabatic potential energy
surface of the excited state, as schematically shown in Figure 1a. The first minimum is the global
one with < F+

l Fl > = δl,0, being localized, say, at the origin l = 0 with a large lattice displacement,

Q0 = S. Its electronic energy
((

Eg + 6TF
)
−ω0S2

)
, given by the second term of Equation (1),

formally starts from the exciton band center
(
Eg + 6TF

)
, but goes below the exciton band, as a local

lattice displacement Q0 is self-induced (0→ S). It is called the self-trapped, or self-localized exciton
(STE) state.

The second local minimum is < F+
l Fl > = 1/N, where N denotes the total number of the lattice

sites in the crystal. This is the plane-wave state of the exciton whose wave-vector (≡ k) is zero, k = 0,
and its energy is just the energy gap Eg. Thus, the final state of the Franck-Condon (FC) excitation by
light (the red vertical upward arrows), is this plane wave state, being the lowest one within the exciton
band, as shown in Figure 1. While, after the lattice relaxation, as schematically shown by the dashed
red allows in Figure 1, the whole system reaches the STE state. We should also note that, at this largely
displaced lattice configuration, even the elastic energy of the ground state, as well as that of the STE,
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increases uptoω0S2/2, since the lattice distortion (the last term of Equation (1)) is common to all states.
If the total energy of this STE state is above the ground state one at this lattice configuration,

(
Eg + 6TF

)
− ω0S2

2
>
ω0S2

2
, (4)

this STE state still remains in the gap of this insulating crystal, and finally disappears with a luminescence,
of which energy is a little smaller that the exciting one, as shown in Figure 1a. This is the ordinary situation
widely realized in luminescent insulators [8].

As shown in Figure 1b, however, if the exciton-phonon coupling is so large as to relax down even
lower than the ground state at this largely displaced lattice configuration,

(
Eg + 6TF

)
− ω0S2

2
<
ω0S2

2
(5)

the system becomes non-luminescent, and the STE remains forever within the adiabatic approximation
at absolute zero temperature. This is nothing but the start of the PISPT [10], although the domain size
of the new phase is the possible minimum.

Thus, we have seen the spontaneous translational symmetry breakage. Similar to the above Stoner
theory [2], its mechanism is also a sufficient energy lowering from the perfectly symmetric state. According
to the adiabatic principle, however, the speed of this symmetry breaking transition is also infinitely slow.

Incidentally, within the framework of the present theory, we can formally encounter an extremely
strong coupling case that the energy of the STE becomes even lower than the starting ground state
itself;

(
Eg + 6TF −ω0S2/2

)
< 0. We cannot use Equation (1) for such a contradicting case.

3. Dynamics of Self-Localization

Let us now proceed to the non-adiabatic quantum dynamics of self-localization, including the
kinetic energy term of the phonon in Equation (1). The wavelength of visible light is quite a lot longer
than the lattice constant of the crystal. This means that the wave vector of the visible photon is almost
zero, because it is extremely smaller than the other wave vectors of an exciton in the first Brillouin
zone of this crystal. Consequently, as already mentioned in the previous section, the initial FC type
excited state (≡|FC >) is the Bloch wave whose total wave vector (≡ k) is almost zero, having the
same translational symmetry as that of the original crystal. It is given by

|FC > = N−
1
2 ∑

l
e−i k·l F+

l |0 > , k→ 0, (6)

|0 > ≡ Exciton·phonon true vacuum.
Thus, the probability density of the exciton at each lattice site of the crystal is inversely

proportional to N (volume of the crystal),

< FC|F+
l Fl |FC > = 1/N (7)

(the unit of length is the lattice contant).
Meanwhile, the self-localization mentioned above, is often misunderstood to be a sudden

shrinkage of the excitation energy or the excitation wave function from the infinitely extended Bloch
state |FC > to a localized one within a lattice site, say, only at the central lattice site of the crystal.
This picture of sudden shrinkage, however, is completely wrong. Even if it will shrink, it will do so,
not only to the central site, but also to all the other sites simultaneously and equally, with a certain
transient quantum coherence among them. This is not the shrinkage any more.
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Before, during, and even after the self-localization, the wave function never shrinks, as shown by
Cho and Toyozawa [13]. They have proposed the following simple but Bloch type self-localized state
(≡|STE >) ,

|STE > = N−
1
2 ∑

l
e
−i k·l−S(F+l Fl)

∂
∂ Ql F+

l |O > , k→ 0. (8)

In this Bloch type STE state, the density at each lattice site of the crystal is unchanged from
Equation (7), and is still inversely proportional to N,

< STE|F+
l Fl |STE > = 1/N. (9)

As described in Equation (8), however, through the following displacement operator for phonons,

e
−S(F+l Fl)

∂
∂ Ql , (10)

the self-localized state induces a large (S� 1) lattice distortion only in its site. This phonon displacement
will appear and disappear according to the presence or the absence of exciton, since it is just proportional
to F+l Fl. In other words, once this large local lattice distortion occurs, the exciton is heavily dressed in
phonons. Hence, even if it tries to move only to a neighboring lattice site from its original one, it has to
annihilate all these phonons (larger distortion) and has to make them again at the neighboring site, newly.
This phonon dressing picture was also developed by Rashba and his co-workers [14].

The aforementioned limited probability of the spatial motion can be estimated by the inter
lattice-site coherence (≡ C(∆), ∆ 6= 0) of exciton, which is given as,

C(∆) = ∑l < STE|F+
l+∆Fl |STE > . (11)

It becomes almost zero when the exciton–photon coupling is very strong

C(∆)→ 0 (, = < 0
∣∣∣∣e−S ∂

∂Ql+∆ |0 >< 0|e−S ∂
∂Ql

∣∣∣∣0 >, S� 1). (12)

While, at the initial FC state, this inter lattice-site coherence (≡ CFC(∆), ∆ 6= 0) is given as

CFC(∆) ≡∑l < FC|F+
l+∆Fl |FC > = 1, (13)

and remains finite. Thus, we can say, the spatial, or the inter-site quantum coherence of exciton
becomes zero when the exciton–phonon coupling is very strong, although it was finite at the FC state,
as schematically shown in Figure 2. This is nothing, but the spontaneous translational symmetry
breaking, and finally makes a classical and local picture for exciton valid. This relaxation with the
large lattice distortion from the Bloch wave to the self-localized one can occur even at absolute
zero temperature.

The above arguments related with Figure 2 for the exciton self-localization, however, are quite
formal and too conceptual. For this reason, Nasu and Toyozawa [15] have calculated the rate of this
symmetry breaking transition in detail, using more realistic models. In Figure 1, this transition is
described as if it occurs only within the one-dimensional space spanned by Q0. In reality, however,
it will occur in a multi-dimensional space spanned by many phonon mode coordinates. Moreover,
the FC sate and the STE are not completely orthogonal with each other. These points are taken into
account in the context of the multi-phonon non-radiative transition, and the rate is obtained as a
function of the exciton bandwidth, coupling constants of the optical and acoustic phonons, and the
exciton Wannier radius. It is in the region from 10−1ω1 to 10−2ω1 (ω1 ≡ the averaged acoustic phonon
energy), being more probable than the ordinary radiative decay rate of an exciton, in good agreement
with the experimental results in alkali iodides and rare gas solids.
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As for the PISPT, the self-localization is not the final destination, but the exciton further proliferates
to result in a localized semi-macroscopic domain of a new phase [10]. However, we have to surely
pass this early stage dynamics with the symmetry breakage.
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4. Conservation Laws of the Total Momentum and Energy, Heat Reservoir, Classical Localization

This early stage dynamics is a purely quantum mechanical one, and hence, it has to be in
compliance with the conservation laws of the total momentum and the total energy, exactly. As for
the total momentum, being zero from the beginning can be easily seen to be conserved from
Equation (8). While, to see the total energy conservation in detail, we have to tacitly assume a direct
transfer type interaction between neighboring site-localized phonons with an interaction constant
(≡ ∆ω0, 0 < ∆ω0 < ω0). Hence, the last term of Equation (1) becomes as,

∑
l

(
− ∂2

∂Q2
l
+ Q2

l

)
→ ω0 ∑

l

(
B+

l Bl +
1
2

)
+ ∆ω0 ∑

<l, l∗ ( 6=l)>

(
B+

l∗Bl + h.c.
)
, Bl ≡ 2−1/2

(
∂

∂Ql
+ Ql

)
, (14)

although it was not written explicitly in the stage of the Section 1.
By this interaction, the energy difference between the FC state and the STE (shown in Figure 1)

is finally radiated as a sound (or heat) wave. It is schematically denoted by a thin brown circle in
Figure 3.

Without this radiation, the symmetry breaking can never be completed. The most important
point is that this radiation of phonons occurs from each STE site to infinitely distant numberless lattice
sites, simultaneously and equally. If the STE is at l∗, infinitely distant numberless lattice sites are such
l s, as shown in Figure 3a, and vice versa, as shown in Figure 3b. That is, the radiation occurs only
in the relative (or internal) lattice space, whose central lattice site is occupied by this STE. This is an
irreversible process, since this relative space is also infinitely large. While these relative spaces are
orthogonal with each other, since

< 0
∣∣Fl∗F

+
l

∣∣0 > = 0, l∗ 6= l. (15)

Consequently, a superposition of states realized in each relative space can be possible, just like
Equation (8), even after we have included this irreversible phonon radiation. Since this Equation (14)
does not change the total energy, but only makes phonons move, we can now see the total energy is
well conserved.
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are orthogonal with each other, since < 0| F௟∗F௟ା|0 > = 0, ݈∗ ≠ ݈. (15) 

Figure 3. The schematic nature of the phonon radiation in the relative space of each STE, at a long time
(� ω−1

0 ) and a largely distant (|l − l∗| � 1) limits. The radiated phonon wave front becomes very
diffuse and almost spherical around the STE site. (a) When the STE is at l∗, it is from l∗ to many very
distant l s. (b) Vice verse. The situation of the phonon radiation in the short time (∼ ω−1

0 ) and shortly
distant ( |l − l∗| ∼ 1) region was described by Nasu and Toyozawa [15] in detail, using a more realistic
microscopic model for the exciton and the phonons, as well as the couplings among them.

We can now think of the usual master equation method to describe the lattice relaxation [16].
By this method, however, from the beginning, the whole system has to be clearly divided into two;
a relevant system on which we focus, and a heat reservoir, which instantaneously absorbs energies
released from the relevant system. By tracing out the reservoir variables, we can thus describe the
relaxation dynamics of the relevant system. In the electron-phonon coupled systems, the electronic part
is often regarded to be the system, while the phonon is regarded to be the reservoir. As we can easily
infer from Figure 3, however, such a priori division is impossible in the present problem. The phonons
at infinitely distant lattice sites from the STE may be the heat reservoir, but the central SET site, as well
as these distant sites, is all in the relative space, being not fixed in the real lattice at all.

Incidentally, long after this quantum and spontaneous localization, thus, having been completed,
an ordinary classical localization may also occur, since the localized exciton can also slowly and
diffusively move and will be trapped at dislocation or rare impurity sites, which unavoidably exist in
the ubiquitous crystal.

5. Conclusions

Real time quantum dynamics of the spontaneous translational symmetry breakage due to a light
excitation in the early stage of photo-induced structural phase transitions is reviewed and explained,
under the guide of the Toyozawa theory. At the FC state, an electronic excitation that is just created by
a visible light is in a plane wave state, extended all over the crystal. While, after the lattice relaxation
having been completed, it is localized around a certain lattice site of the crystal, as a new excitation.
Is there a sudden shrinkage of the excitation wave function, in between? No! The wave function never
shrinks, but only the spatial coherence of the excitation disappears, as the lattice relaxation proceeds.
This is nothing but the spontaneous breakage of translational symmetry. We have also reviewed,
the roles of the conservation laws of the total momentum and energy, as well as the specific nature of
the heat reservoir. A possibility of the final classical localization was also discussed, in comparison
with the present quantum and spontaneous localization.
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