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Abstract: Inspired by the process of migration and reproduction of flora, this paper proposes a novel
artificial flora (AF) algorithm. This algorithm can be used to solve some complex, non-linear, discrete
optimization problems. Although a plant cannot move, it can spread seeds within a certain range to
let offspring to find the most suitable environment. The stochastic process is easy to copy, and the
spreading space is vast; therefore, it is suitable for applying in intelligent optimization algorithm.
First, the algorithm randomly generates the original plant, including its position and the propagation
distance. Then, the position and the propagation distance of the original plant as parameters are
substituted in the propagation function to generate offspring plants. Finally, the optimal offspring is
selected as a new original plant through the selection function. The previous original plant becomes
the former plant. The iteration continues until we find out optimal solution. In this paper, six classical
evaluation functions are used as the benchmark functions. The simulation results show that proposed
algorithm has high accuracy and stability compared with the classical particle swarm optimization
and artificial bee colony algorithm.

Keywords: Swarm intelligence algorithm; artificial flora (AF) algorithm; bionic intelligent algorithm;
particle swarm optimization; artificial bee colony algorithm

1. Introduction

In science and engineering, there are cases in which a search for the optimal solution in a large
and complex space is required [1]. Traditional optimization algorithms, such as Newton’s method
and the gradient descent method [2], can solve the simple and continuous differentiable function [3].
For complex, nonlinear, non-convex or discrete optimization problems, traditional optimization
algorithms have a hard time finding a solution [4,5]. Using a swarm intelligence algorithm, such as the
particle swarm optimization (PSO) algorithm [6] and artificial bee colony (ABC) algorithm [7], can find
a more satisfactory solution.

A swarm intelligence optimization algorithm is based on the interaction and cooperation between
individuals in a group of organisms [8,9]. The behavior and intelligence of each individual is simple and
limited, but the swarm will produce inestimable overall capacity by interaction and cooperation [10].
Every individual in the swarm intelligent algorithm must be processed artificially. The individuals
do not have the volume and mass of the actual creatures, and the behavioral pattern is processed by
humans in order to solve problems when necessary. The algorithm takes all the possible solution sets
of the problem as the solution space. Then, it starts with a subset of possible solutions for the problem.
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After that, some operations are applied to this subset to create a new solution set. Gradually, the
population will approach to the optimal solution or approximate optimal solution. In this evolutionary
process, the algorithm does not need any information about the question to be solved, such as
gradient, except for the objective function [11]. The optimal solution can be found whether the
search space is continuously derivable or not. The swarm intelligence algorithm has characteristics of
self-organization, robustness, coordination, simplicity, distribution and extensibility. Therefore, the
swarm intelligence optimization algorithms are widely used in parameter estimation [12], automatic
control [13], machine manufacturing [14], pattern recognition [15], transportation engineering [16],
and so on. The most widely used intelligence algorithms include the genetic algorithm (GA) [17,18],
particle swarm optimization (PSO) algorithm [19], artificial bee colony (ABC) algorithm [20], ant colony
optimization (ACO) [21], artificial fish swarm algorithm (AFSA) [22], firefly algorithm (FA) [23], Krill
Herd algorithm (KHA) [24], and the flower pollination algorithm (FPA) [25]. In the 1960s, Holland
proposed the genetic algorithm (GA) [26]. GA is based on Darwin's theory of evolution and Mendel’s
genetic theory. GA initialize a set of solution, known as group, and every member of the group is a
solution to the problem, called chromosomes. The main operation of GA is selection, crossover, and
mutation operations. Crossover and mutation operations generate the next generation of chromosomes.
It selects a certain number of individuals from the previous generation and current generations
according to their fitness. They then continue to evolve until they converge to the best chromosome [27].
In [28], the Spatially Structured Genetic Algorithm (SSGA) is proposed. The populationin SSGA is
spatially distributed with respect to some discrete topology. This gives a computationally cheap method
of picking a level of tradeoff between having heterogeneous crossover and preservation of population
diversity [29]. In order to realize the twin goals of maintaining diversity in the population and
sustaining the convergence capacity of the GA, Srinivas recommend the use of adaptive probabilities
of crossover and mutation [30].

In 1995, Kennedy and Eberhart proposed the particle swarm optimization (PSO) algorithm [31].
The algorithm was inspired by the flight behavior of birds. Birds are lined up regularly during
migration, and every bird changes position and direction continually and keeps a certain distance
from the others. Each bird has its own best position, and the birds can adjust their speed and position
according to individual and overall information to keep the individual flight optimal. The whole
population remains optimal based on individual performance. The algorithm has the characteristics
of being simple, highly efficient, and producing fast convergence, but for a complex multimodal
problem, it is easy to get into a local optimal solution, and the search precision is low [32]. In order to
prevent premature convergence of the PSO algorithm, Suganthanintroduced a neighborhood operator
to ensure the diversity of population [33]. Parsopulos introduced a sequential modification to the
object function in the neighborhood of each local minimum found [34]. The particles are additionally
repelled from these local minimums so that the global minimum will be found by the swarm. In [35],
a dual-PSO system was proposed. This system can improve search efficiency.

In 2005, Karaboga proposed the artificial bee colony (ABC) algorithm based on the feeding
behavior of bees [36]. This algorithm becomes a hot research topic because of its easy implementation,
simple calculation, fewer control parameters, and robustness. The bee is a typical social insect, and
the behavior of a single bee is extremely simple in the swarm. However, the whole bee colony shows
complex intelligent behavior through the division and cooperation of the bees with different roles.
However, the ABC algorithm has some disadvantages [37]: for example, its search speed is slow, and its
population diversity will decrease when approaching the global optimal solution. It results in the local
optimal. Dongli proposed a modified ABC algorithm for numerical optimization problems [38]. A set
of benchmark problems are used to test its performance, and the result shows that the performance is
improved. Zhong proposed an improved ABC algorithm to improve the global search ability of the
ABC [39]. Rajasekhar investigated an improved version of the ABC algorithm with mutation based on
Levy probability distributions [40].
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This paper proposed a new intelligent algorithm called the artificial flora (AF) algorithm. It was
inspired by the reproduction and the migration of flora. A plant cannot move but can spread seeds to
let the flora move to the most suitable environment. Original plants spread seeds in a certain way, and
the propagation distance is actually learning from the previous original plants. Whether the seeds can
survive or not is related to environmental fitness. If a seed, also called offspring plant, cannot adapt
to the environment, it will die. If a seed survives, it will become original plants and spread seeds.
By using the special behavior of plants, the artificial flora algorithm updates the solution with the
migration of flora.

The main contributions of this paper are given as follows:

1. AF is multi-parent techniques, the movement in AF is related to the past two generation plants.
So, it can balance more updating information. This can help algorithm avoid running into the
local extremum.

2. AF algorithm selects the alive offspring plants as new original plants each iteration. It can take
the local optimal position as the center to explore around space. It can converge to optimal
point rapidly.

3. Original plants can spread seeds to any place within their propagation range. This guarantees
the local search capability of the algorithm. The classical optimization problem is an important
application of the AF algorithm. Function optimization is a direct way to verify intelligent
algorithm performance. In this paper, we successfully apply it to unconstrained multivariate
function optimization problems. We try to apply it to multi-objective, combinatorial, and more
complex problems. In addition, a lot of practical problems, such as wireless sensor network
optimization and parameter estimation, can be converted to optimization problems, and we can
use AF to find a satisfactory solution.

The rest of this paper is organized as follows. Section 2 describes the principle of the artificial flora
(AF) algorithm. Section 3 use six benchmark functions to test the efficiency and stability of artificial
flora algorithm and compare it with the PSO and ABC algorithms. The conclusions are presented in
Section 4.

2. Artificial Flora Algorithm

2.1. Biological Fundamentals

Plants have a variety of modes to spread seeds. Seed dispersal can be divided into autochory
and allochory. Autochory refers to plants that spread by themselves, and allochory means the plants
spread through external forces. For example, the mechanical propagation is autochory, and biological
propagation, anemochory, and hydrochory are all allochory. Autochory provides the conditions for
plants to migrate to a more suitable environment autonomously. For example, sorrels, impatiens, and
melons can spread seeds by this way. When a sorrel is ripe, its fruits will be loculicidal, and the shells
will curl up to pop the seeds. The fruits of the impatiens will burst open and spread its seeds around.
When a melon reaches a certain maturity, the seeds will be squirted out along with mucus from the top
of the melon. The distance can be 5 m. On the other hand, allochory provides the conditions for plants
to migrate to farther and uncharted regions. For instance, the spread direction and distance of seeds
are determined by the wind in anemochory as the wind speed and direction changes. These modes of
propagation extend the scope of exploration of flora and reduce the possibility of extinction of flora.

Because of climate change, severe natural environment, or competition, the distribution area of
flora can be expanded, reduced, or migrated. As flora migrates to new environment, the individual in
the flora will evolve as well. Therefore, the migration of flora can change distribution area and induce
the evolution, extinction, and rebirth of flora. A plant cannot move and has no intelligence, but flora
can find the best place to live by spreading seeds and reproducing.

In the migration and reproduction of flora, the original plant scatters seeds around randomly
within a certain distance. The survival probability of a seed is different due to the external environment.
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In a suitable environment, a plant survives and spreads seeds around after being ripe. In harsh
environments, there is a probability that flora will evolve to adapt to the environment or that become
extinct in the region. Before the flora in a region is completely extinct, allochory sows potential
probability that the flora may multiply in other areas. The seeds may be taken to any new area where
the flora resumes reproduction. Through multi-generational propagation, the flora will migrate to a
most suitable area. Under the mechanism of migration and reproduction, the flora completes the task
of finding the optimal growth environment through the evolution, extinction, and rebirth of flora.

2.2. Artificial Flora Algorithm Theory

The artificial floras algorithm consists of four basic elements: original plant, offspring plant, plant
location, and propagation distance. Original plants refer to the plants that are ready to spread
seeds. Offspring plants are the seeds of original plants, and they cannot spread seeds in that
moment. Plant location is the location of a plant. Propagation distance refers to how far a seed
can spread. There are three major behavioral patterns: evolution behavior, spreading behavior, and
select behavior [41–43]. Evolution behavior means there is a probability that the plant will evolve
to adapt to the environment behavior [44–46]. Spreading behavior refers to the movement of seeds,
and seeds can move through autochory or allochory. Select behavior means that flora may survive or
become extinct due to the environment.

The aforementioned social behaviors can be simplified by some idealized rules as follows:

Rule 1: Because of a sudden change in the environment or some kind of artificial action, a species
may be randomly distributed in a region where there is no such species and then become the
most primitive original plant.

Rule 2: Plants will evolve to adapt to the new environment as the environment changes. Therefore,
the propagation distance of offspring plants is not a complete inheritance to the parent plant
but rather evolves on the basis of the distance of the previous generation of plants. In addition,
in the ideal case, the offspring can only learn from the nearest two generations.

Rule 3: In the ideal case, when the original plant spreads seeds around autonomously, the range is a
circle whose radius is the maximum propagation distance. Offspring plants can be distributed
anywhere in the circle (include the circumference).

Rule 4: Environmental factors such as climate and temperature vary from one position to another,
so plants have different probability of survival. The probability of survival is related to the
fitness of plant in the position, fitness refers to how well plants can adapt to the environment.
That is, fitness is the survival probability of a plant in the position. The higher the fitness, the
greater the probability of survival is. However, inter-specific competition may cause plant
with high fitness to die.

Rule 5: The further the distance from the original plants, the lower the probability of survival because
the difference between the current environment and the previous environment will be greater
as the offspring plan farther from the original plant in the same generation.

Rule 6: When seeds spread by an external way, the spread distance cannot exceed the maximum limit
area because of constraints such as the range of animal activity.
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Figure 1. The process of migration and reproduction.

Figure 1 illustrates the process of migration and reproduction. The details are as follows:

1. According to Rule 1, there was no such species in the region, due to sudden environmental
changes or some kind of artificial action, original plants were spread over a random location in
the region, as the 3(x1) shows in Figure 1.

2. According to Rule 3, original plants spread seeds in the propagation range. In Figure 1, Distance1

is the propagation distance of 3(x1), offspring can be located in anywhere within the blue circle,
and the offspring is shown as
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stand for the fitness. The higher the number, the higher the offspring’s fitness.
It can be seen from the Figure 1 that if the offspring is closer to the original plant, the fitness is
higher: fitness(a1) > fitness(a2) > fitness(a3). This matches Rule 5.

4. According to Rule 4, only some of the offspring plant survive because the fitness is different.
As shown in Figure 1, the solid line indicates a living plant and the dotted line indicates that the
plant is not living. Due to competition and other reasons, the offspring a1 with highest fitness did
not survive, but a2 with the fitness less than a1 is alive and becomes a new original plant.

5. The new original plant spread seeds around, as �(b1,b2,b3) shown in Figure 1. It can be seen that
b1 and b3 are alive, but b2 does not survive. Then select one plant between b1 and b2 randomly to
become latest original plant, and b1 is selected as shown in Figure 1.

6. Distance2and Distance3 are the propagation distance of

Appl. Sci. 2017, 7, x FOR PEER REVIEW  5 of 22 

 
Figure 1. The process of migration and reproduction. 

Figure 1 illustrates the process of migration and reproduction. The details are as follows: 
1. According to Rule 1, there was no such species in the region, due to sudden environmental 

changes or some kind of artificial action, original plants were spread over a random location 
in the region, as the ◇(x1) shows in Figure 1. 

2. According to Rule 3, original plants spread seeds in the propagation range. In Figure 1, 
Distance1 is the propagation distance of ◇(x1), offspring can be located in anywhere within 
the blue circle, and the offspring is shown as (a1,a2,a3) in Figure 1. 

3. The number of  stand for the fitness. The higher the number, the higher the offspring’s 
fitness. It can be seen from the Figure 1 that if the offspring is closer to the original plant, 
the fitness is higher: fitness(a1) > fitness(a2) > fitness(a3). This matches Rule 5. 

4. According to Rule 4, only some of the offspring plant survive because the fitness is 
different. As shown in Figure 1, the solid line indicates a living plant and the dotted line 
indicates that the plant is not living. Due to competition and other reasons, the offspring a1 
with highest fitness did not survive, but a2 with the fitness less than a1 is alive and becomes 
a new original plant. 

5. The new original plant spread seeds around, as □(b1,b2,b3) shown in Figure 1. It can be seen 
that b1 and b3 are alive, but b2 does not survive. Then select one plant between b1 and b2 
randomly to become latest original plant, and b1 is selected as shown in Figure 1. 

6. Distance2and Distance3 are the propagation distance of (a2) and □(b1), respectively. 
According to Rule2, Distance2 evolves based on Distance1, and Distance3 is learning from 
Distance2 and Distance1. If b1 spreads seeds, the distance of b1’s offspring is based on 
Distance2 and Distance3. 

7. Plants are constantly spreading seeds around and causing flora to migrate so that flora can 
find the best area to live. 

8. If all the offspring plants do not survive, as   (c1,c2,c3) shown in Figure 1, a new original 
plant can be randomly generated in the region by allochory. 

2.2.1. Evolution Behavior 

The original plant spread seeds around in a circle with radius which is propagation distance. 
The propagation distance is evolved from the propagation distances of the parent plant and 
grandparent plant. 

( ) ( )1 1 2 20,1 0,1j j jd =d rand c +d r nd× a× ×c×  (1) 

(a2) and �(b1), respectively. According
to Rule2, Distance2 evolves based on Distance1, and Distance3 is learning from Distance2 and
Distance1. If b1 spreads seeds, the distance of b1’s offspring is based on Distance2 and Distance3.

7. Plants are constantly spreading seeds around and causing flora to migrate so that flora can find
the best area to live.

8. If all the offspring plants do not survive, as
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2.2.1. Evolution Behavior

The original plant spread seeds around in a circle with radius which is propagation distance.
The propagation distance is evolved from the propagation distances of the parent plant and
grandparent plant.

dj = d1j × rand(0, 1)× c1 + d2j × rand(0, 1)× c2 (1)
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where d1j is the propagation distance of grandparent plant, d2j is the propagation distance of parent
plant, c1 and c2 are the learning coefficient, and rand(0,1) denotes the independent uniformly distributed
number in (0,1).

The new grandparent propagation distance is

d′1j = d2j (2)

The new parent propagation distance is the standard deviation between the positions of the
original plant and offspring plant.

d′2j =

√√√√√ N
∑

i=1
(Pi,j − P′i,j)

2

N
(3)

2.2.2. Spreading Behavior

First, the artificial flora algorithm randomly generated the original flora with N solutions, which
is that there are N plants in the flora. The position of the original plants are expressed by the matrix Pi,j
where i is the dimension and j is the number of plant in the flora.

Pi.j = rand(0, 1)× d× 2− d (4)

where, d is the maximum limit area and rand(0,1) is an array of random numbers that are uniformly
distributed between (0,1).

The position of the offspring plant is generated according to the propagation function as follows:

P′i,j×m = Di,j×m + Pi,j (5)

where, m is the number of seeds that one plant can propagate, P′i,j×m stand for the position of offspring
plant, Pi,j is the position of the original plant, and Di,j×m is a random number with the Gaussian
distribution with mean 0 and variancedj. If no offspring plant survives, then a new original plant is
generated according to Equation (4).

2.2.3. Select Behavior

Whether the offspring plants are alive is determined by survival probability as follows:

p =

∣∣∣∣∣∣
√

F(P′i,j×m)

Fmax

∣∣∣∣∣∣×Q(j×m−1)
x (6)

where Q(j×m−1)
x is Qx to the power of (j × m − 1) and Qx is the selective probability. This value has to

be between 0 and 1. It can be seen that the fitness of an offspring plant that is farther from the original
plant is lower. Qx determines the exploration capability of the algorithm. Qx should be larger for
the problem that is easy to get into local optimal solution. Fmax is maximum fitness in the flora this
generation and F(P′i,j×m) is the fitness of j-th solution.

The fitness equation is an objective function. Then, a roulette wheel selection method is used
to decide if the offspring plant is alive or not. The roulette wheel selection method is also called
proportion select method [47]. Its basic purpose is to “accept according probability”; that is to say there
are several alternatives and each has its own potential score. However, selection does not completely
rely on the value of the score. Selection is according to the accepting probability. The higher the score,
the greater the accepting probability is. Generate a random number r with a [0,1] uniform distribution
every time, and offspring plant will be alive if the survival probability P is bigger than r, or it will
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die. Select N offspring plants among the alive offspring as new original plants and repeat the above
behaviors until the accuracy requirement is reached or the maximum number of iterations is achieved.

2.3. The Proposed Algorithm Flow and Complexity Analysis

The basic flowchart of the proposed AF algorithm is shown in Figure 2. The main steps of artificial
flora algorithm are as follows:

(1) Initialization according Equation (4), generate N original plants;
(2) Calculate propagation distance according Equation (1), Equation (2) and Equation (3);
(3) Generate offspring plants according Equation (5) and calculate their fitness;
(4) Calculate the survival probability of offspring plants according to Equation (6)—whether the

offspring survives or not is decided by the roulette wheel selection method;
(5) If there are plants that survive, randomly select N plants as new original plants. If there are no

surviving plant, generate new original plants according to Equation (4);
(6) Record the best solution;
(7) Estimate whether this meets the termination conditions. If so, output the optimal solution,

otherwise goto step 2.
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Based on the aforementioned descriptions, the AF algorithm can be summarized as the pseudo
code shown in Table 1.

Table 1. Pseudo code of artificial flora algorithm.

Input: times: Maximum run time
M: Maximum branching number

N: Number of original plants
p: survival probability of offspring plants

t = 0; Initialize the population and define the related parameters
Evaluate the N individuals’ fitness value, and find the best solution

While (t < times)
For i = 1:N*M

New original plants evolve propagation distance (According to Equation (1), Equation (2) and
Equation (3))

Original plants spread their offspring (According to Equation (5))
If rand(0,1) >p

Offspring plant is alive
Else
Offspring is died
End if

End for
Evaluate new solutions, and select N plants as new original plants randomly.
If the new solutionis better than their previous one, new plant will replace the old one.
Find the current best solution
t = t + 1;

End while
Output: Optimal solution

The time complexity of the algorithm can be measured by running time t(s) in order to facilitate
the comparison of various algorithms.

t(s) = tA × A(s) + tB × B(s) + ... + TP × P(s) (7)

where tA, tB, tP are the time required to perform every operation once and A(s), B(s), P(s) are the
number of each operation.

In the artificial flora algorithm, the number of original plants is N, and the maximum branching
number M is the number of seeds that one original plant can generate. t1 is the time to initialize
population. t2is the time of calculating propagation distance. t3 is the time to update the plant position.
t4 is the time to calculate the fitness. t5 is the time to calculate the survival probability. t6 is the time to
decide which plant is alive this generation using roulette wheel selection method. The time complexity
analysis of this algorithm is shown in Table 2. Therefore, we can see that the time complexity of
artificial flora algorithm is O(NM) in Table 2.

Table 2. The time complexity of artificial flora algorithm.

Operation Time Time Complexity

Initialize N × t1 O(N)
Calculate propagation distance 2N × t2 O(N)

Update the position N × t3 O(N)
Calculate fitness N ×M × t4 O(N·M)

Calculate survival probability N ×M × t5 O(N·M)
Decide alive plant using roulette N ×M × t6 O(N·M)
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3. Validation and Comparison

In this section, we use six benchmark functions [48,49] to test the efficiency and stability of
artificial flora algorithm. The definition, bounds, and the optimum values of functions are shown
in Table 3. For a two-dimensional condition, the value distributions of these functions are shown in
Figures 3–8. It can be seen from the Figures 3 and 4 that Sphere (f 1) and Rosenbrock (f 2) functions
are unimodal functions that can be used to test the optimization precision and performance of the
algorithm. f 3 to f 6 functions are complex nonlinear multimodal functions. The general algorithm has
difficulty finding the global optimal value. Because they have many local extreme points, they can be
used to test the global search performance and the ability to avoid prematurity of algorithm.

Table 3. Benchmark functions.

Functions Expression formula Bounds Optimum Value

Sphere f1(x) = ∑n
i=1 x2

i [−100,100] 0

Rosenbrock f2(x) = ∑n−1
i=1 [100(xi+1 − x2

i )
2
+ (xi − 1)2] [−30,30] 0

Rastrigin f3(x) = ∑n
i=1 [x

2
i − 10 cos(2πxi) + 10] [−5.12,5.12] 0

Schwefel f4(x) = ∑n
i=1 [−xi sin(

√
|xi|)] [−500,500] −418.9829 × D

Griewank f5(x) = 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos ( xi√
i
) + 1 [−600,600] 0

Ackley f6(x) = −20 exp (−0.2
√

1
n ∑n

i=1 x2
i )− exp ( 1

n ∑n
i=1 cos(2πxi)) + 20+ e [−32,32] 0
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The AF, PSO, and ABC are all bio-inspired swarm intelligence optimization algorithms. The PSO
and ABC methods are widely used intelligent optimization algorithms. So, we compare the AF
algorithm with the PSO [50] and ABC [36] algorithms to prove the advantages of this algorithm.
The maximum number of iterations, cycle index, and the running environment are the same. The three
algorithms will be iterated 1000 times respectively and run 50 times independently. All the experiments
using MATLAB (2012a, MathWorks Company, Natick, MA, USA, 2012) are performed on a computer
with Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz and 8.00GB RAM running the Windows 10 operating
system. The default parameters are shown in Table 4.

Table 4. The default parameters in particle swarm optimization (PSO), artificial bee colony (ABC), and
artificial flora (AF) algorithms.

Algorithm Parameter Values

PSO N = 100, c1 = c2 = 1.4962, w = 0.7298
ABC N = 200, limit = 1000
AF N = 1, M = 100, c1 = 0.75, c2= 1.25

Tables 5–7 show the statistical results in 20-dimensional space, 50-dimensional space, and
100-dimensional space, respectively. According to the statistical results shown in Tables 5–7 , AF can
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find a more satisfactory solution with higher accuracy compare with PSO and ABC. For the unimodal
function Sphere, AF can find the globally optimal solution. The accuracy of the solution obtained by
AF is improved compare to those obtained by PSO and ABC. For Rosenbrock function, the accuracy
of the solution is almost the same between AF and ABC in high dimensions (100-dimensional), and
they are all better than PSO. However, the algorithm stability of AF is higher than that of ABC.
For multimodal function (Rastrigin and Griewank), AF can steadily converge to the global optimal
solution in 20-dimensional and 50-dimensional space, and in 100-dimensional space, AF can find the
global optimal solution at best. For Schwefel function, the AF algorithm has better search precision in
higher dimensions. In low dimensions, the search precision of the AF algorithm is superior to PSO but
slightly worse than ABC. For Ackley function, AF is better than PSO and ABC for finding the global
optimal solution.

On the whole, the solution accuracy obtained by the AF algorithm is improved obviously for
the unimodal functions and the multimodal functions. It shows that the AF algorithm has strong
exploration ability. Also, the stability of AF in these benchmark functions is better than that of PSO
and ABC besides the Schwefel function.

Table 5. Comparison of statistical results obtained by AF, PSO, and ABC in 20-dimensional space.

Functions Algorithm Best Mean Worst SD Runtime

Sphere PSO 0.022229639 10.36862151 110.8350423 21.05011998 0.407360
ABC 2.22518 × 10−16 3.03501 × 10−16 4.3713 × 10−16 5.35969 × 10−17 2.988014
AF 0 0 0 2.536061

Rosenbrock PSO 86.00167369 19,283.23676 222,601.751 43,960.73321 0.578351
ABC 0.004636871 0.071185731 0.245132443 0.065746751 3.825228
AF 17.93243086 18.44894891 18.77237391 0.238206854 4.876399

Rastrigin PSO 60.69461471 124.3756019 261.6735015 43.5954195 0.588299
ABC 0 1.7053 × 10−14 5.68434 × 10−14 1.90442 × 10−14 3.388325
AF 0 0 0 0 2.730699

Schwefel PSO −1.082 × 10105 −2.0346 × 10149 −1.0156 × 10151 1.4362 × 10150 1.480785
ABC −8379.657745 −8379.656033 −8379.618707 0.007303823 3.462507
AF −7510.128926 −11,279.67966 −177,281.186 25,371.33579 3.144982

Griewank PSO 0.127645871 0.639982775 1.252113282 0.31200235 1.097885
ABC 0 7.37654 × 10−14 2.61158 × 10−12 3.70604 × 10−13 6.051243
AF 0 0 0 0 2.927380

Ackley PSO 19.99906463 20.04706409 20.46501638 0.103726728 0.949812
ABC 2.0338 × 10−10 4.5334 × 10−10 1.02975 × 10−9 1.6605 × 10−10 3.652016
AF 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0 3.023296

Table 6. Comparison of statistical results obtained by AF, PSO, and ABC in 50-dimensional space.

Functions Algorithm Best Mean Worst SD Runtime

Sphere PSO 13,513.53237 29,913.32912 55,187.50413 9279.053897 0.515428
ABC 6.73535 × 10−8 3.56859 × 10−7 1.17148 × 10−6 2.37263 × 10−7 3.548339
AF 0 4.22551 × 10−32 2.11276 × 10−30 2.95786 × 10−31 3.476036

Rosenbrock PSO 9,137,632.795 53,765,803.92 313,258,238.9 49,387,420.59 0.707141
ABC 0.409359085 13.87909385 49.83380808 9.973291581 4.094523
AF 47.95457 48.50293 48.87977 0.246019 6.674920

Rastrigin PSO 500.5355119 671.5528998 892.8727757 98.8516628 1.036802
ABC 0.995796171 3.850881679 7.36921061 1.539235109 3.661335
AF 0 0 0 0 3.753900

Schwefel PSO −1.6819 × 10127 −5.9384 × 10125 −2.5216 × 105 2.7148 × 10126 2.672258
ABC −20,111.1655 −19,720.51324 −19,318.44458 183.7240198 3.433517
AF −20,680.01223 −23,796.53666 −93,734.38905 16,356.3483 4.053411

Griewank PSO 118.8833865 283.810608 524.5110849 101.3692096 1.609482
ABC 1.63 × 10−6 1.29 × 10−3 3.30 × 10−2 0.005265446 6.573567
AF 0 0 0 0 3.564724

Ackley PSO 20.169350 20.452818 21.151007 0.2030427 1.499010
ABC 0.003030661 0.009076649 0.033812712 0.005609339 4.315255
AF 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0 5.463588
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Table 7. Comparison of statistical results obtained by AF, PSO, and ABC in 100-dimensional space.

Functions Algorithm Best Mean Worst SD Runtime

Sphere PSO 115,645.5342 195,135.2461 278,094.825 38,558.16575 0.711345
ABC 0.000594137 0.001826666 0.004501827 0.000839266 3.461872
AF 0 3.13781 × 10−16 1.34675 × 10−14 1.88902 × 10−15 5.147278

Rosenbrock PSO 335,003,051.6 886,456,293.7 2,124,907,403 386,634,404.3 1.053024
ABC 87.31216327 482.9875993 3159.533172 660.8862246 4.249927
AF 98.16326 98.75210 98.91893 0.143608 9.205695

Rastrigin PSO 1400.13738 1788.428575 2237.676158 190.5442307 1.711449
ABC 38.31898075 57.90108742 71.66147576 7.625052886 4.177761
AF 0 3.55271 × 10−17 1.77636 × 10−15 2.4869 × 10−16 5.526152

Schwefel PSO −1.8278 × 10130 −3.6943 × 10128 −9.38464 × 1085 2.5844 × 10129 4.541757
ABC −36,633.02634 −35,865.45846 −35,018.41908 428.4258428 3.776740
AF −42,305.38762 −43,259.38057 −212,423.8294 42,713.19955 5.638101

Griewank PSO 921.4736939 1750.684535 2954.013327 393.6416257 2.117832
ABC 0.006642796 0.104038042 0.349646578 0.098645373 6.995976
AF 0 1.71 × 10−11 4.96314 × 10−10 7.66992 × 10−11 5.440354

Ackley PSO 20.58328517 20.83783825 21.17117933 0.152682198 2.011021
ABC 2.062017063 2.669238251 3.277291002 0.28375453 4.611272
AF 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 0 6.812734

Figures 9–14 show the convergence time of the three algorithms in 50-dimensional space, and
Figures 15–20 show the convergence time of the three algorithms in 100-dimensional space.
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It can be seen from Figure 9 that the AF algorithm converges very quickly. The rate of convergence
of ABC algorithm, PSO algorithm and AF algorithm is slowing down at 120th iteration, 50th iteration,
and 15th iteration, respectively. The convergence curves of ABC and PSO intersect at the 50th iteration.
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Figure 11. The convergence curve of the three algorithms for Rastrigin function in 50-dimensional space.

Figure 11 illustrates that the convergence rate of the AF algorithm is still better than the other two
algorithms for Rastrig in function. The AF algorithm is convergent to a good numerical solution at the
15th iteration. The PSO algorithm converges fast, but it is easily trapped into the local optimal solution.
The convergence rate of ABC is slow.
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Schwefel is a typical deceptive function, as shown in Figure 12. The convergence rate of the AF
algorithm is similar to that of ABC for Schwefel function.
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Figure 13. The convergence curve of the three algorithms for Griewank function in 50-dimensional space.

Figure 13 shows that the AF algorithm converges at about the 23rd iteration, and the PSO and
ABC algorithms converge at about the 50th iteration and 200th iteration, respectively.
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As Figure 14 shows, for Ackley function, the PSO algorithm is easily trapped into a local
optimization. The convergence speed of the ABC algorithm is slow. The ABC algorithm converges
at about the 900th iteration. However, the AF algorithm can get a convergence solution at only the
40th iteration.Appl. Sci. 2018, 8, x FOR PEER REVIEW  16 of 21 
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It can be seen from Figures 15–20 that the trend of convergence curves in 100-dimensional space
is similar to that in 50-dimensional space.

It can be concluded that the AF algorithm can get a solution with higher accuracy and stability
than PSO and ABC according to Tables 5–7 and Figures 9–20. First, since the AF algorithm selects the
alive offspring plants as new original plants at each iteration, it can take the local optimal position as the
center to explore the surrounding space. It can converge to the optimal point rapidly. Second, original
plants can spread seeds to any direction and distance within the propagation range. It guarantees
the local search capability of the algorithm. Third, when there is no better offspring plant, in order to
explore the possibility that a better solution exists, new original plants will be generated randomly
in the function domain. This can help the AF algorithm to skip the local optimum and improve
the performance of global searching. Therefore, the AF algorithm has excellent accuracy, stability,
and effectiveness.

4. Conclusions

The beautiful posture of birds and the perfect cooperation of a bee colony left an impression on
people’s minds, so the PSO algorithm and ABC algorithm were proposed. In this paper, the proposed
artificial flora algorithm is inspired by the migration and reproduction behavior of flora. There are three
main behaviors, including evolution behavior, spreading behavior, and select behavior. In evolution
behavior, the propagation distance of offspring plants is evolution based on the propagation distance
of parent plant and grandparent plant. The propagation distance is optimized in each generation.
Since the propagation distance of offspring plants is not a complete inheritance to the parent plant,
there is an opportunity for the algorithm to get out of the local optimal solution. Spreading behavior
includes autochory and allochory. Autochory provides the opportunity for the original plant to explore
the optimal location around itself. This behavior provides local search capability to the algorithm.
Allochory provides opportunity for original plant to explore greater space, and global search capability
of the algorithm is obtained from this behavior. According to the natural law of survival of the fittest,
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the greater the survival probability of a plant with higher fitness, and thus the natural law is called
select behavior.

Several simulations have shown the effective performance of the proposed algorithm when
compared with PSO and ABC algorithms. The AF algorithm improves the algorithm's ability to find
the global optimal solution and accuracy and also speeds up the convergence speed.

In the future, we focus on solving discrete, multi-objective, combinatorial, and more complex
problems using the AF algorithm and its variants. For example, we are now trying to apply AF to
multi-objective optimization problems. Using the method of generating a mesh, AF can converge to
the optimal Pareto front. In addition, a lot of practical problems can be converted to optimization
problems, and then we can use AF to find a satisfactory solution. For instance, AF can be used to find
a satisfactory solution and can applied to parameter optimization and cluster analysis.
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