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Abstract: Soil nitrogen is one of the crucial components for plant growth. An accurate diagnosis
based on soil nitrogen information is the premise of scientific fertilization in precision agriculture.
Soil nitrogen content acquisition based on near-infrared (NIR) spectroscopy shows the significant
advantages of high accuracy, real-time analysis, and convenience. However, soil texture, soil moisture
content, and drying temperature all affect soil nitrogen detection by NIR spectroscopy. In order to
investigate the effects of drying temperature on calcium soil nitrogen detection and its characteristic
bands, soil samples were detected at a 25 ◦C placement (ambient temperature) after 40 ◦C drying
(medium temperature), 60 ◦C drying (medium-high temperature), 80 ◦C drying (high temperature),
and 105 ◦C drying (extreme high temperature), respectively. Besides that, the original spectra
were pretreated with five preprocessing methods, and the characteristic variables were selected by
competitive adaptive reweighted squares (CARS) and backward interval partial least squares (BIPLS).
The partial least squares (PLS) method was used for modeling and analysis. The predictive abilities
were assessed using the coefficients of determination (R2), the root mean squared error (RMSE),
and the residual predictive deviation (RPD). As a result, the characteristic bands focus on 928–960 nm
and 1638–1680 nm when soil was detected after 40 ◦C, 60 ◦C, and 80 ◦C drying. Calcium soil
obtained the best prediction accuracy (R2

p = 0.966, RMSEp = 0.128 g
kg , RPD = 5.03) after 40 ◦C

drying by the method of CARS-BIPLS-PLS. Meanwhile, the prediction model also performed well
when soil was detected after 60 ◦C drying (R2

p = 0.946, RMSEp = 0.172 g/kg, RPD = 4.53) and
80 ◦C drying (R2

p = 0.961, RMSEp = 0.143 g
kg , RPD = 4.98). However, the calcium soil obtained

the worst detection result when soil was placed at 25 ◦C. In conclusion, a low or extremely high
drying temperature had an adverse influence on the soil nitrogen detection, and the 40 ◦C drying
temperature as well as the CARS-BIPLS-PLS method were optimal to enhance the soil nitrogen
detection accuracy.
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1. Introduction

Soil nitrogen is the key parameter supporting plant growth and development [1]. Thus, it is of
great importance to obtain soil nitrogen information quickly and accurately for precision fertilization
and agricultural production [2]. However, many conventional soil analytical techniques, such as
Dumas combustion, are often complex because of the multi-component interactions [3]. The use of
near-infrared (NIR) spectroscopy to estimate soil nitrogen content shows a greater advantage and
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prospects for wider application [4]. In recent years, many scholars have used NIR spectroscopy to
detect soil nitrogen and have improved the detection accuracy with respect to soil water content
removal, soil spectral data processing, characteristic bands selection, and algorithm optimization.

Firstly, NIR spectroscopy could also be used as a rapid, inexpensive, and non-destructive
technique to predict some physical, chemical, and biochemical properties of soil [5]. Soil nitrogen was
detected with the multiple linear regression method at spectral bands of 1702, 1870, and 2052 nm using
NIR spectroscopy [6]. He et al. detected N, P, K, organic matter (OM), and pH content in a loamy mixed
soil. The results showed that the correlation coefficients between the measured and the predicted values
of N, OM, and pH were 0.93, 0.93, and 0.91 respectively [7]. Secondly, the effects of soil water content
on soil nitrogen detection were researched. The prediction performance of carbon and nitrogen content
affected by sample grinding was studied, and the results showed that the prediction accuracy was the
highest with oven-dried, 0.2 mm ground soil samples [8]. Moreover, the wavelet decomposition and
continuous removal methods were used to reduce the interference of soil moisture on soil total nitrogen
detection by NIR spectroscopy in Zhang’s research, where both of those two methods performed
well [9]. Third, the characteristic bands of soil nitrogen using NIR spectroscopy were also studied.
The selected bands at 556, 1642, and 2491 nm were found to be the optimum prediction model of soil
nitrogen content of black soil in Northeast China [10]. However, Shi et al. proposed that the 1450, 1850,
2250, 2330, and 2430 nm bands could be selected as the characteristic bands to estimate organic nitrogen
content in soil based on visible NIR spectroscopy [11]. Besides, the 1902, 2364, 1826, and 2098 nm
bands were selected as the characteristic bands to predict soil nitrogen using NIR spectroscopy in
He’s research [12]. The determination coefficient of soil total nitrogen prediction reached 0.94 using the
characteristic bands of 1100 and 2300 nm with the partial least squares regression(PLSR) model [13].

Moreover, temperature also affects soil nitrogen detection by NIR spectroscopy [14].
Particularly, drying temperature has an influence on water removal and the activity of urease [15].
The effects of soil water content on soil nitrogen detection by NIR spectroscopy have been studied a lot,
while the effects of drying temperature on the detection of nitrogen by NIR spectroscopy have seldom
been studied. In the current studies, drying is generally used to remove soil moisture but the optimum
drying temperature was rarely considered. Coarse samples were dried at 20 ◦C for 48 h for the
prediction of C and N content using visible near-infrared spectroscopy, and the comparative method
was used to detect their potential mineralization in heterogeneous soil samples [16]. Flat-dry samples
were dried at 35 ◦C for 12 h to explore the effects of soil sample pretreatments and standardized
rewetting [17]. Soil was subjected to oven drying at 60 ◦C for 24 h, after which it was ground and
sieved with a 0.002 m sieve [18]. Soil samples were dried at 80 ◦C for 8 h to detect soil nitrogen with
different pretreatments using an NIR sensor in He’s research [19,20]. Besides this, soil samples were
dried at 95 ◦C for 24 h and then sieved for estimating total nitrogen using NIR [21]. Soil samples were
also dried naturally, rolled, broken into pieces, and then sieved with a 2 mm screen for estimating
the organic matter and nitrogen [22,23]. However, the impacts of drying temperature on soil nitrogen
detection have been studied little and the effect mechanism is not clear yet.

According to the current studies mentioned above, the objective of this study was to investigate the
influence of drying temperature on soil nitrogen detection in calcium soil and its characteristic bands.
Meanwhile, the mechanism of drying temperature for soil nitrogen detection by NIR spectroscopy from
the perspective of preprocessing methods, soil properties, and characteristic bands was also researched.

2. Materials and Methods

2.1. Experimental Materials and Sample Preparation

The calcium soil whose nitrogen content is around 0.5 g/kg to 3 g/kg was selected as the
experimental material, which was collected from Jining (35◦23′ N, 116◦33′ E, Shandong province, Jining,
China). It contains a certain amount of organic matter and ash with a loose soil texture. This region
belongs to a monsoon climate of medium latitudes, whose mean temperature is 13.3–14.1 ◦C and
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whose average annual rainfall is 597–820 mm. The soil samples’ preparation process was as follows.
First, the soil samples were sieved with a 40 mesh sieve (0.425 mm) and grinded. Second, urea solutions
with different concentrations were prepared and mixed with soil samples. The detected nitrogen
concentration gradients ranged from 0.5 to 2.5 g/kg (11 nitrogen gradients were set with 16 samples
for each gradient, 176 soil samples for each drying temperature). Meanwhile, the soil samples without
urea added were used as references. Third, the experiments were carried out in five groups. The soil
samples in four groups were dried at 40 ◦C for 48 h, 60 ◦C for 24 h, 80 ◦C for 18 h, and 105 ◦C for
12 h, respectively, to fully eliminate the water in the soil, which avoided the influence of soil water
on NIR detection. The soil samples in the last group were dried and then placed at 25 ◦C for 10 days.
Considering that the moisture in the air might be absorbed by the soil samples, the soil water content
was measured before detection.

2.2. NIR Spectrum Collection

Near-infrared light is an electromagnetic wave between infrared and visible light. The spectral
information originates from the vibration of the O–H, C–H, and N–H groups, which can reflect
the variety of organic matter in the characteristic signal of the spectral region [24]. The portable
NIR optical instrument used in this experiment is from Isuzu Optics Corp (Shanghai, China),
which is an interferometer instrument that is reflective with two integrated tungsten halogen lamps.
The instrument collects spectral information in the 900–1700 nm acquisition range, and its optical
resolution is 10 nm. Before performing the spectroscopic measurement, the instrument should
be preheated for 15 min and be prepared with a blackboard and whiteboard correction operation.
The spectral acquisition parameter is set up with 400 points, and the spectra is obtained by averaging
three scans. In this study, the spectra were recorded and modeled in reflectance mode.

2.3. Spectral Preprocessing Methods

In this study, in order to reduce the spectral noise, baseline drift, and the interference from other
backgrounds as well as distinguish overlapping peaks, five preprocessing methods were applied to
improve spectral resolution, sensitivity, and the signal-to-noise ratio of the spectra [25]. Among them,
the Savitzky–Golay (S–G) smoothing algorithm uses a weighted average method to quantize the data
in the moving window by polynomial least squares fitting as well as emphasizes the central role of
the center point [26]. The basic idea of the multiplicative scatter correction (MSC) algorithm is to
use an ideal spectrum to represent all spectra linearly regressed with the sample spectra, and the
original spectra is corrected with the slope and intercept of the linear equation [27]. The principle of
the standard normal variation (SNV) algorithm is that the absorbance value of each wavelength point
satisfies a certain distribution in each spectrum, and the spectral correction is performed according to
this assumption [28]. The idea of the detrending (DT) algorithm is that the spectral absorbance and
wavelength are first fitted into a trend line d according to the polynomial, and then the trend line d is
subtracted from the original spectra x to achieve the effect of the trend [29]. The 1st-Derivation (1st-Der)
method can distinguish the overlapping peaks and eliminate interference from other backgrounds,
which improves spectral resolution, sensitivity, and the signal-to-noise ratio of the spectra.

2.4. Characteristic Variable Selection Method

The characteristic variable selection method, also called attribute selection or variable selection, refers
to the selection of input variables with the greatest predictive power for a particular output requirement.

2.4.1. Competitive Adaptive Reweighted Sampling

The competitive adaptive weighted algorithm method, which imitates the evolution of the
“survival of the fittest” principle, phases out of the invariable wavelength. It uses the Monte Carlo
sampling method or the random sampling method to select a part of the sample from the calibration
set for partial least squares (PLS) modeling and repeats this process for hundreds of iterations.



Appl. Sci. 2018, 8, 269 4 of 13

The algorithm chooses part of the samples in the total sample set to carry out PLS modeling. In the
process of wavelength variable selection, only the wavelength variables with a large absolute value of
the PLS regression coefficient are kept, while the wavelength variables with a small absolute value
of PLS regression coefficients are removed. Thus, a part of the optimal wavelength variable subset is
obtained [30].

2.4.2. Backward Interval Partial Least Squares (BIPLS)

BIPLS is a variable selection method mainly used to filter the wavelength range of a PLS model and
reduce the amount of sub-intervals of the worst or collinear variables, which select the best principal
component number according to the root mean square error of cross validation (RMSECV) [31,32].
The algorithm steps are mainly as follows:

a. Divide the whole spectrum into k bands of equal width. b. Leave a section from the k section
spectrum. Carry out the PLS regression on the remaining (k − 1) section and establish the sub model
of the quality to be measured. Set aside each paragraph in turn to get the k sub model. c. Measure the
accuracy of each model by the RMSECV value. Delete the reserved segment corresponding to the
highest precision sub-model, and take the sub-model as the first base model. d. Leave one more section
in the remaining (k − 1) section of the spectrum and use the remaining (k − 2) segments to model the
PLS. Each section is set aside in order to obtain the (k − 1) sub-model to remove the reserved segments
corresponding to the sub-model of the minimum RMSECV value. Take the sub-model as the second
base model. Repeat the process for the remaining wave bands. e. Investigate the (the prediction root
mean square error) RMSEP value of each base model according to steps b to d. Select the best and
minimum RMSECV among all the base models, and the corresponding interval combination is the
best combination.

2.5. Modeling Method

Partial least squares (PLS) is a commonly used multivariate statistical method, which extracts the
most comprehensive variables and identifies the noise by decomposing and filtering the data in the
system [33,34]. In the PLS model, the spectral matrix is decomposed first and the main principal
component variables are obtained. Then, the contribution rate of each principal component is
calculated. Based on the accumulative contribution rate of principle components, the principal
components are selected as input to establish a mapping relationship with chemical indicators.
Generally, the flexibility of PLS makes it possible to establish a regression model in the case that
the number of samples is less than the number of variables [35].

2.6. Model Evaluation Index

In this experiment, the modeling effect is evaluated by the coefficient of determination (R2),
the root mean square error (RMSE), and the residual predictive deviation (RPD). The coefficient of
determination R2 reflects the level of intimacy between variables, the RMSE reflects the accuracy of
the model, and the RPD reflects the prediction ability of the model. The higher the RPD, the lower
the RMSE, and the closer the R2 is to 1, the better the performance of the prediction model. In this
paper, R2

c and R2
p represent the coefficient of determination of the calibration set and the prediction set,

respectively, and RMSEc and RMSEp represent the root mean square error of the calibration set and
prediction set, respectively. Besides this, the RPD has been suggested to be at least 3 for agriculture
applications; where 2 < RPD < 3 indicates a model with a good prediction ability; 1.4 < RPD < 2 is an
intermediate model needing some improvement; and RPD <1.4 indicates that the model has a poor
prediction ability [36].
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3. Results and Discussion

3.1. Temperature and Soil Reflectance

In this experiment, the spectra of calcium soil at five drying temperatures were collected. Figure 1
shows the raw spectra and the other five pretreated average spectra when soils were detected after
40 ◦C drying. The abscissa of the curve is the wavelength and the ordinate of the curve is the average
spectral reflectance in Figure 1a–c.
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Figure 1. Soil average spectra with different spectra pretreated after drying at 40 ◦C. (a) The raw spectra;
(b) the spectra after Savitzky–Golay (S–G) smoothing pretreatment; (c) the spectra after multiplicative
scatter correction (MSC) processing; (d) the spectra with standard normal variation (SNV) pretreatment;
(e) the detrending (DT)-treated spectra; (f) the spectra after 1st-Derivation (1st-Der).

Figure 1a shows the raw spectra and Figure 1b shows the spectra after S–G smoothing
pretreatment. With the increase of nitrogen concentration in the soil, the spectral reflectance of the soil
decreases gradually, that is, the spectral absorbance of the soil increases gradually, which conforms
to the Lambert–Beer law [37]. The spectral reflectance of the calcium soil decreases gradually
near 1400 nm, which is caused by the vibration of O–H, and similar results also occurred in
Shi et al.’s research [11]. Figure 1c shows the spectra after MSC processing and Figure 1d shows
the spectra with SNV pretreatment. These two methods make the different concentrations’ average
spectra concentrated, but the spectral reflectance still decreases obviously around 1400 nm. It is clear
that the DT-treated soil spectra near 1650–1680 nm has a more obvious decline trend in Figure 1e.
Figure 1f shows the spectra after 1st-Der processing, and the spectral resolution is increased. There is a
large fluctuation around 1650 nm and a similar result can be found in Dalal’s research [5].

The relationship between drying temperatures and soil reflectance is further investigated and
analyzed. Figure 2 shows the raw average spectra of different drying temperatures when the soil
nitrogen concentration is 2.5 g/kg.
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Figure 2. The average spectral of different drying temperatures when the soil nitrogen concentration is
2.5 g/kg.

According to Figure 2, with the increase of drying temperature, the reflectance strength of the
spectra decreases gradually, indicating that the higher the drying temperature, the lower the spectral
reflectance strength. Moreover, as the drying temperature increases, the soil spectral reflectance shows
a decreasing trend around 1100 nm. The reason might be that medium and high temperature could
stimulate the activity of soil urease as well as remove the influence of soil water [38]. Thus, the N–H
bonds vibrate more obviously than the O–H bands.

3.2. Full-Waveband Data Analysis and Modeling

In this experiment, soil samples were divided into the calibration set and the prediction set
according to the ratio of 2:1 using the (sample set partitioning based on joint x–y distance) SPXY
method [39]. The raw spectra and the other five pretreated spectra were modeled and analyzed by
PLS. Table 1 and Figure 3a present the prediction results under different drying temperatures using
different preprocessing methods.
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Figure 3. (a) The determination coefficients of the partial least squares (PLS) method after different
spectral pretreatments; (b) the prediction results of the RAW-PLS model at different temperatures.

First, when soil samples were detected after 40 ◦C, 60 ◦C, and 80 ◦C drying, the soil nitrogen
detection accuracy (0.879 < R2

p < 0.960, 0.221 g/kg < RMSEp < 0.148 g/kg, 2.92 < RPD < 4.88) are
better than that of 25 ◦C placement and 105 ◦C drying. However, soil nitrogen detection was the worst
(0.373 < R2

p < 0.585, 0.483 g/kg < RMSEp < 0.573 g/kg, 1.24 < RPD < 1.46) when soils were placed
at 25 ◦C. Meanwhile, the detection effects (0.672 < R2

p < 0.915, 0.276 g/kg < RMSEp < 0.231 g/kg,
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1.49 < RPD < 3.42) are not stable when the drying temperature is 105 ◦C. The reason might be that
medium and high temperature could largely remove the soil water, but an extremely high drying
temperature would destroy the soil urease activity as well [38]. Meanwhile, little soil water content was
preserved (water content: 3.6%) when soils were placed at 25 ◦C for a long time. Compared with the O–H
bonds in water, the N–H bonds exist mostly in the form of multiple frequency or combination frequency.
Thus, the N–H bonds are relatively weak for extracting soil nitrogen information in soil [40].

Table 1. The prediction effects with different spectral pretreatments and different drying temperatures
by the partial least squares (PLS).

Methods Group
Calibration Set Prediction Set

N
R2

c RMSECV (g/kg) R2
p RMSEP (g/kg) RPD

RAW

25 ◦C 0.639 0.315 0.585 0.483 1.46 6
40 ◦C 0.959 0.102 0.960 0.148 4.88 6
60 ◦C 0.956 0.112 0.916 0.197 3.29 7
80 ◦C 0.955 0.105 0.949 0.170 4.67 7
105 ◦C 0.936 0.122 0.915 0.231 3.42 6

S–G

25 ◦C 0.856 0.193 0.477 0.541 1.37 9
40 ◦C 0.962 0.097 0.956 0.171 4.31 6
60 ◦C 0.972 0.086 0.913 0.203 3.32 9
80 ◦C 0.954 0.105 0.950 0.172 4.36 7
105 ◦C 0.943 0.114 0.878 0.285 2.83 8

MSC

25 ◦C 0.803 0.256 0.493 0.480 1.03 8
40 ◦C 0.964 0.092 0.915 0.184 3.45 6
60 ◦C 0.924 0.146 0.920 0.195 3.42 5
80 ◦C 0.986 0.059 0.917 0.207 3.47 10
105 ◦C 0.963 0.096 0.672 0.276 1.49 10

SNV

25 ◦C 0.898 0.183 0.418 0.544 0.89 10
40 ◦C 0.962 0.092 0.919 0.184 3.62 6
60 ◦C 0.928 0.144 0.897 0.221 2.92 5
80 ◦C 0.992 0.044 0.906 0.219 3.25 12
105 ◦C 0.931 0.129 0.724 0.233 1.75 8

DT

25 ◦C 0.756 0.274 0.410 0.487 1.28 7
40 ◦C 0.972 0.085 0.930 0.178 3.80 7
60 ◦C 0.953 0.109 0.925 0.211 3.51 7
80 ◦C 0.979 0.071 0.937 0.187 3.99 9
105 ◦C 0.857 0.202 0.881 0.222 2.89 7

1-Der-

25 ◦C 0.773 0.250 0.373 0.575 1.24 7
40 ◦C 0.982 0.066 0.938 0.202 3.79 8
60 ◦C 0.922 0.146 0.921 0.205 3.25 5
80 ◦C 0.986 0.060 0.940 0.181 4.03 10
105 ◦C 0.848 0.212 0.854 0.246 2.50 3

RMSECV: root mean square error cross validation; RPD: residual predictive deviation.

Second, from the aspects of the preprocessing methods with PLS, the ranking of prediction effects
is RAW > S–G > DT > 1st-Der > SNV > MSC. In general, the spectra with suitable pretreatments could
improve the accuracy of modeling and prediction to a certain extent. However, since the NIR spectra
have no obvious characteristic peaks or fingerprint peaks, the pretreated methods might remove
some useful information of the raw spectra, which causes the problem of spectral signal distortion.
Among them, the spectral preprocessing methods of MSC and SNV might have the problem of spectral
over-correction. Besides this, 1st-Der is very sensitive to a high-frequency signal but meanwhile it may
ignore some useful spectral information [26,27].

Figure 3b displays the PLS prediction results of raw spectra dealing with different temperatures.
The X-axis is the soil nitrogen content and the Y-axis is the predicted soil nitrogen content. It is
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suggested that the fitting effects are better when the soil is detected after 40 ◦C, 60 ◦C, and 80 ◦C drying
than that of a 25 ◦C placement and 105 ◦C drying. Additionally, the fitting effect is the worst with the
soil at a 25 ◦C placement, which is consistent with the predicted R2 value.

3.3. Sensitive Wavebands Selection

In this paper, the competitive adaptive reweighted squares (CARS) algorithm was used to select
the characteristic variables of NIR spectra. Meanwhile, the BIPLS algorithm was used for selecting the
characteristic intervals. The selection process of characteristic variables and characteristic intervals
after 40 ◦C soil drying is taken as an example in the following.

Figure 4a displays the selection process of characteristic variables carried out by CARS. In the
CARS algorithm, the sampling times were set as 500. The variables were selected by attenuation
functions during each iteration, but only the wavelength variables with large absolute values of PLS
regression coefficients were preserved. In this experiment, the CARS algorithm was operated for
10 times for each temperature, and characteristic variables that occurred more than 6 times were
selected as the final characteristic variables. The specific steps of the algorithm can be found in the
reference [20].
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Figure 4b shows the selection process of the characteristic intervals of soil spectra by BIPLS
and Figure 4c presents the best principle numbers determined by leave-one-out cross validation.
Table 2 lists the variable selection results of BIPLS when the spectra with 400 points are divided into
20 segments. As the spectral interval is gradually removed, the RMSECV value of the model changes
continuously, and the number of remaining intervals and variables in the model decreases at the same
time. As can be seen in Table 2, when the spectral interval numbered 4 is eliminated, the RMSECV of
the model reaches a minimum 0.166. The remaining three intervals in the model are the range of the
final participation. The selected interval numbers are 3, 20, and 19.
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Table 2. The variable selection results of BIPLS when the spectra with 400 points are divided into
20 segments.

Int-Number Interval-ID RMSECV Number of Variables Int-Number Interval-ID RMSECV Number of Variables

20 1 0.174 400 10 4 0.168 200
19 18 0.173 380 9 8 0.167 180
18 17 0.172 360 8 11 0.167 160
17 16 0.172 340 7 5 0.167 140
16 14 0.171 320 6 6 0.167 120
15 13 0.170 300 5 2 0.167 100
14 15 0.170 280 4 7 0.166 80
13 12 0.170 260 3 3 0.167 60
12 9 0.169 240 2 20 0.169 40
11 10 0.168 220 1 19 0.226 20

Table 3 presents the characteristic variables and characteristic intervals, respectively. On the one
hand, it can be seen that the characteristic variables selected by CARS are not same at different drying
temperatures. The characteristic variables are mainly concentrated in the range of 1610–1650 nm and
1660–1670 nm when the soil was detected at 25 ◦C, and the characteristic variables changes when the
soil was dried after 40 ◦C (1638–1650 nm, 1670–1680 nm). Compared with the characteristic variables,
however, the characteristic intervals in BIPLS are mainly distributed at 991–1034 nm, 1036–1078 nm,
and 1633–1666 nm. Besides this, when the drying temperatures rose to 60 ◦C, 80 ◦C, and 105 ◦C,
the characteristic variables are mainly distributed in 930–950 nm and 1600–1670 nm, while the interval
of the characteristic variables is mainly distributed in 991–1022 nm and 1524–1666 nm.

Table 3. The selected characteristic variables, characteristic intervals, and sensitive wavebands.

Group
CARS Algorithm BIPLS Algorithm

Characteristic Variables (nm) Number Characteristic Intervals (nm) Serial Number of
Characteristic Interval

25 ◦C 1614 1626 1647 1649 1651 1664
1666 1668 1669 9 1036–1078, 1633–1666 4, 19

40 ◦C 1638 1640 1642 1644 1669 1671
1673 1677 1678 1680 10 991–1034, 1633–1666 3, 19

60 ◦C 928 933 1559 1605 1656 1661
1669 1671 1673 1675 10 1080–1022, 1598–1631,

1633–1666 5, 18, 19

80 ◦C 940 942 1644 1669 1671 10 1450–1486, 1524–1559 14, 16
105 ◦C 958 1141 942 1644 5 901–944, 1633–1666 1, 19

According to the Beer–Lambert law, the NIR spectra vary a lot because of the variation of
sample components and structure [37]. Therefore, the drying temperature does affect the soil nitrogen
characteristic variables based on the soil properties, and the greater the temperature differs, the greater
the differences among characteristic variables. Moreover, although the selected characteristic variables
are different to some extent due to the different algorithm principles of CARS and BIPLS [30–32],
the overlap characteristic variables are mainly distributed at 1630–1680 nm and around 930 nm.

When the characteristic variables and characteristic intervals were selected, the linear
correlation analysis was performed for each characteristic variable and each characteristic interval.
The characteristic variables are sorted by correlation coefficients from the highest to the lowest.
Finally, the characteristic variables with high correlation were selected according to the principle of
the best prediction effect with the least number of variables. The final characteristic variables and the
prediction performance are shown in Table 4.

According to Table 4, the prediction effects of soil nitrogen by the method of CARS-BIPLS-PLS
achieved good results when soils were detected (4.53 < RPD < 5.03, 0.946 < R2

p < 0.966,
0.172 g/kg < RMSEp < 0.128 g/kg) after 40 ◦C, 60 ◦C, and 80 ◦C drying. Additionally, the corresponding
characteristic bands focus on 928–960 nm and 1638–1680 nm. Compared with the full spectrum model
by PLS, the prediction of the characteristic bands by CARS-BIPLS-PLS is obviously better than that in
the condition when the soil was detected at a 25 ◦C placement. The reason might be that the vibration
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of N–H was covered by little soil water content in the full spectrum [40]. However, the most optimal
characteristic variables were selected with combined CARS and BIPLS and the noise information was also
removed [30–32].

Table 4. The characteristic variables and prediction effects of CARS-BIPLS-PLS.

Group Number Characteristic Bands R2
c

RMSEC
(mg/kg)

R2
p

RMSEP
(mg/kg) RPD

25 ◦C 9 1614 1626 1647 1649 1651 1664 1666 1668 1669 0.738 0.428 0.728 0.408 2.01
40 ◦C 10 1638 1640 1642 1644 1669 1671 1673 1677 1678 1680 0.974 0.132 0.966 0.128 5.03
60 ◦C 10 928 933 1559 1605 1656 1661 1669 1671 1673 1675 0.951 0.181 0.946 0.172 4.53
80 ◦C 10 940 942 1644 1669 1671 0.966 0.152 0.961 0.143 4.98
105 ◦C 5 958 1141 942 1644 0.917 0.242 0.903 0.227 3.37

3.4. Comparison of Results

The prediction results with different model methods are shown in Figure 5. From the aspect
of detection accuracy, no matter which method was used, the detection accuracy of soil nitrogen
was the worst when soil was detected after a 25 ◦C placement (0.585 < R2

p < 0.728). Besides this,
the detection accuracy achieved was much better (0.916 < R2

p < 0.966) when the drying temperature
ranged from 40 ◦C to 80 ◦C. Meanwhile, when the drying temperature rose to 105 ◦C, the R2

p of
soil nitrogen detection dropped to about 0.9. It was indicated that drying temperature did affect the
calcium soil nitrogen detection, and that a low or extremely high drying temperature was adverse to
soil nitrogen detection. From the aspects of algorithms effects, CARS-BIPLS-PLS achieved the best
detection effects compared to other methods. The reason might be that the most useful characteristic
variables were selected and combined by CARS and BIPLS. Moreover, the soil nitrogen detection
effects of BIPLS-PLS were not stable and worse than those of CARS-BIPLS-PLS and CARS-BPLS when
soil was dried at 40 ◦C and at a 25 ◦C placement. The reason was that it was difficult to find the best
characteristic intervals of the soil spectrum for all drying temperatures, and some effective spectral
information might be removed [31]. Also, some noise information was preserved in the original spectra
in RAW-PLS, especially when soil was detected after a 25 ◦C placement, which was caused by the
preserved water content in the soil.
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4. Conclusions

In order to investigate the effects of drying temperature on calcium soil nitrogen detection and
its characteristic bands by NIR spectroscopy, calcium soil was detected using NIR spectroscopy
after five different temperatures. The spectra were pretreated by five preprocessing methods,
the characteristic bands and intervals were selected by CARS and BIPLS, and PLS was used to
model and analyze the spectral data.
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The main conclusions are as follows: (1) The drying temperature did have an obvious influence
on soil nitrogen detection using NIR spectroscopy, and it was necessary to find the suitable drying
temperature and spectral pretreatments to enhance the detection accuracy; (2) the drying temperatures
ranging from 40 ◦C to 80 ◦C of calcium soil nitrogen detection accuracy were the best. The calcium soil
nitrogen detection had the worst results when soil was placed at 25 ◦C. The O–H bond in soil might be
the main factor that influenced the prediction accuracy; (3) the prediction effect of soil nitrogen was at
its optimum using the method of CARS-BIPLS-PLS. In general, the drying temperature had an obvious
influence on the detection of soil nitrogen by NIR, and the suitable drying temperature was of great
significance to enhance the detection accuracy.
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