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Abstract: Recently, bio-inspired artificial muscles based on ionic polymers have shown a bright
perspective in engineering and medical research, but the inherent tremor behavior can cause instability
of output response. In this paper, dynamic additional grey catastrophe prediction (DAGCP) is
proposed to forecast the occurrence time of tremor behavior, providing adequate preparation time for
the suppression of the chitosan-based artificial muscles. DAGCP constructs various dimensions of
time subsequence models under different starting points based on the threshold of tremor occurrence
times and peak-to-peak values in unit time. Next, the appropriate subsequence is selected according to
grey correlation degree and prediction accuracy, then it is updated with the newly generated values to
achieve a real-time forecast of forthcoming tremor time. Compared with conventional grey catastrophe
prediction (GCP), the proposed method has the following advantages: (1) the degradation of
prediction accuracy caused by the immobilization of original parameters is prevented; (2) the dynamic
input, real-time update and gradual forecast of time sequence are incorporated into the model.
The experiment results show that the novel DAGCP can predict forthcoming tremor time earlier
and more accurately than the conventional GCP. The generation mechanism of tremor behavior is
illustrated as well.

Keywords: artificial muscle; dynamic additional grey catastrophe prediction; tremor behavior;
occurrence time

1. Introduction

Artificial muscle, as one of the most promising smart materials, has attracted great attention
for its potential applications in intelligent robots, artificial organs and biomedical devices in recent
decades [1–5]. Due to the impressive characteristics of light weight, high flexibility, super agility
and long durability [6–10], plentiful research results have been reported regarding the properties of
artificial muscle. Li et al. [11] proposed a novel cantilever beam artificial muscle using single-walled
carbon nanotubes, which showed superfast response and ultrahigh mechanical output power density.
Lu et al. [12] put forward an artificial muscle based on multi-walled carbon nanotubes, ionic liquids
and biopolymer chitosan, performing an excellent bio-compatibility. Jager et al. [13] studied the
electrically-controllable characteristics of conjugated polymers artificial muscles and applied them
to the drug injection therapy. Then, Escudero et al. [14] designed a magnetically sensitive actuator
with a ball screw and rare-earth magnet coreless, which was compact enough to be used in practical
artificial prosthesis, and the limitations of high-price and lower-power in conventional electrochemical
polymer actuations were overcome. Recently, Kim and Kwon [15] developed a hybrid muscle powered
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by skeletal muscle cells based on multi-walled carbon nanotubes. It provides potential for substantial
innovation in the next generation of cell-based biohybrid microsystems.

Although the above research results look appealing, with the bionics research moving forward,
researchers start to realize the rhythmic and involuntary contraction characterized by oscillations of
the muscle which implies the instability of the muscle’s output response. Such a drawback definitely
limits the applications of artificial muscle in clinical medicine and industrial production. Obviously,
capturing the tendency of tremor behavior can provide adequate time for the suppression of the
tremor, which is essential to the improvement of the artificial muscle’s output performance. Normally,
the tremor behavior of artificial muscle can be characterized by the tremor occurrence times and
maximum peak-to-peak values which can be predicted by applying grey systems theory.

The grey systems theory, established by Deng [16] in 1982, focuses on uncertainty systems with
small samples, which has been widely used in education, industry, agriculture, medicine and other
fields [17–23]. Grey prediction, an important part of grey systems theory, can provide scientific and
reasonable forecasts on the future states of grey systems. For the requirement of solving practical
problems, many improvements have been proposed by researchers to obtain accurate prediction
results. According to their features and functions, grey predictions can be classified into grey sequence
prediction, grey topological prediction, grey catastrophe prediction and seasonal system prediction,
etc. [24–27]. Among them, grey catastrophe prediction (GCP) is essentially the prediction for the time
distribution of abnormal values and it can forecast the forthcoming catastrophe moments to help
relevant persons to prepare for the worst conditions in advance [28–31].

In this paper, based on the generation mechanism of tremor behavior, a novel DAGCP method
is proposed to forecast the tremor occurrence time of artificial muscles. Due to the importance
of occurrence times and maximum peak-to-peak values in unit time for muscle tremor behavior,
the time subsequence models under different starting points and dimensions are constructed.
Then, the appropriate dimension is selected based on grey correlation degree and model precision,
and updated with the newly generated values to forecast the forthcoming tremor time. The prediction
results are compared with actual time series values for evaluating relative error and accuracy.
Furthermore, in order to prove the effectiveness and reliability of the proposed method, repeated
experiments are carried out for GCP and DAGCP based on 10 groups of chitosan-based artificial
muscles with different process parameters. Finally, some significant conclusions are discussed.

2. Materials and Methods

2.1. Materials and Fabrication of Artificial Muscle

Chitosan powder (deacetylation degree 85%) was purchased from Jingchun biochemical
technology limited company (Shanghai, China). Dilute acid (HA) (Hengxing chemical reagents
limited company, Tianjin, China), multi-walled carbon nanotubes aqueous dispersion (Boyu material
technology limited company, Beijing, China), glycerin (Dongli chemical reagent factory of Tianjin
University, Tianjin, China), etc. were applied as the ingredients.

The basic processes of muscle include the preparation of actuation film, the synthesis of electrode
film and hot embossing course as shown in Figure 1. Chitosan powder was added to 2% dilute
acid solution, and the mixture was stirred for 30 min at 60 ◦C water bath, then multi-walled carbon
nanotubes (MCNTs) aqueous dispersion was gradually added into the above mixture for another
15 min. After ultrasonic oscillation, a homogeneous electrode solution was obtained and poured into
a square mold (50 mm × 50 mm × 4 mm). The electrode film is formed in an oven at 80 ◦C for 6 h.
Meanwhile, the actuation solution was prepared through appending chitosan powder and glycerin
into the HA solution, and the mixture was stirred for 15 min at 60 ◦C. After ultrasonic oscillation, the
solution was poured into the mold and placed in the oven at 80 ◦C for about 4 h. Finally, the electrode
film and actuation film were fabricated by the hot-pressing method for 20 min at 30 ◦C.



Appl. Sci. 2018, 8, 315 3 of 13

Appl. Sci. 2018, 8, x 3 of 12 

 
Figure 1. Basic processes of chitosan-MCNTs muscle. MCNTs: multi-walled carbon nanotubes. 

2.2. Measurement Methods and Bending Mechanism 

The experiment system and deflection displacement model were established for testing the 
deflection displacements of the prepared artificial muscle samples, as shown in Figures 2 and 3, 
respectively. Under the effect of direct current (DC) voltage, the muscle sample achieved cathode 
deflection by overcoming the inherent bending stress, and real-time measurements d were collected 
from a laser displacement sensor device. After enough data was collected, a curve of time dependent 
displacement was drawn. 
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Figure 3. Deflection displacement model of artificial muscle: (a) Experimental testing; (b) Deflection 
displacement model. 

As a polymer material with good chemical stability, its side chains distribute a large number of 
amino (-NH2) after taking off the acetyl from the 40% sodium hydroxide solution. In general, dilute 
acids (HA) with concentrations of 2% are used as solvents. Figure 4 presents the schematic diagram 
of artificial muscle motion mechanism. During hydrolysis, several free amino groups (-NH2) from the 
molecular side chains are combined with hydrogen ions (H+) in solvent to form charged 
polyelectrolyte (-NH3+); free anions (-A−) are in a scattered state. Available dilute anions (-A−) include 

Figure 1. Basic processes of chitosan-MCNTs muscle. MCNTs: multi-walled carbon nanotubes.

2.2. Measurement Methods and Bending Mechanism

The experiment system and deflection displacement model were established for testing the
deflection displacements of the prepared artificial muscle samples, as shown in Figures 2 and 3,
respectively. Under the effect of direct current (DC) voltage, the muscle sample achieved cathode
deflection by overcoming the inherent bending stress, and real-time measurements d were collected
from a laser displacement sensor device. After enough data was collected, a curve of time dependent
displacement was drawn.
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Figure 3. Deflection displacement model of artificial muscle: (a) Experimental testing; (b) Deflection
displacement model.

As a polymer material with good chemical stability, its side chains distribute a large number
of amino (-NH2) after taking off the acetyl from the 40% sodium hydroxide solution. In general,
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dilute acids (HA) with concentrations of 2% are used as solvents. Figure 4 presents the schematic
diagram of artificial muscle motion mechanism. During hydrolysis, several free amino groups (-NH2)
from the molecular side chains are combined with hydrogen ions (H+) in solvent to form charged
polyelectrolyte (-NH3

+); free anions (-A−) are in a scattered state. Available dilute anions (-A−) include
hydrochloric acid root (Cl−) and acetic acid root (Ac−). When applying a lower DC voltage (under 3 V)
to the muscle, anions (-A−) move towards the positive electrode under Van Der Waals force; however,
the polyelectrolytes (-NH3

+) remain stationary owing to the restriction of chitosan molecular chains.
The positive electrode expands and deflects to the cathode under the aggregations of anions (-A−),
resulting in the displacement output of artificial muscle.
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Figure 4. Schematic diagram of artificial muscle motion mechanism: (a) Chitosan structure after
deacetylation; (b) Chitosan structure after dissolving in dilute acid; (c) The muscle deflection
after electricity.

2.3. Tremor Behavior Analysis

In this work, the tremor behavior of muscles refers to the rhythmic and involuntary contraction
characterized by oscillations of the muscle. It is an urgent issue for improving the stability of
output response.

The surface microscopic structures of actuation film samples are illustrated in Figure 5. It can be
seen that the overall structure of the actuation film is complete and compact without cracks, which can
ensure expected muscle deflection. However, there are many obvious wrinkled areas and spatial
agglomerations after it was magnified 5000 times. It will affect the normal movement of ions
and cause the uneven distribution of electrode ions, resulting in unstable output response, namely
tremor behavior.
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Based on the above bending mechanism, time dependent displacement data of sample 1 (40 mm×
5 mm × 0.5 mm) was collected at 3 V voltage as shown in Figure 6. It is easy to discover that the
changes in displacement are fluctuating, but the general trend is monotonically rising within the time
period. Regarding the displacement, if it decreases suddenly and then reverts to its last increasing
state and the maximum peak-to-peak value or duration value of this wave is no less than a specific
value, the tremor of artificial muscle is considered to happen. In particular, tremor behaviors are
marked in circles. In addition, the thresholds of peak-to-peak value and duration are set as 0.2 mm
and 1.5 s, respectively.
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The displacement data in the first 65 s is selected as the original sequence and the last 20 s is used
to test the accuracy of prediction. Table 1 shows the original and testing sequence of tremor occurrence
times and the maximum peak-to-peak values with a time unit of 5 s, respectively. Without loss of
generality, if no tremor occurrs in a specific time unit, the peak-to-peak value is set as 0 mm.

Table 1. Original sequence and test sequence of occurrence times and maximum peak-to-peak values.

Time (s) Time Series
Value

Occurrence
Times

Peak-to-Peak
Values (mm) Time (s) Time Series

Value
Occurrence

Times
Peak-to-Peak
Values (mm)

0~5 1 0 0 45~50 10 0 0
5~10 2 2 0.3 50~55 11 3 0.6

10~15 3 0 0 55~60 12 2 0.2
15~20 4 0 0 60~65 13 1 0.1
20~25 5 1 0.5 65~70 14 2 0.6
25~30 6 1 0.4 70~75 15 3 0.5
30~35 7 2 0.3 75~80 16 1 0.1
35~40 8 1 0.4 80~85 17 2 0.2
40~45 9 1 0.1

2.4. Improved Grey Catastrophe Prediction

2.4.1. GM (1, 1) Model

The general idea of grey prediction is to establish the first-order differential equation about
generated time sequence named GM (1, 1) model and forecast the occurrence time of forthcoming
abnormal values based on the inherent regularity [32]. In particular, the time sequence is divided into
equal time intervals. The threshold for determining abnormal values mainly depends on the actual
situation and experiment methods when implementing the catastrophe prediction.
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2.4.2. Conventional GCP Method

By specifying a threshold, the time sequence data of tremor behavior from 0 s to 65 s is considered
as the original time sequence Q(0) = (q(1), q(2), · · · , q(n)), where Q(0) is a nonnegative sequence and
n is the number of the outliers.

The first-order accumulative generation operation (1-AGO) is given by

Q(1) = (q(1)(1), q(2)(1), · · · , q(n)(1))

Then, the generated mean sequence Z(1) of Q(1) is defined as:

Z(1) = (z(2)(1), z(3)(1), · · · , z(n)(1))

where z(k)(1) = 0.5q(k)(1) + 0.5q(k− 1)(1) (k = 2, 3, · · · , n).
The least square estimate of GM (1, 1) model is defined as:

q(k) + az(k)(1) = b

where a and b represent the development coefficient and the grey action of the prediction
model, respectively.

Finally, the estimated equation of the training sequence can be expressed as

q̂(k + 1)(0) = (1− ea)[q(1)− b
a
]e−ak (1)

2.4.3. DAGCP Method

The whole process of dynamic additional prediction is completed as follows:

1. Establishment of different time subsequences

The GM (1, 1) model typically requires at least four points, so the maximum starting point should
be set to the (n − 4)th observation to ensure that there are no less than four points in the shortest
subsequence. The subsequence size of n − 4 can be established at the moment. Abnormal values time
sequence and time subsequences are expressed as:

Q(0) = (q(1), q(2), · · · , q(i), · · · , q(n))

Q(0)(i) = ([q(i + 1)− q(i)], [q(i + 2)− q(i)], · · · , [q(n)− q(i)])

where n is the number of the outliers as well as the dimension of original sequence and i is the ordinal
number of calculation starting point. For example, i = 1 represents that the distances between the first
and subsequent other points are computed to obtain a new data subsequence under the dimension of
n − 1. Normally, Response equation of catastrophe time subsequences can be obtained:

q̂(k + 1)(0) = (1− ea)[q(i + 1)− q(i)− b
a
]e−ak (2)

2. Selection of time subsequence

The optimal time subsequence is selected based on the grey correlation degree and model
precision. Essentially, grey correlation degree is applied to analyze the model’s fitting degree by making
a comparison between differential subsequences and original sequence in terms of the approximate
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level. As known, the fitting degree is improved with the increase of grey correlation value. The relevant
equation about grey correlation degree is shown as follows:

γi =
1
n

n

∑
k=1

ξi(k) k = 1, 2, · · · , n; i = 1, 2, · · · , m (3)

where ξi(k) is grey correlation coefficient and it can be calculated by

ξi(k) =
min

i
min

k
|x0(k)− xi(k)|+ ρ max

i
max

k
|x0(k)− xi(k)|

|x0(k)− xi(k)|+ ρ max
i

max
k
|x0(k)− xi(k)|

(4)

where ρ is the distinguishing coefficient of the correlation axiom and the value is set as 0.5 based on
previous experience. If the grey correlation degree is greater than 0.6, the model is considered as
a satisfaction. Accordingly, the appropriate subsequence is picked out according to the model precision
and correlation degree.

3. Achievement of additional forecast

Conventional GCP adopts a fixed model to make a forecast for multiple times, which can
continuously cause the degradation of prediction precision owing to the immobilization of inherent
parameters. In view of the immediacy and contingency in tremor behavior, the newly generated
predicted value is added into the original subsequence for future prediction purpose after rounding
down decimal places. The decimal places are omitted so as to be consistent with the original
nonnegative integer data sequence.

3. Discussion

3.1. Examination of Prediction Accuracy

To analyze the reliability of DAGCP, the accuracy of models has to be tested. The data tested
comes from the China’s hydropower production from 2000 to 2015, and prediction results are given
by Wang et al. [25] by seasonal autoregressive integrated moving average (SARIMA) method and
GM (1, 1) are provided for a direct comparison (see Figure 7). It can be seen that the present
method is in close agreement with the actual values and SARIMA. Thus, compared with conventional
methods, DAGCP shows a fine prediction precision and reliability. The reason for excellent prediction
performance is that various dimensions of time subsequences constructed based on different starting
points weakens the effects of the initial value, and the selected subsequence with continuously updated
values captures time-varying performance of the system. Next, this method will be used for the
forecast of tremor occurrence time.

3.2. The Investigation of Tremor Times

During the response process of artificial muscle, tremor occurrence times in each time unit are
extracted, which characterizes the occurrence frequency of the tremor, and can be used as an important
index for the evaluation of tremor behavior.

By referencing Table 1, the lower limiting outlier of occurrence times covered by tremor behavior
was assigned as 1. Thus, the corresponding tremor data sequence within the first 65 s was:

Q(0) = (2, 5, 6, 7, 8, 9, 11, 12, 13)

When i = 1, the distances between the first and subsequent other points were computed to obtain
a new data subsequence:

Q(0)(1) = (3, 4, 5, 6, 7, 9, 10, 11)
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And then i = 2, the next subsequence was given:

Q(0)(2) = (1, 2, 3, 4, 6, 7, 8)
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Analogously, based on the dimension of the original sequence, five new data subsequences
were constructed under dimensions from 4 to 8 as the candidate models. The estimated values and
original values of each subsequence with respect to ordinal k were shown in Figure 8a–e, respectively.
Meanwhile, model response, model accuracy, grey correction degree and fitting degree were calculated
to evaluate the availability of the candidates (Table 2).

Analogously, based on the dimension of the original sequence, five new data subsequences
were constructed under dimensions from 4 to 8 as the candidate models. The estimated values and
original values of each subsequence with respect to ordinal k were shown in Figure 8a–e, respectively.
Meanwhile, model response, model accuracy, grey correction degree and fitting degree were calculated
to evaluate the availability of the candidates (Table 2).

Table 2. Model test results of different subsequences about tremor occurrence times.

Sequence Dimension
Model Response

q̂(k + 1)(0)
Model Accuracy (%) Grey Correlation

Degree Fitting Degree

8 24.853e0.16151k − 21.853 96.1503 0.6547 satisfaction
7 9.2955e0.24238k − 8.2955 89.6019 0.6009 satisfaction
6 8.2308e0.26852k − 7.2308 87.5976 0.5812 dissatisfaction
5 7.9231e0.2872k − 6.9231 86.4147 0.5774 dissatisfaction
4 10.75e0.2487k − 9.75 98.6546 0.5583 dissatisfaction

From Table 2 and Figure 8, the results showed that the 4-D model had the highest prediction
accuracy; however, it was not available for prediction because its grey correlation degree was less than
0.6 and the number of data samples was too small. Additionally, the lower correlation degree and
accuracy of 5-D and 6-D models limited their applications in the prediction. Although both of them
had high accuracy at the initial stage, compared with the 7-D subsequence, the model accuracy and
grey correlation degree of 8-D were better as a whole, which showed a better fitting degree between the
subsequence and original sequence. Therefore, the 8-D subsequence model about tremor occurrence
times in unit time was used for prediction and the starting time point q(1) was set as 2.
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The estimated values and relative errors of conventional GCP and DAGCP were shown in Table 3.
Specifically, the conventional GCP was constructed by the original time sequence. It is obvious
that the actual number of tremors only occurred once during 75~80 s and was affected by process
parameters, experimental conditions and human factors, as well as existing contingency. Hence, it was
not necessary to predict ahead in this circumstance.

Table 3. Estimated values and relative errors of grey catastrophe prediction (GCP) and dynamic
additional grey catastrophe prediction (DAGCP).

GCP DAGCP

Tremor Times Time Series
Value q(k)(0)

Actual Time
Domain (s)

Estimated
Value q̂(k)(0)

Relative
Error (%)

Estimated
Value q̂(k)(0)

Relative
Error (%)

2 14 65~70 15.39 9.93 15.49 3.50
3 15 70~75 17.51 16.73 17.05 13.67
2 17 80~85 19.91 17.12 18.93 11.35

Note: Relative error =
∣∣∣∣ q(k)(0)−q̂(k)(0)

q(k)(0)

∣∣∣∣× 100%.

It was obvious that the occurrence times in 65~70 s, 70~75 s and 80~85 s were 2, 3 and 2,
respectively. As shown in Table 3, there was a little difference between GCP and DAGCP in the relative
error during 65~70 s. However, the relative error of DAGCP was smaller than GCP after 70 s. Therefore,
the prediction accuracy of DAGCP was superior to that of GCP as a whole.

3.3. The Investigation of Peak-to-Peak Values

The maximum peak-to-peak values (the difference between adjacent crests and troughs) in unit
time are extracted, which characterizes the severe degree of tremor, and also can be used for the
evaluation of tremor behavior. Here, the lower limiting outlier was assigned as 0.2 mm. In addition,
the corresponding data sequence within 65 s was:

Q(0) = (2, 5, 6, 7, 8, 11, 12)

When i = 1, a new data subsequence was: Q(0)(1) = (3, 4, 5, 6, 9, 10).
Thus, three new data subsequences were constructed under the dimensions from 4 to 6.

The estimated values and original values were shown in Figure 9a–c, respectively. In addition,
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the model response, model accuracy, grey correction degree and fitting degree were displayed
in Table 4.

Table 4. Model test results of different subsequences about tremor peak-to-peak values.

Sequence
Dimension

Model Response
q̂(k + 1)(0)

Model Accuracy (%) Grey Correlation
Degree Fitting Degree

6 14.906e0.23688k − 11.906 95.8616 0.6252 satisfaction
5 4.9444e0.3848k − 3.9444 87.1655 0.6117 satisfaction
4 5.125e0.42105k − 4.125 81.2634 0.6081 satisfaction

From Table 4 and Figure 9, although the grey correlation degree had achieved the basic
requirement, the prediction precision of 4-D and 5-D models limited their applications in the prediction.
Among them, 6-D model had the highest model accuracy and grey correlation degree, which showed
a more accurate fitting degree. Thus, the 6-D model about tremor peak-to-peak value in unit time was
used for the prediction and q(1) was also set as 2.

The estimated values and relative errors were shown in Table 5. The actual peak-to-peak value
was less than 0.2 mm during 75~80 s, which was allowed to happen. Therefore, it was not necessary to
predict ahead in this circumstance.Appl. Sci. 2018, 8, x 10 of 12 
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Table 5. Estimated values and relative errors of GCP and DAGCP.

GCP DAGCP

Peak-to-Peak
Values (mm)

Time Series
Value q(k)(0)

Actual Time
Domain (s)

Estimated
Value q̂(k)(0)

Relative
Error (%)

Estimated
Value q̂(k)(0)

Relative
Error (%)

0.6 14 65~70 14.64 4.57 13.52 3.43
0.5 15 70~75 17.46 16.40 16.35 9.00
0.2 17 80~85 20.80 22.35 20.18 18.71

In the above analysis, the peak-to-peak values in 65~70 s, 70~75 s and 80~85 s were 0.6 mm,
0.5 mm and 0.2 mm, respectively. As shown in Table 5, the relative error of DAGCP was obviously less
than that of GCP.

To validate the effectiveness and accuracy of the proposed method, the catastrophe prediction
results of 10 groups of chitosan-based artificial muscles with different process parameters based on GCP
and DAGCP were shown in Table 6. Here, the data in the first 70 s was selected as original sequence
and the last 10 s was used to assess the prediction accuracy. The lower thresholds of occurrence times
and peak-to-peak values were assigned as 2 and 0.2 mm, respectively. If either of the conditions was
satisfied, the tremor is considered to happen.
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Table 6. Estimated values and relative errors of GCP and DAGCP.

GCP DAGCP

Group
Order

Tremor
Times

Peak-to-Peak
Values (mm)

Time Series
Value D Estimated

Value q̂(k)(0)
Relative
Error (%) D Estimated

Value q̂(k)(0)
Relative
Error (%)

1
1 0.2 15

10
17.47 16.47 8 15.55 3.67

2 0.4 16 20.69 29.31 9 18.03 13.53

2 2 0.3 15 10 17.98 19.87 8 16.48 9.87

3
1 0.4 15

12
17.14 14.27 10 16.42 9.47

3 0.7 16 19.74 23.38 11 18.69 16.81

4
2 0.3 15

12
17.05 13.67 10 17.26 15.07

1 0.3 16 19.46 21.63 11 19.02 18.88

5
2 0.2 15

11
17.85 19.00 10 16.78 11.87

1 0.4 16 20.79 29.94 11 18.38 14.88

6 2 0.2 16 11 18.41 15.06 10 16.89 5.56

7
2 0.6 15

13
17.84 18.93 6 16.29 8.60

2 0.4 16 20.47 27.94 7 18.44 15.25

8
3 0.5 15

12
17.23 14.87 10 16.12 7.47

1 0.4 16 19.45 21.56 11 18.03 12.69

9
3 0.3 15

10
17.87 19.13 6 16.33 8.87

3 0.3 16 21.18 32.38 7 18.83 17.69

10 2 0.2 15 12 16.77 11.80 8 15.43 2.87

From the comparative analysis, the proposed DAGCP can better identify the occurrence
tendency of tremor behavior and individual variation of original data, and achieve smaller relative
errors. Therefore, this novel method is viable and reliable for predicting the tremor behavior of
artificial muscle.

4. Conclusions

In this paper, we illustrate the tremor mechanism of artificial muscle and forecast the tremor
occurrence time using GCP based methods. In order to further improve the prediction accuracy,
we propose a new method called DAGCP by integrating sequence optimization mechanism and
dynamic additional strategy into the conventional GCP. Its excellent prediction performance indicates
that various dimension of time subsequences constructed based on different starting points weakens
the effects of the initial value, and the selected subsequence with continuously updated values captures
time-varying performance of the system.

As shown in the case study of artificial muscle, the novel DAGCP can earlier and more
accurately forecast the forthcoming tremor time than conventional GCP. Therefore, it can be selected
to provide the preparation time for parameter adjustment of artificial muscles’ online behaviors and
realize the suppression of tremor behavior. In summary, this method has the following advantages:
the degradation of prediction accuracy caused by the immobilization of original parameters is
prevented; dynamic input, real-time update and gradual forecast of the model can be realized and
widely used in the industry, agriculture and medicine, etc.
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