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Abstract: The increasing exploration of alternative methods for solving optimization problems causes
that parallelization and modification of the existing algorithms are necessary. Obtaining the right
solution using the meta-heuristic algorithm may require long operating time or a large number
of iterations or individuals in a population. The higher the number, the longer the operation time.
In order to minimize not only the time, but also the value of the parameters we suggest three
proposition to increase the efficiency of classical methods. The first one is to use the method of
searching through the neighborhood in order to minimize the solution space exploration. Moreover,
task distribution between threads and CPU cores can affect the speed of the algorithm and therefore
make it work more efficiently. The second proposition involves manipulating the solutions space
to minimize the number of calculations. In addition, the third proposition is the combination of the
previous two. All propositions has been described, tested and analyzed due to the use of various test
functions. Experimental research results show that the proposed methodology for parallelization
and manipulation of solution space is efficient (increasing the accuracy of solutions and reducing
performance time) and it is possible to apply it also to other optimization methods.

Keywords: optimization; meta-heuristic; parallel technique

1. Introduction

Computing and operation research demand efficient methods that can increase the precision
of calculations. Developments in technology provide new possibilities for faster and more efficient
computing. Multi core architectures can support multi threading, where similar tasks can be forwarded
to various cores for processing at the same time. This approach speeds up calculations, however it
is necessary to implement a devoted methodology. Such a solution can be very useful in practical
applications where many operation are made. The main target of these techniques will be, in particular,
artificial intelligence (AI). AI provides many possibilities to use the power of modern computing into
various applications. [1] presents a survey of modern approaches to multimedia processing. Security
and communication aspects for devoted computing systems were presented in [2]. In [3], the authors
presented the efficient encryption algorithm based on logistic maps and parallel technique. Moreover,
parallel approach found place in medicine, especially in image processing what can be seen in [4] where
lung segmentation was presented. The proposed algorithm can be used in medical support system
for fast diseases detection. To create the most accurate systems that can prevent people from invisible
to the eye, the initial phase of the disease. In [5], the idea of parallel solution to measurements the
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structural similarity between images based on quality assessment. Similar approach is present in [6],
where the authors used artificial intelligence technique for image retrieval from huge medical archives.

All solutions mentioned above presented different approach to parallelization. There are various
ideas to parallelize calculations, e.g. by simply performing the same task parallel on all the cores
and compare the results after each iteration. Similarly we can repeat only some procedures to
increase precision. However most efficient are architecture solutions designed for specific purposes.
Methodology that is developed precisely for the computing task can benefit from using multi
core architecture.

In recent years, various approaches to optimization problems were solved using parallel
processing to increase efficiency. Photosensitive seizures were detected by application of devoted parallel
methodology in [7]. The authors of [8] discussed a local search framework developed for
multi-commodity flow optimization. A parallel approach to implement algorithms with and without
overlapping was presented in [9]. Similarly swarm algorithms are becoming more important for
optimization processes and various practical applications. In [10], the author discussed a fusion
of swarm methodology with neural networks for dynamic systems simulation and positioning.
Parallel implementation of swarm methodology developed for two-sided line balancing problem
was discussed in [11]. Massive-passing parallel approach to implement data tests were proposed in
[12]. Similarly in [13] research on efficient parallelization of dynamic programming algorithms was
discussed. An extensive survey of various approaches to parallelization of algorithms with devoted
platforms for classification of biological sequences was presented in [14]. While in [15] the authors
discussed constraint solving algorithms in parallel versions.

Again in [16], the authors presented a combination of approximation algorithms and linear
relaxation with the classical heuristic algorithm. As a result, a hybrid was obtained, which allowed
to reach better results in a much shorter time. Another hybrid was shown in [17], where local search
techniques were used. A similar solution has already been used in combination with the genetic
algorithm, which is called the Baldwin effect [18,19]. The problem of hybridization is much widely
described in [20], where there are two types of combination called collaborative (two techniques work
separately and only exchange information) and integrative (one technique is built into the other).
Both solutions have their own advantages and the authors pointed out them by showing ten different
methodologies. The result of which is obtaining better accuracy of the solution. A particular aspect is
to draw attention during modeling this type of combinations to obtain the best features of all combined
components. Again in another chapter, two other types of hybridization are presented using the
example of a memetic algorithm in the application of character problems. The first one considers
branch and bound features within construction-based metaheuristics, and the second one branch and
bound derivatives.

In this article, we present an idea for the parallelize optimization technique based on different
algorithms. The proposed implementation makes use of multi core architecture by dividing calculations
between all the cores, however to make the algorithm more efficient we propose also devoted way
of search in the optimization space. From the basic population individuals, we select a group of best
adopted ones to forward their positions for a local search in their surrounding. The local search is
performed using each core and therefore the methodology benefit from faster processing but also from
increased precision of calculations since during parallel mode calculations are based on the best results
from each iteration. Moreover, we propose a way to divide the space due to decrease the number of
possible moves for individuals in the population. Additionally, we combined both these ideas to one
for greater efficiency. Our approach is different from existing one in literature not only by creating
hybrids, but by dividing calculations into cores and enabling finding the best areas across the entire
space. In practice, the division of space into cores is a new idea that allows not only increasing the
accuracy of results but also reducing the performance time.
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2. Optimization Problem and the Method of Finding the Optimal Solution

The optimization problem is understood as finding the largest or smallest value of a parameter
due to certain conditions. Mathematically, the problem can be defined as follows: Let f be an objective
function of n variables xi where x = 0, . . . , n− 1 and x = (x1, x2, . . . , xn) is a point. If the value of the
function f at x is a global minimum of the function, then x is the solution. The problem of finding x is
called minimization problem [21]. If the value of the function at that point reaches a global minimum,
then it is called a minimization problem and it can be described as

Minimize f (x)

subject to g(x) ≥ 0

Li ≤ xi ≤ Ri i = 0, 1, . . . , n− 1,

(1)

where g(x) is inequality constraint, 〈Li, Ri〉 are the boundaries of i-th variable.
For such defined problem, there is a large number of functions for which an optimal solution

is hard to locate. The problem is the size of the solution space, or even the number of local extremes
where the algorithm can get stacked. Some of these functions are presented in Table 1. One of the most
used methods are genetic and heuristic algorithms. As heuristic, we namely algorithms that do not
guarantee to find the correct solution (only the approximate) in a finite time.

Table 1. Test functions used in a minimization problem.

Function Name Function f Range fmin Solution x

Dixon-Price f1(x) = (x1 − 1)2 +
n

∑
i=1

i
(

2x2
i − xi−1

)2
〈−10, 10〉 0

(
2−

21−2
21 , . . . , 2−

2n−2
2n

)
Griewank f2(x) =

n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos

(
xi√
(i)

)
+ 1 〈−10, 10〉 0 (0,. . . ,0)

Rotated Hyper–Ellipsoid
f3(x) =

n

∑
i=1

i

∑
j=1

x2
j

〈−100, 100〉 0 (0,. . . ,0)

Schwefel f4(x) = 418.9829n−
n

∑
i=1

xi sin
(√
|xi |
)

〈−500, 500〉 0 (420.97,. . . ,420.97)

Shubert f5(x) =
n

∏
i=1

(
5

∑
i=1

i cos((i + 1)xi)

)
〈−10, 10〉 −186.7 (0,. . . ,0)

Sphere f6(x) =
n

∑
i=1

x2
i 〈−10, 10〉 0 (0,. . . ,0)

Sum squares f7(x) =
n

∑
i=1

ix2
i 〈−10, 10〉 0 (0,. . . ,0)

Styblinski-Tang f8(x) =
1
2

n

∑
i=1

(
x4

i − 16x2
i + 5xi

)
〈−10, 10〉 −39.2n (−2.9,. . . ,−2.9)

Rastrigin f9(x) = 10n +
n

∑
i=1

[
x2

i − 10 cos (2πxi)
]

〈−10, 10〉 0 (0,. . . ,0)

Zakharov f10(x) =
n

∑
i=1

x2
i + (0.5ixi)

2 +

(
n

∑
i=1

0.5ixi

)4

〈−10, 10〉 0 (0,. . . ,0)

2.1. Genetic Algorithm

Genetic Algorithms are examples of optimization algorithms inspired by natural selection [22].
It is a model of activities and operations on chromosomes. Algorithm assumes the creation of the
beginning set of chromosomes, very often called the population. Each chromosome is presented by a binary
code or a real number (more common is the second case, so we assume that). All individuals are
created in a random way. Having the population, some operation are made. The first of them is the
reproduction which is a process to transfer some individuals to the next operation. The most common way
of reproduction is based on the probability of belonging to a particular group. In optimization problem,
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the group will be created by the best adapted individuals according to fitness function. The probability
pr can be described by the following equation

pr

(
xt

i

)
=

f
(

xt
i

)
xt

i

, (2)

where xt
i is the i-th individual in t-th iteration. For more randomness, the individual is chosen to

reproduction process if it meets the following assumptions

Pr

(
xt

i−1

)
< α ≤ Pr

(
xt

i

)
, (3)

where α ∈ 〈0, 1〉 is the random value and Pr(·) is the value calculated as

Pr

(
xt

i

)
=

i

∑
j=1

pr

(
xt

j

)
. (4)

So in this way, the best individuals are selected to be reproduced and it is made by two classic
operators known as mutation and crossover. The first of them is understood as the modification of the
chromosome by adding random value τ ∈ 〈0, 1〉 as

xt+1
i = xt

i + τ. (5)

Of course, not every of them will be mutated – only these that will meet the inequality given as

λi < pm, (6)

where pm is mutation probability and λ ∈ 〈0, 1〉. The second operation, which is crossover is the
exchange of the information between two chromosomes xi and xi+1. They are called parents, and the
resulting individuals as childes. The whole process can be presented as

xt+1
i = xt

i + τ
(

xt
i+1 − xt

i

)
xt

i , (7)

where τ ∈ 〈0, 1〉.
After using the described operators, all individuals in the population are evaluated by the fitness

function f (·) and new population replaces the old one and it is known as succession.
The algorithm is an iterative process, so all operations are repeated until a certain number of

iterations are obtained—it is presented in Algorithm 1.
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Algorithm 1: Genetic Algorithm
1: Start,

2: Define fitness function f (·),

3: Create an initial population,

4: Evaluate all individuals in the population,

5: Define τ, pm, α and the number of iteration T,

6: t := 0,

7: while t < T do
8: Sort individuals according to f (·),

9: Select best individuals according to Equation (2),

10: Make a mutation by Equation (5),

11: Make a crossover using Equation (7),

12: Evaluate all new individuals in the population,

13: Replace the worst with new ones,

14: t ++,

15: end while

16: Return the best chromosome,

17: Stop.

2.2. Artificial Ant Colony Algorithm

Artificial Ant Colony (ACO) is an algorithm inspired by the behavior of ants. At the beginning,
the algorithm was designed for discrete problems such as graph [23]. Then, different versions were
designed for problems dealing with continuous functions [24]. It is a model of searching for food
by ants. If the source of food is found, the ant returns to the nest leaving a pheromone trace that
helps to return to the source. Unfortunately, the amount of pheromone is reduced over time due to its
evaporation. The ant xm moves towards the selected individual from the population. The probability
of selecting the j-th individual in the population is determined as

pj =
(1 + exp

(
f
(

xj
))
)

n

∑
r=1

(1 + exp ( f (xr)))

. (8)

Calculating probability, a direction of movement is selected by choosing a colony c as

c =

 max
i=1,2,...,n

(pi), q ≤ q0

C q > q0

, (9)
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where q0 ∈ 〈0, 1〉 is a parameter and q is random value in range 〈0, 1〉 and C is a random
ant in population. After choosing the parent colony c, a Gaussian sampling is done. Using the
density function, the scattering of pheromones in the entire space is modeled by the following equation

g(xm
i , µ, σ) =

1
σ
√

2π
exp

(
−
(xj − µ)

2σ2

)
, (10)

where xm
i is the specific coordinate for the m ant xm = (xm

1 , . . . , xm
n ) and µ = xj

i so it is the coordinate
for the selected j-th ant, and σ is the mean distance between the coordinate data of a points xm and xj

calculated as

σ = ξ
n

∑
r=1

|xm
r − xj

r|
k− 1

, (11)

where ξ is the evaporation rate.
Then, the m ant population is generated in N(µi, σi), and the worst m individuals are deleted.
The more detailed description of ACO algorithm is presented in Algorithm 2.

Algorithm 2: Ant Colony Optimization Algorithm
1: Start,

2: Define fitness function f (·),

3: Create an initial population of ants,

4: Evaluate all individuals in the population,

5: Define ξ, n, m and the number of iteration T,

6: t := 0,

7: while t < T do
8: for each ant do
9: Calculate the probability using Equation (8),

10: Find the best nest by Equation (9),

11: Determine Gaussian sampling according to Equation (10),

12: Create m new solutions and destroy m the worst ones,

13: end for

14: t ++,

15: end while

16: Sort individuals according to f (·),

17: Return the best ant,

18: Stop.

2.3. Particle Swarm Optimization Algorithm

Particle Swarm Optimization Algorithm (PSOA) [25] is an algorithm inspired by two phenomena—swarm
motion particles as well fish nebula. It describes the movement of swarm in the direction of the
best individual. Despite targeted movement, the algorithm assumes randomness to increase the
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ability to change the best individual across the population. In order to model these phenomena,
certain assumptions are introduced

• In each iteration, the number of individuals is constant,
• Only the best ones are transferred to the next iteration and the rest are randomly selected.

Each particle moves according to

xt+1
i = bxt

i + vt
ic, (12)

where vt
i is the velocity of the i-th molecule in the t-iteration. The velocity is calculated on the basis of

various factors such as the position of the best individuals in current iteration t and labeled as xt
best,

which allows them to move in that direction. It is described as

vt+1
i = vt

i · φp · α ·
(

xt
best − xt

i

)
+ φs · β ·

(
xt

best − xt
i

)
, (13)

where α, β ∈ 〈0, 1〉 are the values chosen in random way and φp, φs are swarm controlling factors.
If φs > φp, all particles move in the direction of the best one. In the case when φs ≤ φp, all individuals
move in random way. At the end of the iteration, only the best particles are transferred to the
next iteration. The missing particles are added to population at random. The complete algorithm is
presented in Algorithm 3.

Algorithm 3: Particle Swarm Optimization Algorithm
1: Start,

2: Define φp, φs, best_ratio, number of iteration T and n,

3: Define fitness function f (·),

4: Create an initial population,

5: t := 0,

6: while t < T do
7: Calculate velocity using Equation (13),

8: Move each individual according to Equation (12),

9: Sort population according to f (·),

10: Take best_ratio of population to next iteration,

11: Complete the remainder of the population randomly,

12: t ++,

13: end while

14: Return the best particle,

15: Stop.

2.4. Firefly Algorithm

Firefly Algorithm is another mathematical model that describes the natural phenomena which is
the behavior of fireflies during the searching of a parter [26]. The search is dependent on many factors
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such as blinking, distance or even perception by other individuals, and this introduces several factors
that describes the behavior of that insects and the environment

• ζ – light absorption coefficient,
• κ – coefficient of motion randomness,
• βpop – attractiveness ratio,
• Ipop – light intensity.

A firefly moves into the most attractive individuals in the current environment based on the
distance and the light intensity of a potential partner. In order to model this behavior, suppose that the
distance between two individuals i and j will be be labeled as rij and it is calculated as

rt
ij = ‖xt

i − xt
j‖ =

√√√√ N

∑
k=1

(
xt

i,k − xt
j,k

)2
, (14)

where t is the current iteration and xt
i,k, xt

k,j – k-th components of the spatial coordinates. Attractiveness
between individuals is dependent on this distance – the greater the distance is, they are less attractive
to each another. Moreover, the light is absorbed by the air, because of that and simplifying the model,
the following assumptions are applied to the model

• Each firefly is unisex,
• The attractiveness is proportional to the brightness, which means that the less attractive firefly

will move to more attractive,
• The distance is greater, the attractiveness is lower,
• If there is no attractive partner in the neighborhood, then firefly moves randomly.

Reception of light intensity It
ij from i by j decreases as the distance rt

ij between them increases.
Moreover, the light in nature is absorbed by different media, so attractiveness depends not only on the
distance but also on absorption, so light intensity It

ij is modeled as

It
ij

(
rt

ij

)
= Ipop · e

−ζ·
(

rt
ij

)2

, (15)

where ζ is the parameter that describes light absorption mapping natural conditions of nature.
One of the assumption says that the attractiveness βij is proportional to the brightness (or firefly’s

lightness) what is defined as

βij

(
rt

ij

)
= βpop · e

−ζ·
(

rt
ij

)2

, (16)

where βpop is firefly attractiveness coefficient.
The movement of fireflies is primarily dependent on the quality of the neighborhood. The primary

equation that describes that movement depends on all dependencies described above what is shown
in the following formula

xt+1
i = xt

i +
(

xt
j − xt

i

)
· βt

ij

(
rt

ij

)
· It

ij

(
rt

ij

)
+ κ · ei, (17)

where ζ is light absorption coefficient, κ is coefficient mapping natural randomness of fireflies, ei is
vector defined random change of position. In each iteration, all fireflies move to find the best position
according to fitness condition f (·). Described model is presented in Algorithm 4.
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Algorithm 4: Firefly Algorithm
Start,

Define all coefficients and the number of iteration T and size of population,

Define fitness function f (·),

Create at initial population,

t := 0,

while t ≤ T do
Calculate all distances between individuals in whole population according to Equation (14),

Calculate all light intensity between individuals in whole population according to Equation (15),

Calculate attractiveness between individuals in whole population according to Equation (16),

Evaluate and sort population,

Move each firefly using Equation (17),

t ++,

end while

Return the best firefly,

Stop.

2.5. Cuckoo Search Algorithm

Cuckoo Search Algorithm is another metaheuristic algorithm which stands out by gradient free
optimization method [27]. It is a model that describes the behavior of cuckoos during the specific
nature of breeding. These birds do not take care of theirs own eggs and throw them to other nest.
So the algorithm simulates the flight while looking for nests of other birds and laying eggs in there.
Of course, there is also need to pay attention to the owner’s response. In these model, some assumption
must be done

• Cuckoo is identified with the egg,
• Each cuckoo has one egg,
• The nest owner decides to keep or throw the egg out with the probability 1− λ ∈ 〈0, 1〉. If the

egg is thrown out, the new cuckoo is replace these one and the position is chosen at random.

At the beginning of the algorithm, an initial population is created in random way. Each cuckoo
moves by making a flight which uses the random walk concept. It is modeled as

xt+1
i = xt

i + µ · L(ϕ, ρ, δ), (18)

where µ is the length of random walk step with normal distribution N
( ρ

cuckoos ; 0.1
)

and L(·) is Lévy
flight defined as

L(ϕ, ρ, δ) =


√

ρ
2π

exp
[
− ρ

2(ϕ−δ)

]
(ϕ−δ)

3
2

, 0 < ϕ < δ < ∞

0, other
, (19)

where ϕ is the length of the step, δ is the minimum step for random walk and ρ is a scaling parameter.
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Once the individuals in the population have completed their movement, decide if the egg stays at
the current position should be made. It is a decision-making mechanism by the owner of the nest to
which the eggs were thrown. It is modeled as

H
(

xt+1
i

)
=

{
1− λ drop the egg

λ leave the egg
, (20)

where λ ∈ 〈0, 1〉 is a random value understood as the chance for egg to stay. Whole algorithm is
described in Algorithm 5.

Algorithm 5: Cuckoo Search Algorithm
Start,

Define all parameters λ ∈ 〈0, 1〉, ϕ, ρ, δ, bestratio, number of cuckoos and iterations T,

Define fitness function f (·),

Create an initial population,

t:=0,

while t < T do
Move individuals to another position using Equations (18) and (19),

According to Equation (20), the nest host decides whether the cuckoo eggs remain,

Evaluate the whole population,

Sort the population according to fitness condition,

t ++,

end while

Return the best cuckoo,

Stop.

2.6. Wolf Search Algorithm

One of the new heuristic algorithms is Wolf Search Algorithm described for the first time in [28].
In the algorithm, the behavior of wolves during the search for food and avoid other predators
is modeled. The model assumes that the wolf can only see in a certain area around himself and he can
only move in it. This area is understood as a circle, where the center is the point (wolf) with r radius.
The wolf’s position is assessed in terms of its adaptability to the function f (·) which values are
interpreted as a number of food locations in the circle. There is a situation that the wolf quickly escapes
outside this area when another predator is in the vicinity or the amount of food in the area is quite low.

Such a behavior of the wolf while searching for food is modeled for optimization purposes. Let x
be a particular wolf among the whole population. The actual position of x will be designated as xactual .
Wolf moves according to

xnew = xactual + β0 exp
(
−r2

) (
xneighbor − xactual

)
+ γ, (21)

where β0 is the ultimate incentive, xneighbor is the closest neighbor with higher value of fitness function,
γ is random number in 〈0, 1〉 and r means the distance between two wolves xactual and xneighbor
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calculated as the Euclidean metric already described in Equation (14). Wolf moves by Equation (21),
when he spotted a better feeding. Otherwise, the wolf tries to hunt. Hunting of wolves lies in a process
of stalking that can be represented into three steps

• initiative stage – wolf moves in the area of his vision and looks for food. This behavior is modeled
by changing the position of the wolf in the following way

xnew = xactual + αvγ, (22)

where v is the velocity of a wolf.
• passive stage – wolf waits for the opportunity to attack on a given position and tries to attack by

Equation (21).
• escape – in case of lack of food or the appearance of another predator, the wolf escapes by

xnew = xactual + αkγ, (23)

where k is the step size.

It is simply model showing the behavior of wolves. In each iteration, wolves search for better
food source and in the end, the wolves that is identified with best food source is the result. The full
algorithm is presented in Algorithm 6.
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Algorithm 6: Wolf Search Algorithm
Start,

Define basic parameters of the algorithm – the number of iterations T, the number of wolves n,
radius of view r, step size k, velocity coefficient α and rate of appearance of the enemy pα,

Generate a population of wolves at random,

t := 0,

while t < T do
for each wolf xactual in population do

Check the viewing area by Equation (22),

Calculate the new position xnew using Equation (21),

if d(xactual , xnew) < r ∧ f (xnew) < f (xactual) then
Move the wolf from xactual to xnew,

end if

Select the value of the parameter β ∈ 〈0, 1〉 at random,

if β > pα then
The wolf performs escape by Equation (23),

end if

end for

t ++,

end while

Return the fittest wolf xglobal in the population,

Stop.

3. Manipulation of Swarms Positions and Space Solution Using Multi-Threaded Techniques

The problem of finding the optimal solution is more difficult if the test function is complicated. As
complicated we understand the function of which extremes are hard to locate by classical methods. In
this case, the application of meta–heuristic methodology seems to be a good solution. However, in some
cases the values of the parameters should be significantly increased like the number of individuals in
a population as well as the number of iterations. Increasing the value of these parameters increases
the number of performed operations and thus action time. In addition, these algorithms do not
guarantee the correct solution. With these problems, the application of these techniques may prove to
be very detrimental.

3.1. Proposition I

In order to minimize the amount of computation time, we suggest using automatic parallelization
of the algorithms by dividing the population into several groups, which threads are burdened.

From the perspective of nature, individuals analyze the environment and choose the best of
them all. In the neighborhood of the best solution, smaller populations called groups may be formed.
Suppose that at the beginning of the algorithm, the number of cores pc is detected. In analogy to
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the original version of the algorithms, an initial population consisting of n individuals is created
at random. From this population, pc fittest individuals are chosen. Each individual will be the best
adapted solution in the smaller group that will be created under his leadership. The size of the group
will be determined as follows

ngroup =

⌊
n
pc

⌋
. (24)

The above equation uses the floor to obtain groups with the same population size for each core.
The use of the floor guarantees that, regardless of n, each group will have the same number of
individuals, and the sum of all ngroup will not exceed n.

With the size of the group and their leadership, we can begin to create groups. For every alpha male,
we create one thread on which the population consisting of ngroup individuals is created.
Each individual in the group is placed in a random way at a distance of no more than dmax

from the leader. This distance can be calculated by{ |a−b|
n if a 6= b

a
n if a = b

, (25)

where a, b are the values of the variable’s range for the test function.
For each group on a separate thread, all steps from an original algorithms are performed.

After completing these steps, pc the best adapted individuals are found as a solution for the
optimization problem and selected the best of them. Complete operation of the proposed method is
shown in Algorithm 7.

Algorithm 7: Metaheuristic with devoted local search
1: Start,

2: Detect the number of cores pc,

3: Create an initial population at random,

4: Select pc best individuals,

5: Calculate the number of individuals ngroup in groups using Equation (24),

6: Create pc groups consisting ngroup individuals based on Equation (25),

7: Put each group on a separate thread,

8: Run chosen metaheuristic with a customized group as a population on each thread,

9: Choose the best individuals from all threads,

10: Stop.

3.2. Proposition II

In the previously proposition, we proposed a technique for putting individuals in a given
population on the solution space and assigning them a thread for calculation. Another way to
increase the efficiency is to manipulating the solution space in such a way as to limit the possibility
of movements in the least favorable areas. Imagine that in the early iterations of the algorithm,
the population begins to move in the best areas, i.e., an area where the extreme may potentially occur.
Suppose that we have pc processor cores, so pc threads can be created. Our solution space for fitness
function f can be presented as

a× b = 〈a1, a2〉 × 〈b1, b2〉, (26)
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where a1, a2, b1, b2 are values that divide the set 〈a, b〉 into such two subsets 〈a1, a2〉, 〈b1, b2〉 that
Equation (26) is satisfied and × means Cartesian product (note that the limit values a2 and b2

correspond to a and b). Using that information, we can divide this space into pc smallest intervals as

a = 〈a1, a2〉 =
〈

a1,
a2

pc

〉
∪

pc−1⋃
k=1

〈
ka2

pc
,

a2

pc
(k + 1)

〉
. (27)

Taking these small intervals and use them to describe the solution space for function f would be

a× b = 〈a1, a2〉 × 〈b1, b2〉 =
〈〈

a1,
a2

pc

〉
∪

pc−1⋃
k=1

〈
ka2

pc
,

a2

pc
(k + 1)

〉
×
〈

kb2

pc
,

b2

pc
(k + 1)

〉〉
(28)

Unfortunately, these formulations give us pc2 parts of solution space. The reason for that is
dividing each side of the interval on pc parts. Having only pc cores, it is necessary to merge some
areas to obtain exactly number of pc. To do that, we can describe formula for vertical merge of areas
for specific cores—for first one as〈

a1,
a2

pc

〉
×
{〈

b1,
b2

pc

〉
,
〈

kb2

pc
,

b2

pc
(k + 1)

〉}
for k ∈ {1, pc− 1}, (29)

and for each subsequent m core as〈
ma2

pc
,

a2

pc
(m + 1)

〉
×
{〈

b1,
b2

pc

〉
,
〈

kb2

pc
,

b2

pc
(k + 1)

〉}
for k ∈ {1, pc− 1}. (30)

Let us prove, that sum of all these parts are equal to the initial solution space.

Proof. Taking all areas dedicated for first core described in Equation (29), we have

〈
a1,

a2

pc

〉
×

pc−1⋃
k=1

〈〈
b1,

b2

pc

〉
,
〈

kb2

pc
,

b2

pc
(k + 1)

〉〉
, (31)

the same is done with the rest areas in Equation (30) as

pc−1⋃
k=1

〈
ka2

pc
,

a2

pc
(k + 1)

〉
×

pc−1⋃
k=1

{〈
b1,

b2

pc

〉
,
〈

kb2

pc
,

b2

pc
(k + 1)

〉}
. (32)

By adding sets obtained above, we have

〈
a1,

a2

pc

〉
∪

pc−1⋃
k=1

〈
ka2

pc
,

a2

pc
(k + 1)

〉
×

pc−1⋃
k=1

〈〈
b1,

b2

pc

〉
,
〈

kb2

pc
,

b2

pc
(k + 1)

〉〉
,

= 〈a1, a2〉 × 〈b1, b2〉 = a× b.

(33)

This gives the pc areas (making the whole solutions space). Now, for each core, χ%n of the entire
size of the population n is created (χ ∈ 〈0, 100〉)—but the individuals are made in the selected area,
not in the whole space. After r = χ%t of all iteration t, each core k is evaluated as

Φk = α

r

∑
i=1

f (xi)

n
+ β f (xbest), (34)
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where α + β = 1 and they are coefficients describing the importance of a given part – the average of all
individuals and the best individual on the current thread. We choose the p best areas and repeated the
movement of population on each core in the sum of these areas by (100− χ)% of the iteration and
(100− χ)% of the individuals. If the case, when individuals leaves the area, he is killed and a new
individual is created in his place. After all iteration, the best solution is funded in all populations.

In this proposition, the multi-threading technique has a big role because dividing the space
and choosing the best areas does not cost extra time and above all, it allows the placement of most
individuals in a smaller area in parallel several times. These actions are described in Algorithm 8

Algorithm 8: Analysis of the solution space for the initial population
1: Start,

2: Define the solution space a× b, the size of population n, the number t of iterations and a fitness
function f ,

3: Detect the number pc of processor cores,

4: Divide and assign the given areas to threads through Equations (29) and (30),

5: for each thread do
6: Create a population of χ%n individuals at random,

7: T := 0,

8: for T < χ%t do
9: Move the individuals in population,

10: T ++,

11: end for

12: end for

13: Rate populations on each thread and select the best,

14: Define new solution space using the best areas,

15: for each thread do
16: Create a population of (100− χ)%n individuals at random,

17: T := 0,

18: for T < (100− χ)%t do
19: Move the individuals in population,

20: T ++,

21: end for

22: end for

23: Choose and return the best individuals in all populations,

24: Stop.
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3.3. Proposition III

Our last proposition is the combination of the above two propositions with some modifications. At
first, we dividing solution space according to (29) and (30). Having the number of areas, threads
can be created. χ% of all individuals are created in each area for χ%t iterations. The occurring χ for
iterations and populations may have different values. To simplify the introduction of a large number
of parameters, we assume that they have the same value. At the end, in each population, the best
individuals stays, the rest of them is destroyed.

For each survived individual (which are identify with the best solutions), a group is formed exactly
like in Section 3.1 but the size of group should not be greater than 50% of all n. Next, all individuals
moves for the rest of iterations. In addition, then, the population size is replenished (if the size is
smaller than n) in a random way throughout the area.

4. Test Results

All presented propositions have been implemented along with extended versions with the
proposed multi–threading technique. All tests were carried out on the six-processor Intel Core i7 6850K
clocked at 3.6 GHz.

4.1. The Benchmark Functions

Proposed solutions were tested on different 10 functions described in Table 1. All these functions
were given in dimension D = 100. The selected functions are the representatives of different types like
bowl, plate, valley shaped and with many local minima.

4.2. Experimental Settings

In experiments, we used described version of classical meta–heuristic algorithms. For all tests,
we used the same numbers of iterations t = 100 and population size of 100 individual and χ = 10.
For each test, 100 measurements were taken and averaged. The tests were performed in terms of
performance depending on the number of cores and as regards the accuracy of averaged solutions.

The coefficients used by all the algorithm have been selected before the start of operation.
The influence of the increase in coefficients values causes the multitude of a given step or displacement
of individuals. Therefore, in our considerations we do not analyze the impact of these coefficients on
the method and accuracy of the obtained solutions, and each parameter was chosen in a random way
in the range 〈0.1, 0.4〉. The obtained values of coefficients were respectively

• Genetic algorithm – pm = 0.39,
• Ant Colony Optimization Algorithm – ξ = 0.23, m = 30, q0 = 0.4,
• Particle Swarm Optimization Algorithm – φp = 0.15, φs = 0.32, best_ratio = 20,
• Firefly Algorithm – ζ = 0.31, βpop = 0.28, Ipop=0.18
• Cuckoo Search Algorithm – λ = 0.37, δ = 0.12, ϕ = 0.33, ρ = 0.21, bestratio = 20,
• Wolf Search Algorithm – k = 0.15, β0 = 0.21, α = 0.23.

4.3. Performance Metrics

For the purpose of evaluating algorithms, several basic metrics have been used. The accuracy of
the optimization algorithms is evaluated by the average value of the solution obtained from the tests
carried out what can be presented as

1
100

100

∑
i=1

f (xi), (35)

and error calculated as an absolute value between the ideal and obtained solution which is∣∣∣∣∣ f (xideal)−
1

100

100

∑
i=1

f (xi)

∣∣∣∣∣ . (36)
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The second aspect is parallelization evaluated by two metrics – acceleration Υ and efficiency Ψ.
Acceleration is the ratio of sequential execution time of the algorithm defined as

Υ =
ς

ϕ
, (37)

where ς is execution time measured for one processor, and ϕ is execution time measured for
pc processors. The second assessment is made by the following formula

Ψ =
Υ
pc

. (38)

In addition, scalability with the number of cores is measured in accordance with Amdahl’s law

G =
1

1−Θ + Θ
pc

, (39)

where Θ is the proportion of execution time of the proposal to the original versions. For our measurements,
Θ was determined as the quotient of the average time for all algorithms for pc cores and the sum of
time needed for pc and one processor.

4.4. Results

Firstly, we analyzed the impact of different coefficient values on the algorithms. We noticed that
the coefficient values depend on the function itself—the more local extremes, the higher the values
should be. This is due to the fact that individuals have to get out in such a minimum location, hence the
large values of coefficients can prolong movement in one iteration and allow escape. Such reasoning
forced us to depend on the value of coefficients from the pseudorandom generator. This action,
combined with averaging the obtained results, enabled to obtain averaged solutions. It was performed
for all versions of the algorithms—the original and three proposed modifications in this paper.
The obtained solution are presented in Tables 2–5 and errors values are in Tables 6–9. In all cases,
the first proposition—the use of devoted local search—reduced the error values in almost every case.
Of course, there were cases when the selected algorithms had a minimal difference between the results
(see CSA results), although it may be due to bad initial position of individuals. In contrast, the second
proposal related to the division of the solution space brought quite a big drop in the value of errors for
each case. This points to the fact that the size of the space is very important for metaheuristics—a
search of the same area in less time and without necessarily increasing computing needs is a very
important issue. The proposed division of space is one of the many cases that can be corrected, but it is
one that significantly improves solution for each test function indicates the direction of future research.
Moreover, the combination of these two proposition improved the obtained results for many cases,
but not for all. GA and PSOA improved solutions for more than 5 cases, when FA improved the
score for 9 from 10 benchmark functions. For better visualization the error values, The average error
obtained for each version of the algorithm is shown in Figure 1. The graph shows that the error value
is the smallest when applying proposition 2 or 3, and 1 has an approximately constant error.
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Table 2. Averaged solution values achieved by all original algorithms for each test functions.

Function GA PSOA FA CSA WSA ACO

f1 0.07593 0.08617 0.26872 0.16432 0.00257 0.00319
f2 0.12283 0.16489 0.18691 0.1729 0.1275 0.13129
f3 0.00172 0.27991 0.05206 0.00948 0.00029 0.00192
f4 0.00506 0.00963 0.00174 0.01354 0.00981 0.00166
f5 −186.014 −185.831 −185.843 −185.824 −185.805 −185.815
f6 0.00001 0 0.00001 0.0002 0.00001 0.00001
f7 0.00105 0.00062 0.66179 0.00035 0.00025 0.00037
f8 −391.329 −391.58 −391.344 −391.746 −391.598 −391.594
f9 0.19899 0.07731 0.13266 0.07822 0.1328 0.09898
f10 0.00103 0.00172 0.04368 0.33444 0.00103 0.00098

Table 3. Averaged solution values achieved by all algorithms for each test functions for proposition I.

Function GA PSOA FA CSA WSA ACO

f1 0.05754 0.02098 0.06574 0.03123 0.16919 0.00317
f2 0.09337 0.10636 0.08035 0.09318 0.10691 0.08546
f3 0.00046 0.00019 0.01644 0.15137 0.04208 0.00043
f4 0.00083 0.00165 0.00203 0.00913 0.0002 0.00035
f5 −186.918 −187.072 −186.914 −187.967 −187.053 −186.99
f6 0 0 0 0.00004 0 0.00053
f7 0.00272 0.00101 0.00023 0.00001 0.00634 0.00053
f8 −391.783 −391.824 −391.829 −391.919 −391.94 9411-391
f9 0.1072 0.23339 0.1063 0.98148 0.19899 0.00977
f10 0.00172 0.00006 0.00094 0.01052 0.00109 0.0015

Table 4. Averaged solution values achieved by all algorithms for each test functions for proposition II.

Function GA PSOA FA CSA WSA ACO

f1 0.03072 0.00027 0.08178 0.00217 0.0039 0.00032
f2 0.09337 0.07208 0.05691 0.07437 0.10287 0.06821
f3 0.00001 0 0 0.00006 0.00005 0.00002
f4 0.00079 0.00083 0.00166 0.00015 0.00011 0.00029
f5 −186.438 −186.29 −186.597 −186.563 −186.633 −186.694
f6 0.00001 0 0.00001 0.00003 0 0
f7 0.00124 0.00023 0.00005 0.00002 0.00013 0.00012
f8 −391.968 −391.893 −391.9878 −391.983 −391.926 −391.978
f9 0.01592 0.03343 0.0199 0.00995 0.01 0.00899
f10 0.00314 0 0.00971 0.00117 0.00073 0

Table 5. Averaged solution values achieved by all algorithms for each test functions for proposition III.

Function GA PSOA FA CSA WSA ACO

f1 0.00892 0.00913 0.00088 0.01001 0.00785 0.00339
f2 0.06694 0.02898 0.00948 0.01298 0.0238 0.00539
f3 0 0 0.0001 0.00044 0.00005 0.00001
f4 0.00218 0.001 0.00012 0.00179 0.00019 0.00049
f5 −186.692 −186.699 −186.694 −186.698 −186.698 −187.1
f6 0 0 0 0.00002 0 0
f7 0.00001 0.00007 0 0 0.00003 0.00008
f8 −391.893 −391.919 −391.99 −391.999 −391.993 −391.999
f9 0.00996 0.02995 0.12367 0 0.03033 0.00139
f10 0.00658 0.00023 0.00014 0.01467 0.00022 0
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Table 6. Function error values achieved by all original algorithms for each test functions.

Function GA PSOA FA CSA WSA ACO

f1 −0.07593 −0.08617 −0.26872 −0.16432 −0.00257 −0.00319
f2 −0.12283 −0.16489 −0.18691 −0.17290 −0.12750 −0.13129
f3 −0.00172 −0.27991 −0.05206 −0.00948 −0.00029 −0.00192
f4 −0.00506 −0.00963 −0.00174 −0.01354 −0.00981 −0.00166
f5 −0.68573 −0.86850 −0.85691 −0.87632 −0.89550 −0.88475
f6 0 0 −0.00001 −0.00020 0 0
f7 −0.00106 −0.00062 −0.66179 −0.00035 −0.00025 −0.00037
f8 −0.67100 −0.41761 −0.65646 −0.25370 −0.40180 −0.40560
f9 −0.33445 −0.00103 −0.00172 −0.00006 −0.00094 −0.01052
f10 −0.00103 −0.00172 −0.04368 −0.33445 −0.00103 −0.00098

Table 7. Averaged errors values achieved by all algorithms for each test functions for proposition I.

Function GA PSOA FA CSA WSA ACO

f1 −0.05754 −0.02098 −0.06574 −0.03123 −0.16919 −0.00317
f2 −0.09337 −0.10636 −0.08035 −0.09318 −0.10690 −0.08546
f3 −0.00046 −0.00019 −0.01644 −0.15137 −0.04208 −0.00043
f4 −0.00083 −0.00165 −0.00203 −0.00913 −0.00020 −0.00035
f5 0.21804 0.37145 0.21421 0.26740 0.35291 0.28987
f6 0 0 0 −0.00004 0 0
f7 −0.00272 −0.00101 −0.00023 −0.00001 −0.00634 −0.00053
f8 −0.21651 −0.17610 −0.17057 −0.08075 −0.06011 −0.05886
f9 −0.01052 −0.00109 −0.00314 0 −0.00971 −0.00117
f10 −0.00172 −0.00006 −0.00094 −0.01052 −0.00109 −0.00150

Table 8. Averaged errors values achieved by all algorithms for each test functions for proposition II.

Function GA PSOA FA CSA WSA ACO

f1 −0.03072 −0.00027 −0.08178 −0.00217 −0.00390 −0.00032
f2 −0.09337 −0.07208 −0.05691 −0.07437 −0.10287 −0.06782
f3 −0.00001 0 0 −0.00006 −0.00005 −0.00002
f4 −0.00079 −0.00083 −0.00166 −0.00015 −0.00011 −0.00029
f5 −0.26173 −0.41035 −0.10293 −0.13672 −0.06741 −0.00622
f6 0 0 0 −0.00003 0 0
f7 −0.00124 −0.00023 −0.00005 −0.00002 −0.00013 −0.00012
f8 −0.03217 −0.10752 −0.01222 −0.01671 −0.07361 −0.02173
f9 −0.00117 −0.00073 −0.00658 −0.00023 −0.00014 −0.01467
f10 −0.00314 0 −0.00971 −0.00117 −0.00073 0

Table 9. Averaged errors values achieved by all algorithms for each test functions for proposition III.

Function GA PSOA FA CSA WSA ACO

f1 −0.00892 −0.00913 −0.00088 −0.01001 −0.00785 −0.00339
f2 −0.06694 −0.02898 −0.00948 −0.01298 −0.02380 −0.00539
f3 0 0 −0.00010 −0.00044 −0.00005 −0.00001
f4 −0.00218 −0.00100 −0.00012 −0.00179 −0.00019 −0.00049
f5 −0.00843 −0.00147 −0.00634 −0.00199 −0.00136 0.400033
f6 0 0 0 −0.00002 0 0
f7 −0.00001 −0.00007 0 0 −0.00003 −0.00008
f8 −0.10710 −0.08110 −0.00981 −0.00009 −0.00710 −0.00009
f9 −0.01467 −0.00022 0 −0.10287 −0.06782 −0.06694
f10 −0.00658 −0.00023 −0.00014 −0.01467 −0.00022 0
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Table 10. Running time values achieved by all algorithms for each test functions for original algorithms.

Function GA PSOA FA CSA WSA ACO

f1 2006 1821 1648.8 1841 1626.3 1798
f2 2617 2775 2757 2647 2687 2674
f3 1151 905 896 898 903 891
f4 1432 1422 1421 1392 1401 1387
f5 5421 5500 5458 5240 5521 5341
f6 651 645 879 664 673 632
f7 730 720 783 715 706 711
f8 2818 2756 2929 2749 2755 2765
f9 801 804 935 798 803 803
f10 2252 2114 2769 2648 2273 2178

Table 11. Running time values achieved by all algorithms for each test functions for proposition I.

Function GA PSOA FA CSA WSA ACO

f1 1609.2 1784 1820 1802 1589 1673
f2 2377.7 2409.44 2432.7 2400.3 2382.3 2401
f3 812.7 822.6 808.2 815.4 806.4 812
f4 1417 1282.5 1275.3 1286.1 1276.2 1267
f5 4868.1 4860 4932 4914 4908.6 4912
f6 591.3 653 601.2 589.5 583.2 592.5
f7 635.4 633.6 682.6 636.3 586.08 581.4
f8 2301 2318 2529 2249 2492 2498
f9 720 702.24 763.6 714.6 732.6 712
f10 2048 2047 2234 2021 2089 2091

Table 12. Running time values achieved by all algorithms for each test functions for proposition II.

Function GA PSOA FA CSA WSA ACO

f1 1643.4 1584 1622.72 1583.12 1573.44 1602
f2 2399.4 2280 2583 2349 2482 2403
f3 789.36 801.68 786.72 762 782.32 773
f4 1247.84 1291.5 1260.16 1245.2 1249.84 1267
f5 4785.44 4772.24 4843.52 4762.56 4670.16 4694.95
f6 571.12 589.6 581.4 583.44 586.08 582.2
f7 648 583.44 603 586.08 602.8 589.2
f8 2491 2429 2539 2349 2483 2424
f9 601.5 728.64 704.88 620.25 724.24 636
f10 2124 2148 2348 2189 2290 2201

Table 13. Running time values achieved by all algorithms for each test functions for proposition III.

Function GA PSOA FA CSA WSA ACO

f1 1623.6 1349.25 1345.5 1367.25 1335.75 1401
f2 2418.24 2286.75 2449.8 2399.76 2690.25 2650
f3 788.48 756 673.5 678 672 673
f4 1258.4 1060.5 1062.75 1061.25 1060.5 1064
f5 4094.25 4091.25 4122.75 4001 4104 4005
f6 483 567.6 488.25 491.25 486 473
f7 584.32 495.75 545.75 497.25 496.5 491
f8 2202 2121 2292 2160.75 2176.5 2189
f9 718.96 601.5 703 597 635 606
f10 2103 2014 2261 2127 2221 2134

We also evaluated individual algorithms by assigning them ranks for each proposal—if the
algorithm obtained the most accurate solution for a given function using a particular technique,
it received one point. Results are presented in Figure 2, and it is easy to notice that depending on the
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chosen proposal, another algorithm proved to be the best. It is easy to notice that depending on the
chosen proposal, another algorithm proved to be the best. Without any modification the best algorithm
was classic version of PSOA and ACO. Adding first proposition the best one were PSOA and FA, CSA,
ACO are in the second place equally, and with second proposals, there are the same scores. The third
modification allowed CSA and ACO to be the best algorithms. Of course, obtained results depend on
the equations of motion, their length and other factors affecting such a large palette of metaheuristic
methods. Not only, the accuracy was measured, but the duration of action with using multithreading
techniques. Measured time values are presented in Table 4, 10, 11, 12, 13 and on Figure 3. The use of
any modification shortens the operating time for almost every case compared to the original versions.
What is interesting, first and second proposition shortened time of approximately the same value,
when the third obtained the best result in this aspect. To accurately assess the operation time, we used
the formulas described in Equations (37) and (38), the obtained results are presented in Table 14. The
worst results were achieved for the first modification, than the third one and the second one as the
best one in terms of acceleration. Scalability for each proposition (having 6 cores) were approximately
successively 1.79, 1.79 and 1.86. To analyze these values, we also calculated the scalability for the 2
and 4 cores which results are presented in Figure 4. Ideal solution would be linear curve, but the more
cores are used, the worst scalability is. In the case of the first two proposals, it decreases quite rapidly.
However, the scalability of proposition III only minimally decreases after using more than 4 cores.
Another aspect is the number of iteration needed for the sequential version to get similar results
(approximately) to the presented proposals. The obtained data are presented in Table 15. In the case
of 6 cores (for proposition I and II), the number of iteration must be increased by almost 22–26%. Such a
large discrepancy is caused by the randomness of the algorithms (for example, the initial distribution of
the population). In the case of proposals III, the sequential algorithm needs about 29% more iterations.

Figure 1. The average error obtained for each version of the algorithm.
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Figure 2. The performance ranking of tested algorithms—the number of times the algorithm ranked first.

Figure 3. Comparison of the average time needed to find the optimum for 100 individuals during
100 iterations for 100 tests for each algorithm and all tested versions.

Table 14. Obtained results from the use of parallelization for metaheuristic algorithms.

Metric Proposition I Proposition II Proposition III

Υ 1.11911 1.13374 1.24793
Φ 0.18652 0.18896 0.20799
G 1.78599 1.79463 1.86089
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Table 15. The average amount of additional iterations needed to obtain similar results by a sequential algorithm.

Proposition GA PSOA FA CSA WSA ACO

Proposition I 28 27 29 30 31 28
Proposition II 37 35 35 41 33 32
Proposition III 40 39 43 44 41 39

Figure 4. Scalability for each proposition.

A factorial ANOVA test was conducted to compare the main effects of absolute error and running
time values among classic meta-heuristic and three proposed techniques. The results was significant
both for absolute error (F(3, 183) = 22.66, p < 0.001) and running time (F(3, 183) = 56.60, p < 0.001).
The results of Friedman-Nemenyi tests of ranking further reveal that the performance of Proposition
III is the best among all techniques in terms absolute error (p < 0.001, critical distance = 0.66; tied with
Proposition II) and running time (p < 0.001, critical distance = 0.66). The ranks of the methods within
the critical distance are not significantly different (see Figure 5). The results are confirmed by the
random permutation test (10000 permutations). Proposition III has lower absolute error than Classic
method (p = 0.88), Proposition I (p = 0.78), and Proposition II (p = 0.56). Proposition III has lower
running time than Classic method (p = 0.98), Proposition I (p = 0.84), and Proposition II (p = 0.88).

Figure 5. The results of Friedman-Nemenyi tests of ranking.
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5. Conclusions

In this paper, we described six, classic meta–heuristic algorithms designed for optimization
purposes and proposed three techniques for increasing not only the accuracy, but also the efficiency of
the operation. Our ideas were based primarily on the action of multi–threading, which allowed placing
individuals of a given population in specific places where an extreme can be located. An additional
idea was to divide and manipulate the solutions space, which is interpreted as the natural environment
of the individuals in given population. These types of activities have been tested and analyzed in
terms of average error for selected functions and the time needed to perform the calculations to find a
solution. The obtained results indicated that each proposed modification shortens the time of operation,
but not all improve (significantly) the accuracy of the obtained measurements. The high scalability
of the proposal indicates that the increasing number of cores speeds up the work of modifications.
Moreover, each proposition showed the acceleration of the performance time as well as increasing the
accuracy of the obtained solutions regardless of the chosen heuristic algorithm.

While the proposed techniques of parallelization and manipulation of solution space have
improved the operation of classical algorithms, they are so flexible that can be streamlined and
improved by various ideas. In addition, this can allow to obtain even better results. This paper gives
only an example of the parallelization approach. It seems reasonable to divide the search space in
such a way that the area given to one particular core will be contained in the next and subsequent
one. In addition, a model of communication between populations would be needed to exchange
information about unfavorable areas. This would allow them to be removed from space and extended
to another area on each core. In practice, this will eliminate unnecessary searches of uninteresting
places, and at the same time increase precision (allowing individuals to move around in better places)
and reduce computation time due to the reduction of the area on all cores.
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