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Abstract: The prediction of travel time is challenging given the sparseness of real-time traffic data
and the uncertainty of travel, because it is influenced by multiple factors on the congested urban
road networks. In our paper, we propose a three-layer neural network from big probe vehicles
data incorporating multi-factors to estimate travel time. The procedure includes the following three
steps. First, we aggregate data according to the travel time of a single taxi traveling a target link on
working days as traffic flows display similar traffic patterns over a weekly cycle. We then extract
feature relationships between target and adjacent links at 30 min interval. About 224,830,178 records
are extracted from probe vehicles. Second, we design a three-layer artificial neural network model.
The number of neurons in input layer is eight, and the number of neurons in output layer is one.
Finally, the trained neural network model is used for link travel time prediction. Different factors are
included to examine their influence on the link travel time. Our model is verified using historical
data from probe vehicles collected from May to July 2014 in Wuhan, China. The results show that
we could obtain the link travel time prediction results using the designed artificial neural network
model and detect the influence of different factors on link travel time.

Keywords: big probe vehicles data; data sparsity; spatiotemporal relationships; multi-factor influences;
artificial neural networks; link travel time prediction

1. Introduction

The prediction of travel times is challenging because of the intrinsic uncertainty of travel on
congested urban road networks as well as the uncertain influence of factors such as rainfall when
probe vehicles travel on road networks. Uncertainty is produced by fluctuations in traffic and
affected by traffic control (e.g., due to incidents, road works and road geometry), weather conditions
(e.g., due to temperature, rain, snow and wind), stochastic arrivals and departures at signalized
intersections [1], and the travel direction of traffic flows. The influence of different factors on travel
time is often complicated and hard to predict. Understanding this influence is especially necessary
when developing more accurate prediction algorithms. Traditionally, loop detectors have been used to
collect traffic data reflecting traffic states and used to estimate or predict travel times [2–5]. However,
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installing loop detectors everywhere in a city to collect comprehensive traffic information is not feasible,
and maintaining installed devices is quite expensive. In contrast, probe vehicles as mobile traffic
sensors equipped with GPS are being used to collect network-wide traffic data. Probe vehicles can
collect information such as speed, timestamps, latitude and longitude coordinates, and azimuths,
reflect the state of the urban traffic, and can play an important role in real-time or near real-time travel
time prediction on a city road network.

At present, several methods to estimate travel time use probe vehicle data. Jula et al. [6] proposed
a mathematical model to estimate travel time along the arcs and arrival times at nodes in a stochastic
and dynamic network in real time, but ignored the sparse data problem. Zheng et al. [7] proposed
a three-layer neural network model to estimate complete link travel time for individual probe vehicles
traversing a link. This model was discussed and compared with an analytical estimation model
developed by Hellinga et al. [8]. Results showed that a neural network model had higher estimation
precision on simulation data, Mean Absolute Percentage Error (MAPE) up to 3.97% under the condition
of scenario 1. Those models however, were evaluated with data derived from vissim simulation model,
not real GPS data reflecting traffic flows. Liu [1] proposed a model to estimate arterial travel time by
tracing a virtual probe vehicle along an OD (Origin-Destination) route with multiple intersections.
The model works quite well with very low estimation error of 1.8%. Jenelius et al. [9] presented
a statistical model for urban road network travel time estimation using vehicle trajectories obtained
from low frequency GPS probes as observation data. The network model separated trip travel time into
link travel time and intersection delays and integrated correlations between travel times on different
network links in the model, based on a spatial moving average (SMA) structure. Zhan et al. [10]
developed a methodology to estimate link travel time from OD trip data and demonstrated the
feasibility of estimating network condition using large-scale geo-location data with partial information.
This model estimated the travel time of a link or trip under the condition of the sufficient GPS data,
whose MAPE is about from 21.52% to 29.305% corresponding to different model. The methods
based on models, nevertheless, cannot efficiently infer link travel times under the condition of sparse
data [7,11,12]. Due to the low frequency [13,14] of probe vehicle data and the regional limitations of
driving areas, trajectory information collected by probe vehicles cannot cover an entire urban road
network. Thus, the data are sparse [7,11] and, consequently, a solution for predicting link travel time
using sparse data incorporating multi-factors is needed.

In view of the data sparseness, we put forward a three-layer neural network model based on
feature relationship between target link and adjacent link to estimate link travel time. For each link,
which day of the week, which 30 min of the day, degree ratio, length ratio between target and adjacent
link, speed expectation, speed standard variance among adjacent links, and weather information are
regarded as artificial neural network (ANN) input. Travel time ratios between target and adjacent
links are the ANN output. Experimental results show that the proposed neural network model can
predict link travel time using the relationship between a target and adjacent links. At the same time,
different constructed models were used to verify the influence of factors on link travel time prediction.

The conclusion of this article is based on the analysis of our previous work [15]. However, this paper
mainly predicts link travel time using sparse data incorporating multi-factors and researches their
influence on link travel time prediction. The article is outlined as follows. In Section 2, the measurement
of spatial correlation between target and adjacent links is detailed. In Section 3, we introduce factors
influencing the correlations between target and adjacent links. In Section 4, the artificial neural network
(ANN) is presented and discussed. In Section 5, we describe our experiments, including data description,
model application, a comparison of models, and sensitivity analysis. A discussion of the results and some
conclusions are outlined at the end.

2. Measurement of Spatial Correlation

In this section, we first define several basic concepts and analyze the spatial correlation between
target and adjacent links.
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Definition 1. As shown in Figure 1, a link is defined as the segment between every two intersections of
road network.

Definition 2. Single vehicle link travel time is defined as the time a probe vehicle takes to traverse a target link
from a beginning intersection to an ending intersection.
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Figure 1. Visualization of the local road network in Wuhan City, China.

In our experiment, we choose one of the most commonly used indices, Pearson’s coefficient [1,16],
to quantitatively measure the spatial and temporal correlations of travel time. The Pearson correlation
coefficient, giving a value between −1 and +1, is used to measure the linear correlation between two
variables x and y. It is developed by Karl Pearson and widely used in the sciences as a measure of the
degree of linear dependence between two variables. Supposing two variables x and y, the Pearson’s
correlation coefficient is defined as follows:

ρx,y =
E
[
(X − µx)(Y − µy)

]
σxσy

(1)

where µx and µy are the mean average of variables x and y, respectively. Similarly, σx and σy are
corresponding standard deviations of variables x and y. Therefore, according to Equation (1), we can
calculate the spatial correlation coefficient between target link and adjacent link.

Figure 2 reveals schematic diagram of traffic flow, where link 88 is upstream link, link 82 is target
link and link 77 is downstream link. As seen in Table 1, which shows the pair-wise correlations among
link 82, link 77 and link 88, the correlation coefficient of speed expectation in a certain direction and
different time are significantly correlated at 0.01 confidence level (two-tailed). Figure 3 is a line chart of
the relationships for speed expectations among link 77, link 82 and adjacent link 88 from Monday to
Friday. In Figure 3, the correlation coefficient of speed on different days presents different values and
varies with day. The speed expectation of link 82 increases when the speed expectation of adjacent
link 88 increases, presenting a positive correlation. We also see in Figure 3 that it displays a rhythmic
pattern among the speed expectation of link 77, link 82 and link 88. Hence, both Table 1 and Figure 3



Appl. Sci. 2018, 8, 279 4 of 18

illustrate the dynamic spatial correlations among target links and adjacent links. Consequently, travel
information of adjacent links was selected as model inputs to predict target link travel time.Appl. Sci. 2018, 8, x FOR PEER REVIEW  4 of 19 
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Figure 3. The correlation among link 77, link 82 and link 88.

Table 1. The correlation coefficient of speed expectation in a certain direction and different time among
target link 82, adjacent link 77 and adjacent link 88.

Link Monday Tuesday Wednesday Thursday Friday

Link 77, link 82 in −1
traffic flow direction 0.755327 ** 0.599857 ** 0.451914 ** 0.575618 ** 0.558733 **

Link 88, link 82 in −1
traffic flow direction 0.719256 ** 0.837093 ** 0.762925 ** 0.715509 ** 0.605603 **

** Significantly correlated at 0.01 confidence level (two-tailed).

3. Extracting Influencing Factors

Traffic flow is influenced by many factors such as traffic from adjacent areas, temperature,
and rainfall. In this section, we extract influence factors from big historical traffic data and historical
meteorological information to investigate their influence on link travel time prediction. Time, speed
expectation, the standard deviation of speed, link degree, link length, and weather are closely related
to traffic flow or road networks [7,17]. We extract these factors from big historical traffic data.
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Existing research has shown that taxi trajectory trip patterns have weekly cycles [18,19]. The traffic
flow of different direction is different and the same direction traffic flow between target and adjacent
links has an important significance on each other. Figure 1 shows the local study area in the Wuhan
road network. In this figure, the link number distinguishes different links. We extracted features of
target link and adjacent link according to week’s cycle and traffic flow direction as depicted in Figure 2.

3.1. Traffic-Related Influencing Factors

Speed expectation and the standard deviation of speed are traffic-related characteristics that
express the traffic of link. Some certain correlation between target link and adjacent link exists for
these factors [7]. Consequently, we extracted features between a target link and adjacent links from
quantities of statistical travel time information from taxis traversing the target link.

As shown in Figure 2, we extracted link traffic features in accordance with the direction of traffic
flow. The traffic flow of black arrow direction of link 81 and link 88 has an effect on traffic flow of link
82 whose direction is black arrow direction too. The traffic flow of link 82 whose direction is black
arrow direction also has influence on the traffic flow of link 77 and link 76 whose direction is also
black arrow direction. At the same time, that the traffic flow is red arrow direction also influences each
other. Therefore, we extracted speed expectation and speed standard deviation of link every 30 min
according to the traffic flow direction. Subsequently, the calculation of traffic-related influence factors
is as follows. Here, l denotes link length, ti denotes travel time of the ith taxi traversing link, vi denotes
average speed of the ith taxi traversing link, E(v) denotes speed expectation of taxi traversing link,
and D(v) denotes speed standard deviation of taxi traversing link.

(1) Expectation of speed: E(v).

We calculated average speed of single taxi traversing link according to Equation (2). As the
travel time of every taxi traversing link is different, we computed the expected speed according to
Equation (3) for every 30 min, representing the overall taxi travel speed.

vi = l/ti (2)

E(v) = ∑ (vi.
ti

∑ ti
) (3)

(2) Standard deviation of speed: D(v).

We calculated standard deviation of speed according to Equation (4) for every 30 min according
to historical probe vehicle data, which reflects the variable speeds of different taxis traveling links over
every 30 min.

D(v) =

√
∑ ([vi − E(v)]2

ti

∑ ti
) (4)

Figure 3 is a line chart reflecting the relationship of expected speed among links 77, 82 and 88.
As shown, the expected speed of link 82 increases when the expected speed of adjacent link 88 and
link 77 increases, i.e. a positive correlation.

Figure 4 shows the variance in the standard deviation of speed over time among link 82, link 77
and link 88, respectively. As depicted in Figure 4, the standard deviation for speed decreases since
taxis run at slower speeds during rush hours in mornings and evenings. A large variance occurs at
other times of the day, when taxis travel with quite different speeds.



Appl. Sci. 2018, 8, 279 6 of 18
Appl. Sci. 2018, 8, x FOR PEER REVIEW  6 of 19 

 
Figure 4. Line chart of speed standard deviation among link 77, link 82, and link 88. 

3.2. Ratio Relationship between Target Link and Adjacent Links 

3.2.1. Link Degree Ratio between Target Link and Adjacent Links 

Definition 3. The degree of link connectivity is termed link degree, denoted by degrl , and represents the sum 

of the links attached directly to the two endpoints of a link. 

Connectivity degree of link, denoted by degr , is the sum of several links attached directly to 
the two endpoints of link. Link degree is one of the characteristics of road geometry. The greater the 
degree is, the more directly the link is connected. Therefore, the link guidance capacity of traffic is 
stronger. Degree ratio reflects the relationship of link between two links. We calculated degree ratio 
between target link and adjacent link in study region according to Equation (5) as neural network 
input information. 

t
ta

a

degr
R(degr) =

degr
Δ  (5) 

3.2.2. Length Ratio between Target Link and Adjacent Link 

Generally, link travel time is mainly related with target link, such as the length of target link, 
and the speed of probe vehicle running in target link. At the same time, it is also affected by the 
adjacent link. Link length is also one of characteristics of road geometry. Generally, the greater the 
distance is, the longer is the travel time of a taxi traversing the link. The relationship of the link travel 
time between target link and adjacent link is expressed by the length ratio We calculated length ratio 
between target link and adjacent link in study region according to Equation (6) and used it as neural 
network input information. 

( ) t
ta

a

leng
R leng

leng
Δ =  (6) 

3.2.3. Travel Time Ratio between Target Link and Adjacent Link 

Link travel time reflects the traffic running state of a link but there is also a temporal relationship 
between a target link and an adjacent link; the travel time ratio of a target link and adjacent link. We 
calculated travel time ratio between a target link and adjacent links in the study region according to 
Equation (7) and this was used as output information of neural network to train the model. 

Figure 4. Line chart of speed standard deviation among link 77, link 82, and link 88.

3.2. Ratio Relationship between Target Link and Adjacent Links

3.2.1. Link Degree Ratio between Target Link and Adjacent Links

Definition 3. The degree of link connectivity is termed link degree, denoted by ldegr, and represents the sum of
the links attached directly to the two endpoints of a link.

Connectivity degree of link, denoted by degr, is the sum of several links attached directly to the
two endpoints of link. Link degree is one of the characteristics of road geometry. The greater the
degree is, the more directly the link is connected. Therefore, the link guidance capacity of traffic is
stronger. Degree ratio reflects the relationship of link between two links. We calculated degree ratio
between target link and adjacent link in study region according to Equation (5) as neural network
input information.

∆R(degr)ta =
degrt

degra
(5)

3.2.2. Length Ratio between Target Link and Adjacent Link

Generally, link travel time is mainly related with target link, such as the length of target link,
and the speed of probe vehicle running in target link. At the same time, it is also affected by the
adjacent link. Link length is also one of characteristics of road geometry. Generally, the greater the
distance is, the longer is the travel time of a taxi traversing the link. The relationship of the link travel
time between target link and adjacent link is expressed by the length ratio We calculated length ratio
between target link and adjacent link in study region according to Equation (6) and used it as neural
network input information.

∆R(leng)ta =
lengt

lenga
(6)

3.2.3. Travel Time Ratio between Target Link and Adjacent Link

Link travel time reflects the traffic running state of a link but there is also a temporal relationship
between a target link and an adjacent link; the travel time ratio of a target link and adjacent link.
We calculated travel time ratio between a target link and adjacent links in the study region according
to Equation (7) and this was used as output information of neural network to train the model.

∆R(travT)ta =
travTt

travTa
(7)
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3.3. Time Instant

Traffic states vary over the course of a day and between days of the week while link traffic has
a weekly cycle [18,20,21], thus in our analysis we ignore differences between weeks and focus on
the differences between days during a week. We assume that traffic flow remains consistent during
every 30 min interval. Consequently, the day of the week and each 30 min interval during a day were
regarded as neural network input information.

3.4. Weather Information

Among all meteorological factors, rainfall, air temperature, visibility, and wind are significantly
relevant for understanding travel time. Snow and fog might increase the travel time for a driver
from departure to arrival point. Therefore, we explore the effect of these factors on link travel time to
improve prediction accuracy. A heavy rain waterlogs roadways, and makes the road surface slippery,
thus traffic will be rather slow during and after rains. However, the traffic on sunny days is smoother.
Heavy fog reduces visibility and might affect traffic. Hence, weather conditions must be considered
when estimating and predicting travel time accurately.

Meteorological information was obtained from the public weather website http://tianqi.2345.
com/wea_history/57494.htm and included date, day of week, minimum air temperature, maximum air
temperature, weather, wind direction and wind force as depicted in Table 2. The weather information
included visibility, and precipitation. However, there were no data for continuous wind direction or
wind force in Wuhan City from April to July 2014. Meanwhile, annually, there is little fog and snow in
Wuhan, and therefore it is unnecessary to consider the influence of wind, fog, and snow on link travel
time estimation or prediction, in this instance. We just considered the influence of temperature and
rainfall on traffic. Average air temperature and rainfall were chosen as inputs for the model, denoted
by temp and rain, respectively. Table 2 demonstrates meteorological information by day.

Table 2. Meteorological information by day.

Date Weekday Minimum Air
Temperature (◦C)

Maximum Air
Temperature (◦C) Weather Wind

Direction
Wind
Force

4 May 2014 Sunday 11 21 light rain to cloudy No No
7 May 2014 Wednesday 17 28 clear to overcast cloudy No No
24 May 2014 Saturday 20 27 light rain to heavy rain No No

Based on this analysis, we designed an algorithm which extracted features or influence factors
between target link and adjacent links. The travel time ratio between target link and adjacent links was
regarded as output of model among all the extracted features and influence factors. Others were all
regarded as inputs in our designed model. We conducted experiments using these extracted features
and influencing factors.

4. The Artificial Neural Network Model

The Neural Network model [22,23] is a machine learning algorithm widely applied in traffic
prediction. Although many ANNs could be applied in our framework, we chose a Back-propagation
(BP) neural network with one hidden layer in the experiments for simplicity and generality.
As discussed in Section 3, we chose eight features as input of ANN and one feature as output. The eight
influence factors and one output are depicted and denoted as shown in Table 3. These are as follows:
day of the week (wdi), the 30 min during a day (whi), expected speed (Ei(v)), standard deviation of the
speed (Di(v)), degree ratio between target link and adjacent links (∆Ri(degr)), length ratio between
the target link and adjacent links (∆Ri(leng)), temperature (temp), rainfall (rain), and travel time ratio
between a target link and adjacent links (∆Ri(travT)). As shown in Figure 5, we set eight neurons in
the input layer and the number of neurons in output layer was set to one.

http://tianqi.2345.com/wea_history/57494.htm
http://tianqi.2345.com/wea_history/57494.htm
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Table 3. Input features and corresponding output feature.

1 2 3 4 5 6 7 8 9

wdi whi Ei(v) Di(v) ∆Ri(degr) ∆Ri(leng) temp rain ∆Ri(travT)
F1 F2 F3 F4 F5 F6 F7 F8 F9
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Ei(v), expected speed; temp, temperature; rain, rainfall; ∆Ri(travT), travel time ratio between a target link
and adjacent links. Arrows in this figure represent input data flow and red points stand for neurons in
neural network.

4.1. Input Layer

The input for this ANN was designed for an eight-dimension vector as depicted in Equation (8).
It does not perform any calculation and just transmits signal to the next layer.

xi =



wdi
whi
Ei(v)
Di(v)
∆Ri(degr)
∆Ri(leng)
temp
rain


(8)

where xi denotes the ith vector of input layer. As depicted in Equation (8), wdi denotes the day of
the week and whi denotes the 30 min of the day. Ei(v) denotes the expected speed of adjacent link
and Di(v) denotes the standard deviation of speed on adjacent link. ∆Ri(degr) denotes the degree
ratio between target link and adjacent link. ∆Ri(leng) denotes the length ratio between target link and
adjacent link. temp denotes the average temperature corresponding to day and rain denotes the rainfall
intensity corresponding time instant. All the features were calculated for each 30 min period.

4.2. Hidden Layer

Hidden layer is a standard layer of ANN that transfers the signal from the input layer to output
layer. Its input is the output of layer, and its output is used as the input of the next layer. The calculation
method of ANN in hidden layer is depicted as following equation.

H(i) =

 h1(i)
. . .
hn(i)

 =


ϕ(

n
∑

j=1
ωj.1xj(i) + b1)

. . .

ϕ(
n
∑

j=1
ωj.nxj(i) + bn)

 (9)
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where hn(i) denotes the value of the nth hidden neuron, ωj.n denotes the weight connecting the
jth input neuron and the nth hidden neuron, bn denotes a bias with a fixed value for the nth hidden
neuron, and ϕ denotes a transfer function.

4.3. Output Layer

This layer contains one neuron to generate the whole output of the neural network,

y(i) = ϕ(
n

∑
k=1

ωkhk(i) + b) (10)

where y(i) denotes estimated travel time ratio of link, ωk denotes the weight connecting the kth hidden
neuron and the output neuron, and b is the bias for the output.

5. Model Application

5.1. Data Description and Preparation

In our research, a private-sector company provided historical and real-time probe vehicle data for
us to research travel time prediction. Probe vehicles collect information such as instantaneous speeds,
timestamps, location, and azimuth, reflecting the running state of the urban traffic, and could play
a crucial part in travel time estimation and prediction. The oracle database was acquired from ITS
(Intelligent Traffic System) in Wuhan, China. We chose a partial road network in Wuhan city as a study
area, as shown in Figure 1. The road network was bounded by Wuluo Road, Luoshi South Road,
Xiongchu Avenue, and Dingziqiao Road, including many branches and paths. The road network was
divided into links by crossing points where roads intersect. The degree of each link was obtained for
the links in the entire network, except for links on the edge of the study area. Table 4 shows the selected
local roads in the Wuhan road network, which includes the section number, geographic location and
the length of each segment.

As a result of the effect of GPS positioning error [24], probe vehicles usually deviate from its
actual driving road. Therefore, we first projected GPS points to those roads according to the probe
vehicle trajectory with map-matching algorithm [15,25–27], and then, calculated link travel time using
these corrected points. We calculated travel information including travel time, average speed of probe
vehicles taking into consideration the probe vehicle running state at the intersections [28–31]. Table 5
depicts the travel characteristics extracted from the massive quantities of statistical travel time data,
including obtained link ID, exiting endpoint ID, entering endpoint ID, probe vehicle ID, the travel time
for a probe vehicle traversing the link, the moment a probe vehicle entered the link and the average
speed of a probe vehicle traversing the link. Existing research has shown that probe vehicle trajectories
display similar traffic patterns over a weekly cycle [18,21,32]. According to the weekly cycle of traffic,
historical characteristics between target and upstream links were extracted. Figure 2 depicts road
number and traffic direction on the partial road network shown in Figure 1. We used our model to
predict travel times for link 82 considering spatiotemporal correlation among link 82, link 88, and link
77. Consequently, we extracted spatiotemporal correlation characteristics from big historical data from
probe vehicles from May to July 2014—about three billion records.

Table 4. Selected arterial road network used in the experiment.

Section ID
Start Coordinate End Coordinate Length

(Meter)Latitude Longitude Latitude Longitude

88 30.535 114.329 30.533 114.334 475.69
82 30.533 114.334 30.532 114.338 489.10
77 30.532 114.338 30.530 114.342 411.43
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Table 5. Travel information from individual probe vehicles.

Link
ID

Enter
Endpoint ID

Exit
Endpoint ID

Probe
Vehicle ID Time Instant Travel

Time (s)
Average Speed

(m/s)

82 35 48 23501 3 June 2014
03:17:11 100.0 4.89

82 35 48 22608 2 June 2014
00:00:50 85.0 5.75

82 48 35 29444 2 June 2014
00:12:03 101.0 4.84

Tables 6–8 summarize historical big data, about 299,773,570 records from probe vehicle travel time
information with descriptive statistics from January to May, 2014, including: mean value; standard deviation
(SD); the 25th, 50th and 75th percentiles of travel time; and the minimum (Min), and maximum (Max)
observations. Travel time data were recorded in the unit of seconds. From these three tables, it can be inferred
that the quartile speed for the same link was similar for each day, with not much difference from day to day.
In contrast, a great difference in speeds existed among different links. Figures 6–8 show the distribution of
speeds among the observations from link 88, link 82 and link 77 on Mondays and Wednesdays, respectively.
A histogram of the same links presents a similar pattern, with an approximately normal distribution, if outliers
are excluded. The distribution of travel speed however, shows slight differences among the different links.

Table 6. Basic statistics of travel speed (m/s) about link 88 1.

Workday Mean SD 25th 50th 75th Min Max

Monday 6.55 2.22 5.23 6.61 7.8 1.03 26.43
Tuesday 6.56 2.19 5.17 6.61 7.8 1.15 15.35

Wednesday 6.64 1.95 5.41 6.61 7.8 1.46 16.4
Thursday 6.68 2.23 5.52 6.7 7.8 1.43 18.3

Friday 6.42 2.10 5.23 6.34 7.55 1.2 15.86

1 SD, standard deviation.

Table 7. Basic statistics of travel speed (m/s) for link 82.

Workday Mean SD 25th 50th 75th Min Max

Monday 4.83 2.15 3.27 4.33 6.04 0.94 15.78
Tuesday 4.82 2.08 3.26 4.41 6.09 1.06 13.97

Wednesday 4.73 2.09 3.12 4.25 6.19 1.04 13.59
Thursday 4.77 2.18 3.14 4.33 6.25 0.93 13.22

Friday 4.97 2.20 3.37 4.61 6.04 1.11 17.47

Table 8. Basic statistics of travel speed (m/s) about link 77.

Workday Mean SD 25th 50th 75th Min Max

Monday 4.42 1.77 3.27 4.16 5.08 1.2 16.46
Tuesday 4.16 1.61 3.21 3.92 4.84 1.12 13.72

Wednesday 4.61 1.81 3.37 4.29 5.14 1.32 13.72
Thursday 4.18 1.52 3.14 4.03 4.84 1.04 11.76

Friday 4.47 1.82 3.37 4.24 5.02 1.24 18.7
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We took link 82 for the sparse data link. Thus, link 82 and adjacent links including link 76, link 77,
link 81 and link 88, were the research objects. To remove noisy data, statistical historical data were
preprocessed. At the same time, historical data on workdays (from Monday to Friday, except holidays)
were filtered as experimental data. Consequently, we calculated expected speed and the standard
deviation for the speed of the adjacent links for every 30 min period from preprocessed historical
data according to the weekly cycle and traffic flow direction as depicted in Figure 2. The features
were calculated according to Section 3 and shown in Table 9. The travel time of adjacent links is the
key point when predicting target link travel time as this value reflects the localized state of traffic
overall. Finally, we extracted 2078 features as input for the neural network and 2078 features as output
corresponding to input features. Of all the extracted features, a portion of these features was taken as
training data for the ANN model. Another different portion of these features was taken as test data to
verify the validity of the model.

Partial meteorological information was selected to research their influence on link travel time
prediction. As for the meteorological information, we only considered the influence of temperature
and rainfall on traffic based on our previous analysis discussed in Section 3.4. We defined degree
of rainfall into four ranks according to historical rainfall: rainless, drizzle, downpour and thunder,
corresponding to the digital values 1, 2, 3 and 4, respectively. The input and output information of our
model are depicted in Table 9.

Table 9. Example of the training and testing dataset (inputs and output of artificial neural network
(ANN) model).

1 2 3 4 5 6 7 8 9

wdi whi Ei(v) Di(v) ∆Ri(degr) ∆Ri(leng) temp rain ∆Ri(t)
F1 F2 F3 F4 F5 F6 F7 F8 F9
1 0.1 5.32 1.97 1 0.7984 25.25 1 0.7374
2 0.1 5.58 1.79 1 0.7984 28.78 1 0.714
5 3.3 2.55 0.96 0.8 1.0282 26.36 2 0.4355
3 3.4 5.02 1.02 1.3333 1.0529 28.34 1 2.0021
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5.2. Neural Network Training

A training process is necessary before the ANN model can be applied to estimate link travel times.
In our proposed model, the Levenberg–Marquardt algorithm was chosen for neural network training
as it provides fast convergence even for large networks. The learning rate was set to 0.01 to maintain
the stability of neural network. The gradient was set to 1 × 10−5 and the number of validation checks
was set to ten. Three procedures including training, validation, and testing were conducted during the
entire training process.

As depicted in Table 10, we divided the whole dataset into three subsets; the training dataset,
validation dataset, and testing dataset. Different quantities of data were used for training, validation
and testing, respectively. The amount of validation remains the same, namely 10% of total data,
the training data were 89%, 85%, 80% and 70%, respectively. In addition, the corresponding testing
data were 1%, 5%, 10% and 20%. The training dataset was used in neural network for training,
while the validation dataset was used to stop training when the network performance on the validation
dataset failed to improve or remained the same. The validation dataset was used to prevent over-fitting
and ensures the generalizability of results from the network. The testing dataset was used to test the
performance of trained neural network and acted as a further check on results. Testing had no effect
on training. After training and validation, the trained ANN model was applied to predict link travel
times for links at different time instants.

Table 10. Training, evaluation and testing dataset 1.

Total Data Training
(Percentage)

Validation
(Percentage)

Testing
(Percentage) RMSE MAPE

2078

1849 (89%) 208 (10%) 20 (1%) 17.9606 12.46%
1766 (85%) 208 (10%) 104 (5%) 26.5225 15.90%
1662 (80%) 208 (10%) 208 (10%) 28.4815 15.61%
1454 (70%) 208 (10%) 417 (20%) 23.0553 15.02%

1 RMSE, Root Mean Square Error; MAPE, Mean Absolute Percentage Error.

5.3. Model Evaluation

In this section, two performance indicators were used to evaluate the performance of our
neural network model. As two of the most commonly used indicators, and for their simplicity
and representativeness, we chose Root Mean Square Error (RMSE) and Mean Absolute Percentage
Error (MAPE) to be indicators:

RMSE =

√
1
n

n

∑
i=1

(tpv,i − ttrue,i)
2 (11)

MAPE = 100% × 1
n

n

∑
i=1

∣∣tpv,i − ttrue,i
∣∣

ttrue,i
(12)

where tpv,i denotes the estimated travel time of probe vehicle traveling target link, and ttrue,i is true
link travel time.

5.4. Results of ANN Based on Real GPS Data

In our experiment, the trained model obtained according to extracted historical features was used to
predict link travel time based on real GPS data and different datasets were used to verify our proposed
model. As depicted in Figure 9, the correlation between true link travel time and predicted link travel
time corresponded to different testing datasets. The horizontal axis represents true link travel time while
the vertical axis denotes predicted link travel time. The linear correlation coefficient R value indicates
the correlation between true link travel time and predicted link travel time. As we can see in Figure 9,
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with an increasing quantity of data, the R value trended downward. Table 10 shows the prediction accuracy
corresponding to different testing data. The value of MAPE becomes slightly bigger with an increase in the
amount of data from 1 to 5% of the total data. As shown in Figure 9a, it reaches the best prediction effect
from the perspective of MAPE when the data were 1% of the total data. The mean absolute percentage
error was 12.46% and the root mean square error was 17.96 s. However, the MAPE values corresponding to
different testing data obtained values closer to each other when the testing data were 5%, 10% and 20%,
as shown in Figure 10: 15.90%, 15.61%, and 15.02%, respectively.Appl. Sci. 2018, 8, x FOR PEER REVIEW  14 of 19 
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5.5. Sensitivity Analysis of Different Influencing Factors

We constructed different ANN models to understand factors influencing link travel time, such as
weather, and temperature. As mentioned in Section 3, the input features of neural network model
includes day of the week (wdi), which 30 min of the day (whi), expected speed (Ei(v)), standard
deviation of speed (Di(v)), degree ratio between target link and adjacent link (∆Ri(degr)), length ratio
between target link and adjacent link (∆Ri(leng)), temperature (temp) and rainfall (rain). The output of
ANN models was the travel time ratio between target link and adjacent link (∆Ri(t)). The role each
feature plays in predicting travel time in the neural network model needed to be verified. Therefore,
different models were constructed with different factors and the sensitivity of factors on travel time
prediction was analyzed. We constructed different neural network models by combining input features
and used the average absolute percentage error (MAPE) to measure the performance of these ANN
models. To construct models conveniently, we use simple variable F1 to F8 as depicted in Table 3 to
denote the input features of different models and constructed them as follows.

(1) Model M: including all input features

This model includes all input features and it is regard as a benchmark compared with other
models. The input feature of Model M includes F1, F2, F3, F4, F5, F6, F7 and F8.

(2) Model A: without day of the week

Time information reflects the travel characteristic of probe vehicle during different time periods.
The day of the week distinguishes different travel times corresponding to different days in a week.
The ANN model without day of the week was trained as Model A. The input features of Model A
included F2, F3, F4, F5, F6, F7 and F8.

(3) Model B: without 30 min time interval of the day

The 30 min intervals of the day distinguish different travel times corresponding to different time
periods. The ANN model excluding 30 min of a day was trained as Model B. The input feature of
Model B includes F1, F3, F4, F5, F6, F7 and F8.

(4) Model C: without expected speed

The expected speed reflects the state of traffic on a road. The ANN model without expected speed
was trained as Model C. The input feature of Model C includes F1, F2, F4, F5, F6, F7 and F8.

(5) Model D: without the standard deviation of speed

The standard deviation of speed reflects the variance in speeds on a link. The ANN model without
the standard deviation of speed was trained as Model D. The input feature of Model D includes F1, F2,
F3, F5, F6, F7 and F8.

(6) Model E: without length ratio

The ANN model without length ratio was trained as Model E. The input feature of Model E
includes F1, F2, F3, F4, F6, F7 and F8.

(7) Model F: without degree ratio

The ANN model without degree ratio was trained as Model F. The input feature of Model F
includes F1, F2, F3, F4, F5, F7 and F8.

(8) Model G: without temperature

The ANN model without temperature was trained as Model G. The input feature of Model G
includes F1, F2, F3, F4, F5, F6 and F8.

(9) Model H: without rain
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The ANN model without rain was trained as Model H. The input feature of Model H includes F1,
F2, F3, F4, F5, F6 and F7.

In the comparison experiment, we used the same dataset to train different ANN models and
the same dataset was used to test those trained models using MAPE. Consequently, we conducted
experiments using the same training dataset and four groups of testing dataset for each trained model
to test the trained model. It can reflect the influence of model constituted by different factors on link
travel time prediction. As shown in Table 11, it quantifies the influence of different factors. In general,
model M has smaller MAPE than other models. Figure 11 illustrates the influence of different models
on the performance of ANNs under the condition of different testing dataset. As shown in Figure 11,
different factors influence the prediction of link travel time. Model M had greater prediction accuracy
overall, as the MAPE value was lower. Models with the three factors day of the week, 30 min period of
the day, and the expected speed of adjacent link influenced link travel time prediction had a higher
value of MAPE than those models without them. The expected speed of an adjacent link had the
greatest effect on link travel time prediction among those three factors; the biggest MAPE value
appeared in the model excluding expected speed in link travel time prediction. The degree ratio and
temperature slightly influence link travel time prediction. Rainfall affects link travel time prediction
but is not as important as time of day as expressed by 30 min interval, expected speed of adjacent
links, or day of the week. The MAPE value was smaller when rainfall was excluded from the model,
as shown in the sensitivity analysis seen in Figure 11.

Table 11. MAPE of ANN with some influence factors excluded.

Testing
Dataset

Model
M

Model
A

Model
B

Model
C

Model
D

Model
E

Model
F

Model
G

Model
H

1% 12.46% 17.85% 18.08% 19.28% 16.86% 15.79% 16.84% 15.97% 17.54%
5% 15.90% 18.23% 18.56% 19.33% 17.73% 16.38% 17.17% 16.17% 17.78%
10% 15.61% 18.27% 19.19% 19.88% 17.79% 16.65% 17.59% 16.45% 18.21%
20% 15.02% 18.43% 19.27% 20.21% 17.97% 17.07% 17.47% 16.87% 18.37%
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6. Discussion and Conclusions

Previous studies have focused on analyzing raw data from GPS sensors to promote the accuracy
of GPS data. Recent research has focused on developing methods to study link travel time prediction,
such as the Kalman filter model and other data driven models. Generally, the existing methods can
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best predict link travel times when there are abundant data. However, they ignore situations when
there are insufficient data and do not account for meteorological factors. Consequently, to predict link
travel time using sparse data, incorporating multi-factors is a challenge.

We propose an ANN model for travel time prediction of target links using sparse data and
incorporating the influence of multi-factors such as weather conditions. The running state of probe
vehicle to some extent reflects the state of road traffic. Using data collected by probe vehicles,
we aggregated data from Monday to Friday for single taxis traveling target link on weekdays.
We extracted feature relationships between target links and adjacent links for time-periods based
on big data from probe vehicles. Temperature and rainfall were also input to our ANN model.
We designed a three-layer artificial neural network model with eight neurons in the input layer and
one neuron in the output layer. Of all these extracted features, the ratio between target link and
adjacent link was the output of ANN model and the other features were the input of ANN model.
We used the designed artificial neural network model for training, validation. Finally, the trained
neural network model was used for link travel time prediction. Different models constructed with
different factors were used to evaluate the influence of factors on link travel time prediction. The main
contribution of our research is that we can predict link travel time using sparse data. At the same
time, we incorporated multi-factors into our model and researched their influence on link travel time.
The model was verified by historical big data—about 224,830,178 records from probe vehicles from
May to July 2014. The experimental results showed that, when data are sparse, we can obtain better
results using an artificial neural network model based on feature relationships between target links
and adjacent links and big historical data. We could know from model comparison, all those factors we
selected have influence on link travel time prediction. Among those factors, the three factors the day of
the week, the 30 min interval of the day, and the expected speed of adjacent links had higher influence
on link travel time prediction than other factors Rainfall also affected link travel time prediction but is
not as important as the three dominant factors.

Our results are influenced by techniques and experimental conditions. For example, the location
accuracy is influenced by GPS devices, while the map-matching algorithm affects the precision of
GPS trajectories. Meanwhile, travel time is also affected by the calculation algorithms for single probe
vehicles traveling target links. This paper only focused on link travel time on a local road network.
In the future, we will validate this model using links in other areas of the Wuhan road network,
the road networks in other Chinese cities, and using larger real datasets. We will further validate the
ANN model considering other factors which might be relevant in Chinese cities, such as the number of
lanes, snow, and wind conditions. We will also apply this model to predict route travel time based on
probe vehicle data.
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