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Abstract: Retinal vessels identification and localization aim to separate the different retinal
vasculature structure tissues, either wide or narrow ones, from the fundus image background and
other retinal anatomical structures such as optic disc, macula, and abnormal lesions. Retinal vessels
identification studies are attracting more and more attention in recent years due to non-invasive
fundus imaging and the crucial information contained in vasculature structure which is helpful for
the detection and diagnosis of a variety of retinal pathologies included but not limited to: Diabetic
Retinopathy (DR), glaucoma, hypertension, and Age-related Macular Degeneration (AMD). With the
development of almost two decades, the innovative approaches applying computer-aided techniques
for segmenting retinal vessels are becoming more and more crucial and coming closer to routine
clinical applications. The purpose of this paper is to provide a comprehensive overview for retinal
vessels segmentation techniques. Firstly, a brief introduction to retinal fundus photography and
imaging modalities of retinal images is given. Then, the preprocessing operations and the state of the
art methods of retinal vessels identification are introduced. Moreover, the evaluation and validation of
the results of retinal vessels segmentation are discussed. Finally, an objective assessment is presented
and future developments and trends are addressed for retinal vessels identification techniques.

Keywords: retinal vessels segmentation; matched filters; fuzzy expert systems; fuzzy c means;
machine learning; adaptive thresholding; mathematical morphology; level set; vessel tracking;
multi-scaling

1. Introduction

Retinal vasculature structure implicates important information helps the ophthalmologist in
detecting and diagnosing a variety of retinal pathology such as Retinopathy of Prematurity (RoP),
diabetic retinopathy, glaucoma, hypertension, and age-related macular degeneration or in diagnosis of
diseases related to brain and heart stocks, which are associated with the abnormal variations in retinal
vascular structure. Therefore, changes in retina’s arterioles and venules morphology have a principal
diagnostic value.

In general, vessels (vessels structure-like) segmentation occupy a remarkable place in medical
image segmentation field [1-4]; retinal vessels segmentation belongs to this category where a broad
variety of algorithms and methodologies have been developed and implemented for the sake of
automatic identification, localization and extraction of retinal vasculature structures [5-10]. In this
paper, we have presented a review that covers and categorizes early and recent literature methodologies
and techniques, with the major focus on the detection and segmentation of retinal vasculature structures
in two-dimensional retinal fundus images. In addition, our review covers the theoretical basis behind
each segmentation category as well as the associated advantages and limitations.
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The remainder of this paper is organized as follows. Section 2 describes the different types of
retinal fundus imaging. The different challenges that faced by researcher during retinal images
segmentation are elaborated in Section 3. Detailed description of different categories of vessel
segmentation methodologies and algorithms along with theoretical framework is given in Section 4.
Finally, Section 5 summarizes the discussion and conclusions of this work.

2. Retinal Fundus Imaging

Retina photography is typically conducted via an optical apparatus called fundus camera,
as shown in Figure 1. Reference [11] fundus camera can be viewed as a low power microscope
that specializes in retina fundus imaging, where the retina is illuminated and imaged via the attached
camera. In particular, fundus camera is designed to capture an image for the interior surface of human
eye, which is composed of major parts, including macula, optic disk, retina and posterior pole [12].

Retina Fundus

Fuﬁdus Camera

Figure 1. Retinal fundus camera. Adapted with permission from [12], IEEE, 2007.

Fundus photography can be viewed as a sort of documentation process for the retinal interior
structure and retinal neurosensory tissues. The retinal neurosensory tissues convert the optical images
reflection, that we see, into electrical signals in the form of pulses sent to our brain where it decoded
and understood. Retina photography can be conducted based on the idea that the eye pupil is utilized
as both an entrance and exit for the illuminating and imaging light rays that are used by the fundus
camera. During the fundus photography, patients’ foreheads are placed against the bar and their chins
placed in the chin rest, as shown in Figure 1. After the oculist aligns the fundus camera, the camera
shutter is released so a flash light is fired and a two-dimensional picture for retina fundus has been
taken [13], as anatomically illustrated in Figure 2.

As shown in Figure 2, the fundus of the human eye is the back portion of the interior of the eye
ball. The optic nerve resides at the center of retina, which can be seen as a white area of circular to oval
shape and measuring about 3 X 3 mm across diameter. The major blood vessels of the retina radiate
from the center of the area of optic nerve and then radiate and branched to fill the entire area excepting
the fovea zone, which is a blood-vessel free reddish spot with an oval-shaped that lies directly to the
left of the optic disc and resides in the center of an area that is known by ophthalmologists as the
“macula” region [14]. In General, the photographic process involves grasping the light that reflected off
the subject under consideration. In our case, the subject is the fundus of retina. Since the internal room
of the eye has no light source of its own, in the retina photography, we need to flash or shine a light
into eye room to capture a good photograph. The ocular fundus imaging has three major photography
modes, as elaborated in Figure 3:
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1. Full-color Imaging
Monochromatic (Filtered) Imaging
3. Fluorescence Angiogram

Blood Vessels

Optic Nerve

Blood Vessels

Figure 2. Retina fundus as seen through fundus camera.

— Ocular Fundusllmaging Modes‘\

(@) (b)

Figure 3. Imaging modes of ocular fundus photography: (a) full color retinal fundus image;
(b) monochromatic (filtered) retinal fundus image; and (c) fluorescence angiogram retinal fundus image.

In the case of full-color photography mode, no light-filtration is used and it is totally non-invasive
contrary to other modes of fundus imaging. The resultant retina fundus image is a two-dimensional full
color image, as illustrated in Figure 3a. On the other hand, if the fundus is imaged via a monochromatic
filter or via particular colored illumination, then the fundus photography is called “monochromatic”,
as shown in Figure 3b. This type of fundus photography is built based on the idea that the visibility
of different structures in a retinal image is enhanced if the spectral range of illumination is changed
correspondingly. In other words, instead of using white light of a broad scale of wavelengths, we use a
light of a specified wavelength that corresponds to a specific color, for example, a red object in an image
would appear lighter if the image is taken through a red filter and it would appear darker if it is taken
through green filter. As the white light can be divided into red, green and blue lights, the ocular fundus
can be photographed via one of these gradient lights where each light has the capability to enhance
the visibility of specific retinal anatomical structures based on their colors. For example, blue filter
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(filter with blue light) enhances the visibility of the interior layers of retina, which in full-color photo
(taken by white light) appears almost transparent. On the other hand, we can get the best overall view
of retina fundus and the most enhanced contrast if we use the green filter. Moreover, green filters have
the capability to enhance the visibility of common lesions such as exudates, hemorrhage and drusen.

Another alternative to monochromatic filters is to split the full-color fundus image into its basic
components, namely, red, green and blue. It operates similar to colored filters, except we lose the
resolution, and is adopted in a variety of retinal vessel identification approaches in the stage of image
preprocessing framework [15].

Fundus angiography is the most invasive fundus imaging, and involves injecting a tiny amount
of fluorescein dye into a vein of patient’s arm; the dye makes its way to the main blood stream leading
to retina vessels, and then the retina fundus is photographed. Originally, the word “angiography”
is derived from the Greek words Angeion, which means “vessels”, and “graphien”, which means to
record or to write. Once the sodium-fluorescein has been injected, and reaches retina, the retina fundus
is illuminated with a blue light, and then is flashed in a yellow-green color. Later, specialized filters
in the fundus camera allow the fluorescent light to be imaged, leading to high contrast (grey-scaled)
retinal vascular structure images, as shown in Figure 3c [16]. Retina angiography is considered the
photography mode that highly revolutionized the ophthalmologists” ability to understand both retina
physiology and pathology. Moreover, it is used in the process of diagnosing and treating choroidal
diseases [16]. However, this mode is considered the most invasive one, due to injecting dyes in the
human veins directly. Thus, as recently reported, it is important to consider the potential risk associated
with using such mode of retina fundus photography, especially for neonatal people [17].

3. Retinal Image Processing

The oculists scan the retina of patients using fundus camera with high resolution. Accordingly,
the situation of retina blood vessels is probed to diagnose retinal diseases. In many cases, it is found
that the retinal vascular structure has low contrast with regard to their background. Thus, the diagnosis
of retinal diseases becomes a hard task, and applying a suitable image segmentation technique becomes
a must for highly accurate retinal vascular structure detection, since it leads to accurate diagnosis.
Retina vessel identification and extraction faces many challenges that may be outlined as follows.
Firstly, the retinal vessels” widths take a wide range of color intensity range from less than one pixel
up to more than five pixels in the retinal image, as shown in Figure 4, which requires an identification
technique with high flexibility.

Vessels of More
Than 5 Pixels Width

Lapge Vessels

Tiny Vessels
Vessels of one

Pixel Width
\

Raw Retinal Image
(Gray Scale)

Figure 4. Pixel width variation of retinal vessels (in pixels).
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To elaborate this challenge, a snippet of MATLAB® code has been developed for sake of grey
levels substitution in retinal image; the different grey levels of a raw retinal image have been replaced
by color ones, as shown in Figure 5. It can be noted that many retinal vessels, either large or tiny ones,
take the same background color intensities. This reveals the broad range of colors that may be taken
by the retinal vasculature structure, making the identification process more complicated rather than
that found in other identification problems.

Thin Vessels

N DAL
A Major VessQ'

Low contrast
filamentary vessels

(a) (b)

Figure 5. First challenge of retinal image segmentation: (a) Vessels types distribution on retina surfaces;
and (b) different sizes of retinal vessels.

This challenge opens the room for a field of research specialized in detecting and segmenting thin
(filamentary) retinal vascular structures, as in [18-25]. Secondly, Vessels identification in pathological
retinal images faces a tension between accurate vascular structure extraction and false responses near
pathologies (such as hard and soft exudates, hemorrhages, microaneuryms and cotton wool spots) and
other nonvascular structures (such as optic disc and fovea region). The retinal blood vasculature is
a tree-like structure that disperses across the fundus image surface including pathologies. Thin and
filamentary retinal vessels melt in the retinal abnormal regions burden the task of accurate vessel
segmentation, as shown in Figure 6.

Filamentary

vesselquk =

- vessels

Filamentary
vessels

Figure 6. Effect of retinal lesions on filamentary vessel structures appearance.

In summary, retinal vascular structure, inside either normal or abnormal retina images, has low
contrast with respect to the retinal background. Conversely, other retinal anatomical structures have
high contrast to other background tissues but with indistinct features in comparison with abnormal
structures; optic disc and exudates lesions represent typical examples. All these challenges, in terms of
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medical image processing, make the classical segmentation techniques such as Sobel operators [26],
Prewitt operators [27], gradient operators [28], and Robert and Krish differential operations [29]
inefficient and inaccurate. Consequently, various algorithms and methodologies have been developed
and implemented for sake of automatic identification, localization and extraction of retinal anatomical
structures and can be broadly divided into rule-based and machine learning techniques, as elaborated
in Section 4.

4. Retinal Vessels Segmentation Techniques

Generally, regarding segmentation issue, there exist as many methods and algorithms as there are
specific cases and situations. Among them, segmentation tools used for medical purposes in general,
and for retinal anatomical structures segmentation in particular. All retinal vessel segmentation
methods share common stages: pre-processing stage, processing stage and post-processing stage. In this
review, we have categorized the covered papers based on the algorithm or technique used in the
processing stage, yielding six major categories: (1) kernel-based techniques; (2) vessel-tracking;
(3) mathematical morphology-based; (4) multi-scale; (5) model-based; (6) adaptive local thresholding;
and (7) machine learning. These categories are also grouped into two major classifications: Rule-based
or Machine learning, as shown in Figure 7 and categorized in Table 1.

Figure 7. Retinal vessels segmentation techniques.

The category of rule-based techniques follows specific rules in an algorithmic framework, whereas
machine learning ones utilize a pre-segmented retinal image (ground truth or gold standard) to form a
labeled dataset that can be used in training process. However, any non-image processing specialist,
when faced with an image analysis problem, readily apprehends that a one image transformation
or a stand-alone image processing technique usually fails. Therefore, Figure 7 depicts this fact,
where nested lobes stand for the Hybrid Nature of these techniques. Most image analysis problems
are very complicated, especially medical ones, and can be solved in high performance by a hybrid
combination of many elementary transformations and techniques. These reasons give arise to the
utilization of hybrid techniques in retinal vessels segmentation problems, as proposed in [30-36].

The capability of retinal segmentation algorithm to extract the retinal vasculature structure is
evaluated by many metrics. The most common ones are: average True Positive Rate (TPR), average
False Positive Rate (FPR), average Sensitivity (recall, TPR), average Specificity (1-FPR), average Accuracy,
and average Precision. Sensitivity and specificity represent the most widely used metrics in medical
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research; the higher the specificity and sensitivity values, the better diagnosis. The sensitivity reflects
the capability of the algorithm to detect the vessels’ pixels, whereas the specificity determines the
ability of the algorithm to detect non-vessel pixels. Sensitivity and Specificity represent the features of
the algorithm and are associated with the accuracy metric in many medical image processing fields,
including retinal vessel segmentation [37], as given by the following equations [38]:

Sensitivity (Recall) = TP/(TP+ FN) 1)
Specificity = TN/(TN + FP) )
Accuracy = (TP+TN)/(TP+FN + FP+ TN) 3
Precision = TP/ (TP + FP) 4)

where TP is True Positives, FP is False Positives, FN is False Negatives, and TN is True Negatives.

On the other hand, many papers use the area under the Receiver Operating Characteristic (ROC)
curve [39,40] to evaluate their works, especially for methods that highly depend on specific parameters
during the segmentation execution. ROC curve is a non-linear function between TPR and FPR values.
Optimal area under ROC is 1 for an optimal performance.

Most of retinal vessels segmentation techniques and algorithms use the most popular datasets in
this field: (1) Digital Retinal Image for Vessel Extraction (DRIVE) [41,42]; and (2) Structuring Analysis
of the Retina (STARE) [43]. Both datasets are well-considered and popular in the field of retinal vessels
segmentation to the extent that almost every research performance involving vessels segmentation
is evaluated via these datasets. The popularity of these datasets is due to the good resolution of the
retinal fundus images and to the availability of manually labeled ground truth images prepared by
two experts. The DRIVE dataset, consisting of 40 retinal images, is evenly divided into a training set
and a test set, whereas the STARE dataset consists of 20 images, 10 of which are normal retinal images
and the other 10 images are abnormal ones. Nevertheless, many researchers use other less common
datasets for validation and performance evaluation, such as: Automated Retinal Image Analyzer
(ARIA) dataset [44], DIAbietes RETina Data Base (DIARETDB) dataset [37], Methods for Evaluating
Segmentation and Indexing techniques Dedicated to Retinal (Messidor) dataset [45,46], and High
Resolution Fundus (HRF) [47].
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Table 1. Categorization of retinal vessel segmentation techniques.

Method Year Image Processing Technique Performance Metric Validation Dataset Technique Category
Chaudhuri et al. [48] 1989 Two-d1men51ona} Gaussian - - Kernel-based
matched filter
. . Gaussian matched filter +
Chanwimaluang and Fan [49] 2003 entropy adaptive thresholding - STARE
Al-Rawi et al. [50] 2007 Gaussian matched filter with ROC ! DRIVE
modified parameters
. . Gaussian matched filter + 2 3 a4
Villalobos-Castaldi et al. [51] 2010 entropy adaptive thresholding Acc?,Sp”, Se DRIVE
Zhang et al. [52] 2010 Two kernels: Gaussian + FDOG Acc, FPR @ DRIVE, STARE
Zhu and Schaefer [53] 2011 Piece-wise Gaussian scaled model - -
Kaur and Sinha [54] 2012 Filter Kernel: Gabor filter ROC DRIVE, STARE
. / Improved t-dimensional
Odstrcilik et al. [47] 2013 Gaussian matched filter. Acc, Sp, Se DRIVE, STARE
Zolfagharnasab et al. [55] 2014 Filter kernel: Caushy Probability Acc, FPR DRIVE
Density Function
. - Modified Gaussian matched filter
Singh et al. [56] 2015 + Entropy thresholding Acc, Sp, Se DRIVE
Kumar et al. [57] 2016 Filter Kernel: Laplacian of Acc, Sp, Se DRIVE, STARE
Gaussian
Singh and Strivastava [58] 2016 Filter kernel: Gumbel Probability Acc, ROC DRIVE, STARE
Density Function.
Vessel tracking by Kalman filter .
Chutatape et al. [59] 1998 and matched Gaussian - - Vessel tracking
Sofka and Stewar [60] 2006 Vessel tracking by matched filter (1-Precision) DRIVE, STARE
responses + confidence
measures + vessel boundaries
versus Recall curve
measure.
Adel et al. [61] 2009 Bayesian vessel tracking. SMF” Simulated
Dataset + 20
Images at
Marseille
University
Wu et al. [62] 2007 Vessel tracking by matched filters Se, FPR DRIVE, STARE

+ Hessian matrix.

8 of 31
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Table 1. Cont.

Method Year Image Processing Technique Performance Metric Validation Dataset Technique Category
Yedidya and Hartley [63] 2008 Vessel tracking by Kalman filter. TPR 8, FNR ? DRIVE
Yin et al. [64] 2010 Statistical-based vessel tracing TPR, FPR DRIVE
Liet al. [65] 2013 \;fssel fracking by - .
ayesian theory.
De et al. [23] 2016 Vessel tracking using GFPR 10 DRIVE, STARE
mathematical graph theory.
Budai et al. [66] 2010 Gaussian pyramid multi-scaling. Acc, Sp, Se DRIVE, STARE Multi-scale
Moghimirad et al. [67] 2010 Multi-scale based on weighted ROC, Acc DRIVE, STARE
medialness function.
Abdallah et al. [65] 2011 Multi-scale based on Anisotropic ROC STARE
diffusion.
Rattathanapad et al. [69] 2012 Multi-scale based on line FPR DRIVE
primitives.
Kundu and Chatterjee [70] 2012 Morphological Angular MSE 11 DRIVE Morphological
Scale-space
Based
Frucci et al. [71] 2014 Watershed t ran§f0rm + Contrast Acc, Precision DRIVE
and directional Maps.
Jiang et al. [72] 2017 Global thresholding based on Acc, Execution time DRIVE, STARE
morphological operations.
Dizdaro et al. [73] 2012 Level setin terms of initialization Acc, Sp, Se DRIVE Deformable Model
and edge detection.
Proposed Dataset
Jin etal. [74]. 2015 Snakes contours Acc, Sp, Se DRIVE
Zhao et al. [31]. 2015 Infinite perimeter active contour Acc, Sp, Se DRIVE, STARE
with hybrid region terms.
Gong et al. [75] 2015 Level set without using local Acc, Sp, Se DRIVE
region area.
. . Knowledge-guided local .
Jiang and Mojon [76] 2003 adaptive thresholding TPR, FPR STARE Adaptive Local
Filter response Thresholding
analysis
Akram etal. [77] 2009 Statistical-based Acc, ROC DRIVE

adaptive thresholding.

9 of 31
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Table 1. Cont.

Method Year Image Processing Technique Performance Metric Validation Dataset Technique Category
Christodoulidis et al. [78] 2016 tzzzgagsﬂmiifgaels:gigf Acc, Sp, Se Erlangen Dataset
voting
Nekovei and Ying [79] 1995 Back propagation ANN 12 Se - Machine Learning
Salem et al. [80] 2006 K-nearest neighbors (KNN) Se, Sp STARE
Xie and Nie [81] 2013 Genetic Algorithm + Fuzzy ) DRIVE
c-means
Akhavan and Faez [82] 2014 Vessel Tracking + Fuzzy c-means Acc DRIVE, STARE
Emary et al. [83] 2014 POSSibﬂiSﬁ:_rz"‘;i‘s’“ of fuzzy Acc, Sp, Se DRIVE, STARE
Optimized with Cuckoo search
algorithm
Maii et al. [84] 2015 Hybrid i‘i‘\?ﬁggi of deep
Gu and Cheng [22] 2015 Iterative Latent classification tree Acc DRIVE, STARE
Sharma and Wasson [85] 2015 Fuzzy Logic Acc DRIVE
Ensemble Learning. Acc DRIVE
Roy et al. [56] 2016 Denoised stacked ROC DRIVE, STARE
Lahiri et al. [87] 2016 Ensemble of two parallel levels of Acc DRIVE
Stacked denoised
auto-encoder ANNS
Maji et al. [88] 2016 Cmﬁﬁﬁgj&f;ﬁm Acc DRIVE
Maninis et al. [24] 2016 Deep Convolutional ANNs. Area under DRIVE, STARE
Recall-Precision
Curve
Liskowski et al. [89] 2016 Deep ANNs ROC, Acc DRIVE, STARE
CHASE [90]
Dasgupta and Singh [91] 2016 Convolutional ANNs ROC, Se, Acc, Sp DRIVE

10 of 31

1 ROC: Receiver Operating Characteristics; 2 Acc: Accuracy; 3 Sp: Specificity; * Se: Sensitivity; > FDOG: First-order Derivative of Gaussian; ® FPR: False Positive Rate; 7 SMF: Segmentation

Matching Factor; 8 TPR: True Negative Rate; 9 FNR: False Negative Rate; 10 GFPR: Geometric False Positive Rate; 11 MSE: Means Square Error; 12 ANN: Artificial Neural Network.
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4.1. Kernel-Based Techniques

This type of retinal vessels segmentation depends on the intensities distribution of vessel pixels to
build a filter kernel, which, in turn, can detect the retinal vasculature structure boundaries. The kernel
can either follow a pre-specified form based on the cross-section profile of retinal vessel, or it can be
deformable according to vessels boundaries especially when they lie in or in neighbor of hemorrhages
and microaneuryms lesions. Most often, kernel-based approaches are used as preprocessing image
enhancement step for other retinal vessels segmentation methodologies, since it enhances the map
for vessels boundaries. The profile-based kernels use one of various models that have been proposed
and implemented in retinal vessels profiling that are built based on the idea that intensity distribution
of retinal vessel can describe retinal vessels characteristics which can be turned into maps for vessels
detection. The basic idea of kernel-based techniques (also called matched filtering-based) techniques is to
compare the pixels’ intensity variations along with the cross-section profile of the retinal vessel with a
prefigured template works as a kernel. Therefore, most typical matched filter-based techniques detect
retinal vessels by applying a matched filter kernel on the original grey retinal image followed by a
thresholding step.

Retinal vessel profiling has many applications in the fields of vascular width measurement [92]
or in the field of vessels type classification [93]. In the case of vessels detection and extraction, it is
used to create the map for process of detection, which paves the way for vessels extraction through
region growing or filtering based approaches. Generally speaking, retinal vascular matched kernels
can fall in one of two major categories: Gaussian shaped or non-Gaussian shaped [94].

Early work in this direction was performed by Chaudhuri et al. [48], who observed the high
similarity of the intensity variations of the cross-section profile of the retinal image with a Gaussian
function, as illustrated in Figure 8.

Pixel Intensity

Vessel Cross Section

-

Gaussian Function
(Matched Filter)

Figure 8. Cross-section intensity profile of the region marked by a straight line between point A and
point B on retina image.

Since Chaudhuri et al. [48] published his well-known paper that stated the cross section profile
of retinal vascular structure has approximate Gaussian shape, matched filters with Gaussian kernels
have emerged, and were later reported in the literature for retinal vessel tree detection. According to
the fact that the cross section of retinal vessels can be modeled as a Gaussian function, a series of
Gaussian shaped filters (different in Gaussian parameters values p and o) can be used to match
different vessel sizes simply and efficiently. However, matched filters have strong response to both



Appl. Sci. 2018, 8,155 12 of 31

vessels and non-vessels structures, such as red lesions and bright blobs, which results in degradation
in the performance in terms of false detection rate. Three important aspects should be taken into
consideration through designing a matched filter kernel: (1) limited curvature of retina vascular
structure, where the curvature of vessel segments can be approximated by bell-shape piecewise linear
segments; (2) vessels” width, as the width of the retinal vessels decreases in a gradual way when one
moves from optical disk towards Fovea region, as shown in Figure 2; and (3) accurate cross-section
profile of pixel intensities distribution of the retinal blood vessels [58].

The same idea of Chaudhuri et al. [48] was followed and re-implemented by [56] via DRIVE
dataset. The regenerated segmentation results have reported an average accuracy of 0.9387, and 0.9647
and 0.6721 for average specificity and average sensitivity, respectively. Zhu and Schaefer [53] proposed
a profile kernel-based algorithm for retinal vessel extraction based on profiling the cross-section
of retinal vessels using piece-wise Gaussian scaled model. Once the profile has been modeled,
a phase alignment function based on data obtained from oriented log-Gabor wavelet was applied.
After boundary area map of retinal vascular structure has been produced, cross-sections were extracted
by following an approach was proposed by same author in [95].

A notable vessel extraction performance has been achieved by Villalobos-Castaldi et al. [51],
where matched filter in a conjugation with entropy-based adaptive thresholding algorithm was
employed. The methodology was applied on DRIVE dataset where it used matched filter in sake
of piecewise linear segments enhancement of the retina vascular structure. Later, a co-occurrence
matrix [96] that records the number of transitions between all pairs of grey-retinal levels was captured
where the grey-level changes were depicted. Then, the entropy of the image grey levels distribution was
exploited through second-entropy thresholding to segment the background pixels from the foreground
(vessels) ones. The time consumed in the process of obtaining vascular structures approximated 3 s,
and high detection accuracy was achieved, up to 0.9759, as well as sensitivity and specificity of 0.9648
and 0.9480, respectively.

Compared to the performance achieved in [51], Chanwimaluang and Fan [49] followed same
procedure that was proposed in [51] to extract both the retinal vessel and the optic disk using
STARE dataset. However, the time consumed approximated 2.5 min per retina image; most of
it was consumed in matched filtering and local entropy thresholding steps. Moreover, it required
post-processing steps that were not required by [51] including long filtering stages for isolated pixel
removal. Then, filtering steps were followed by morphological thinning used to identify the retinal
vascular intersection/crossovers. on the other hand, the optic disk identification proceeded into two
major stages: (1) optic disk center identification through maximum local variance detection; and (2) optic
disk boundary identification through snake active contour. Even though the same methodology steps
have been followed by both [49,51], they are extremely different in terms of achieved performance.

Singh et al. [56] have noted the important effect of Gaussian kernel parameters on the subsequent
image processing stages. Singh et al. [56] followed same procedure that was proposed in [49,51]
as well. However, the parameters of Gaussian function have been modified in a way that enhances the
overall performance, which reached up to 0.9459 for accuracy, and 0.9721 and 0.6735 for specificity and
sensitivity, respectively, using DRIVE dataset in comparison with average ROC area of 0.9352 reported
by Al-Rawi et al. [50] applied on DRIVE dataset, where they used a different set of modifications for
Gaussian-kernel parameters.

On the same procedure that have been reported in [49,51,56], Kaur and Sinha [54] employed
Gabor filter instead of Gaussian one in the early stages of vessel extraction. The enhanced vessels
were obtained via banks of 12 different oriented Gabor filters in range of 0 to 170 degree. Gabor-filter
based approach outperforms the Gaussian one in terms of both area under ROC curve and in terms
of specificity. The overall achieved sensitivity is less than that achieved by [51,56]. The performance
of [51,56] was evaluated via DRIVE dataset, whereas the performance of [56] was evaluated on both
DRIVE and the challengeable (pathologies bearing) STARE dataset, where it showed a high specificity of
96% in the presence of lesions in abnormal retinal images.
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Based on the fact that retinal vessels have symmetric Gaussian cross-section profile, while the
cross-section profile for the non-vessels is asymmetric, two matched filters, one constructed with
symmetric Gaussian (zero-mean) kernel and the other with first-Order Derivative Of Gaussian (FDOG)
kernel, were applied to retina images by Zhang et al. [52]. The response of matched filter that
has Gaussian kernel was used to detect vessels, while the local mean of the response of first-order
derivative of Gaussian kernel was used to establish and adjust a “dynamic threshold”, which, in turn,
was used in the thresholding phase that followed the matched filter phase. The proposed technique
exploits the difference between FDOG kernel responses for both vessels and non-vessels regions
(such as bright blobs, lesions, and optic disk) to vary thresholding level according to local mean signal.
The experimental results, obtained via both DRIVE and STARE datasets, demonstrated that applying
hybrid matched filtering kernels can reduce the false detection dramatically to less than 0.05 compared
to that inherently generated with Gaussian kernel, even for thin vessels, with average accuracy of
0.9510 for normal cases retina images and 0.9439 for pathological ones.

According to techniques reported and discussed above, most conventional matched filters-based
approaches enhance the performance of matched filter-based methodology by enhancing the
performance of the thresholding techniques rather than improving the matched filter kernel itself.
Zolfagharnasab et al. [55], on the other hand, replaced the Gaussian kernel of matched filter by Caushy
Probability Density Function (CPDF), and reported an overall accuracy of 0.9170 with 3.5% false
positive rate via DRIVE dataset.

The inherent zero-crossing property of Laplacian of Gaussian (LoG) filter was exploited in an
algorithm proposed by Kumar et al. [57] where two-dimensional matched filters with LoG kernel
functions are applied to fundus retinal images to detect retinal vasculature structure which are firstly
enhanced by Contrast Limited Adaptive Histogram Equalization (CLAHE) method. The proposed
algorithm achieved average accuracy of 0.9626, and sensitivity and specificity of 0.7006 and 0.9871 via
DRIVE dataset, respectively, and average accuracy of 0.9637, and 0.7675 and 0.9799 for sensitivity and
specificity, respectively, via STARE dataset in comparison with average accuracy of 0.9340 and 0.7060
and 0.9693 for sensitivity and specificity respectively on DRIVE dataset achieved by Odstrcilik et al. [47]
using improved two dimensional matched filter with two-dimensional Gaussian kernel. The method
was applied on STARE dataset as well, where it has achieved an overall accuracy of 0.9341, and 0.7847
and 0.9512 for sensitivity and specificity, respectively.
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Figure 9. Summarized graphical comparison between some of kernel-based methods performance
(Accuracy, Sensitivity and Specificity) based on DRIVE dataset.
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As a novel matched filter kernel improvement, Singh and Strivastava [58] suggested the Gumbel
PDF as a kernel function, where they noted the slight skewness of vessel-cross section profile,
which most approximates Gumble PDF with respect to Gaussian and Caushy PDF functions proposed
in [48,50]. In the thresholding phase, entropy-based optimal thresholding was used in a companion of
length filtering as post-processing step to remove isolated pixels. The proposed technique showed
an improved performance in terms of average detection accuracy of 0.9522 for DRIVE dataset and
0.9270 for STARE dataset, and the value of area under ROC curve was 0.9287 and 0.9140 for DRIVE
and STARE datasets, respectively.

Since the performance metrics used in reported papers are not common, Figures 9 and 10 illustrate
graphical comparisons between some of the reviewed kernel-based methodologies for DRIVE and
STARE datasets based on accuracy, sensitivity and specificity metrics.
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Figure 10. Summarized graphical comparison between some of kernel-based methods performance
(Accuracy, Sensitivity and Specificity) based on STARE dataset.

4.2. Vessel Tracking/Tracing Techniques

The heart of vessel tracking algorithms is to trace the ridges of retina fundus image based on a
set of starting points. Graphical representation of ridges of retina image can be noticed in Figure 11.
Any tracking algorithm involves seeds selection as a preliminary step, where seeds can be defined
either manually or automatically. The ridges of vessels are detected by inspecting zero-crossing of
the gradient and curvature. However, “clean-limbed” ridges detection need a pre-processing phase
involves complicated steps of vessel enhancement for all vessels sizes and orientations. Consequently,
one of the major drawbacks of vessel tracking is the extreme dependency on the pre-processing steps
that proceed the phase of tracing.

In tracing techniques, it is not an essence for seed points (starting points of tracking process) to be
located at the center of retinal vessels, Chutatape et al. [59], for instance, have extracted seed points
from the circumference of the optic disc, then the centers of vessels were traced using an extended
Kalman filter. A semi-ellipse was defined around the optic disk as a searching region for starting points
of vascular structure, which was later used by [65]. As the candidate pixels locations for next vessel
edge points were selected on the semi-ellipse, vessel tracking took place based on Bayesian theory.

Wu et al. [62] proposed a vessel tracking methodology for retinal vasculature structure extraction
that combines Hessian and matched filters and an idea of exploiting the edge information at the vessels
parallel boundaries, which as first proposed by Sofka and Stewar [60] for retinal vessels extraction.
Once the contrast between vessels and other retina tissues are enhanced and the information of sizes
and the orientations of enhanced vessels are available, the ridges are used to trace vessels via their
center lines along ridge seeds that were selected automatically. The tracking performance was tested
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via DRIVE dataset, where 84.4% of retinal vasculature skeleton was successfully detected with 19.3%
false positive rate, and the majority of false tracked vessels were the small ones that the researchers
considered a subject of further ongoing research.
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Figure 11. Graphical representation of ridges along retinal vasculature tree.

In contrast to [62], Yedidya and Hartley [63] proposed a tracking methodology trace the retinal
vessels centers through Kalman filter, where it has the capability to detect both wide and thin vessels,
even in noisy retinal images, by defining a linear model. The proposed model proceeds into four
stages. Firstly, a set of seed points all over the image were found by convolving the whole retina image
with a set of matched filters at different scales and orientations in aim of finding at least one seed point
at each vessel, which, in turn, remove the need to follow all branches. Secondly, Kalman filter was
used to trace blood vessels’ centers starting from seed points found in the first stage. Thirdly, tracing
process ceases once the probability of vessel tracing is small for a number of back-to-back moves or
once tracing hit previously segmented vessel. Fourthly, the segmentation results are traced in the
case of tracking failure in less than minimum number of steps. The proposed tracking methodology
managed to detect retinal vessels with true positive rate reaching up to 85.9% and false negative of
8.1% via DRIVE dataset.

Making use of mathematical graph theory, De et al. [23] designed a novel technique to extract
the filamentary retinal structure. Their technique was built based on connecting the tracing problem
and the digraph matrix-forest theorem in algebraic graph theory with a primary goal to address the
vessel cross-over issue. The proposed technique is composed of two main stages. (1) Segmentation
step: The main skeleton of the retinal vasculature structure is extracted; (2) Tracing step: The first step
is used to construct the digraph representation, which enables tracing task to cast as digraph-based
label propagation using Matrix-forest theorem. The proposed technique was used for both retinal
and neural tracing where the empirical evaluation of the proposed technique showed high achievable
performance in both cases.

Yin et al. [64] presented a statistical based tracking method as an improved version of a work
suggested by [61]. This method detects edge points iteratively based on a Bayesian approach using
local grey levels statistics and continuity properties of blood vessels. Then, it combines the grey
level profile and vessel geometric properties for sake of both accuracy improvement and tracking
robustness. Experiments on both synthetic and real retinal images (DRIVE dataset) showed promising
results, where the true positive rate was 0.73 and the false positive rate was 0.039. However, due to
relatively low attained detection rate (TPR), a deeper evaluation on retinal images is needed to make
the proposed method widely usable for vessel detection technique.
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4.3. Mathematical Morphology-Based Techniques

Originally, mathematical morphology belongs to set theory of mathematics science, where it is
considered an application of lattice theory to spatial structures. Mathematical morphology concerns the
shapes that exists inside the image frame instead of pixels’ intensities. That means it ignores the details
that regard image content where the pixel intensities are viewed as topographical highs, as shown in
Figure 12. Typically, mathematical morphology was used in binary images, and then it extended to
grey and colored ones, as a general processing framework, through morphological operators. In terms
of mathematical morphology, the image I is represented as a set I C %?, where foreground pixels are
the members that belong to I, whereas the background ones belong to the complement I°. The image I
undergoes a transformation by another set known as structuring element. Typically, the morphological
operations can be applied to binary images and then can be extended to grey images. Morphological
operations can be divided into: erosion, dilation, opening and closing operations. Erosion operation is
used to lessen the objects in the image, whereas the dilation one is used to boost them. Morphological
openings are used to remove unwanted structures in the image by applying an erosion followed by
a dilation, whereas, in the case of morphological closing, some of structures in image are filled or
merged by applying dilation operation followed by erosion one.
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Figure 12. Topographic highs of retinal vessels.

In aim of retinal vessel segmentation, a Morphological Angular Scale-Space (MASS) technique was
proposed by [70]. The basic idea of the proposed technique was to rotate a varying length (multiscale)
linear structuring element at different angles to determine the connected components and assure the
connectivity across vessels where the scale-space is created through the variation in the length of linear
structuring elements. Gradual evolution to higher scales lessens the non-vessel like elements out of
the processed retinal image, where the extracted information from lower scales is used to build the
retinal image of higher scales. At a certain scale (determined by authors experimentally), and using a
vessel-ness measure proposed by [97], the method reported a lowest mean square error value of 0.0363,
which was averaged over 50 retinal images taken from DRIVE dataset.

In addition to morphological operations, morphological tools are used in retinal vessel
segmentation tasks including: gradient, watershed transform, top-hat transform, distance function
and geodesic distance. Watershed transform was developed in the framework of mathematical
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morphology by Digabel and Lantu’ejoul [98]. The principal idea underlying this method was inspired
from geography when a landscape is flooded by water, then watersheds appear as dividing lines of
the domains of rain falling over the entire region [99]. A watershed-based segmentation algorithm was
used by Frucci et al. [71] to segment retinal vasculature structure. The proposed algorithm combines
watershed transform and both contrast and directional information extracted from retinal image. First,
watershed transform was used to segment the image into multi-regions. Then, a unique grey-level
value was assigned to each single region. A contrast value was computed for each region through
calculating the difference in grey-level with respect to its adjacent regions. A 9 x 9 window was
applied to each pixel to attain the directional map composed of 16 directions. The standard deviation
of pixels’ grey levels is aligned along these directions. Then, based on the occurrences of directions
within watershed region, pixels locating in same region are assigned same direction. Once the contrast
and directional maps had been obtained for each watershed region, a precursory segmentation of
retinal vascular structure was acquired where the regions with highest contrast (positive difference)
were most likely considered as non-vessel regions. Otherwise, they were considered as vessel ones.
The proposed algorithm, developed using DRIVE dataset, and achieved a detection precision of 77%
and accuracy of 95%.

Jiang et al. [72] presented a novel work to extract the retinal vasculature structure, by using global
thresholding based on morphological operations. The proposed system was tested via DRIVE and
STARE datasets, and achieved an average accuracy of 95.88% for single dataset test and 95.27% for
the cross-dataset test. In terms of time and computational complexity, the system has been designed
to minimize the computing complexity, and processes multiple independent procedures in parallel,
thus having an execution time of 1.677 s per each retinal image on CPU platform.

4.4. Multi-Scale Techniques

The core idea behind the multi-scale representation is to represent the image at multiple scales
(levels) where the data contained in a given image are embedded into one-parameter family of derived
images at multiple scales [100], as shown in Figure 13. This representation is constructed provided
that the structures at coarse scales (levels) are the simplified versions of the corresponding structures
at fine scales by convoluting with smoothing kernels. The only possible smoothing kernels that meet
the linearity and spatial shift invariance are Gaussian and its derivatives kernels that have increasing
widths (scales o) [101].

Level 2 : 1/4 resolution.

Level 1:3.1/2 resolution.

Level 0 : Raw Retinal Image.

Sub-sampling
and Gaussian smocth Filtering

Figure 13. Level scaling idea of multi-scale method.
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Originally, the scale-space is the framework of the multi-scale image representation [102];
two widely-used types of multi-scale representation are: pyramid [103,104], and Quad-tree [105].
Most retinal vessels segmentation methodologies are built based on the pyramid multi-scale type,
where the grey-level data are represented in such a way that combines sampling operations with
successive smoothing steps conducted by Gaussian kernels with different scales gives rise to a response
that is represented by 2D Hessian matrix [106]. The eigen values of Hessian matrix determine the
vessel-likeness which, in turn, result in retinal vasculature structure enhancement. Hessian matrix
processing through eigen values analysis aims to obtain the principal directions of vessels where the
decomposition of local second order structures in retinal image can be performed in order to attain
the direction of the smallest curvature along the retinal vessels [107]. The retinal image size decreases
exponentially with scale level, as illustrated in Figure 13, and, as a consequent, the amount of required
computation too. However, it shows weakness in extracting fixed-size structures such as optic disc
and non-uniform structures such as retinal lesions. Thus, multiscale approaches can be best suited for
structures that have varying width and length (coarse and fine) in the same image.

A typical multi-scale based technique for retinal vessel segmentation was proposed by
Budai et al. [66]. The proposed technique composed of three major phases: (1) Gaussian pyramid
generation; (2) neighborhood analysis; and (3) images fusion. After the green channel of raw retinal
image was extracted, Gaussian pyramid of resolution hierarchy was generated. The hierarchy is
composed of three levels (level 0, level 1, and level 2, as shown in Figure 13). The original retinal image
(green channel) has the highest resolution (level 0), and the width and height of image begin reducing
as we move towards further levels (fine to coarse levels).

In the second phase, for each level, a 3 x 3 neighborhood window analysis for each pixel was
analyzed by calculating Hessian matrix followed by calculation of a couple of eigenvalues A; and Ay, of
Hessian matrix which reflect the scale of lowest curvature A; and the highest one A, in the neighborhood
window of the target pixel. Then, the ratio of these values was used to calculate a vessel likeness
measure P = 1 — %’l ; the value of Py, determines whether target pixel belongs to vessel tree
or not. If Py value is close to one, it means it is most likely a vessel pixel since A; and A, are
similar to each other. This analysis was applied to each pixel at every scale (level). At the final stage,
segmentation results from different levels were undergone binarization using two hysteresis thresholds,
then they merged together using pixel-wise OR operation, which yielded the final segmented image.
The methodology has achieved an accuracy, specificity, and sensitivity of 93.8%, 97.5% and 65.1% on
STARE dataset, and 94.9%, 96.8% and 75.9% on the DRIVE dataset, respectively.

Abdallah et al. [68] proposed a two-step multi-scale retinal vessel detection algorithm. As a
first step, the noise-corrupted retinal image (grey layer) was denoised against the additive Gaussian
noise by applying a flux based anisotropic diffusion technique; a multi-scale response of multi-level
resolution of retinal image was computed. Then, as a second step, a vessel model was established
in order to analyze the eigenvalues and the eigenvectors of Hessian matrix for each scale. The final
result of multi-level analysis represents the pixel-wise maximum of the results obtained over all scales.
The proposed algorithm reported area under ROC curve of 0.94514 on STARE dataset.

Rattathanapad et al. [69] presented an algorithm to segment the blood vessel in retinal images
based on multilevel line detection and connection of line primitives. Multilevel line detection is
used for extracting the retinal vessels at multiple values of Gaussian smoothing parameters. Then,
the line primitives that extracted at different scales were merged into one single vessel extraction result.
The proposed algorithm was validated using DRIVE dataset where it proved the capability to detect
most of the major part of vessel skeleton with false positives.

A new approach based on a multi-scale method for segmentation of retinal vessel was proposed
by Moghimirad et al. [67] where it used weighted Medialness function along with the eigenvalues
of the Hessian matrix. The proposed approach consists of two phases. In the first phase, the medial
axis of retinal vessels was extracted using a two-dimensional Medialness function in multiple scales
and sum of smoothed eigenvalues of the image. The second phase is for vessel reconstruction where
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centerline of vessels was extracted and radius of vessels was estimated simultaneously to obtain the
final segmented results. The proposed approach was validated using DRIVE and STARE datasets
where it showed high performance in terms of accuracy and area under the ROC curve where it has
achieved accuracy of 0.9659 with area under ROC of 0.9580 via DRIVE dataset and accuracy of 0.9756
with area under ROC curve of 0.9678.

4.5. Model-Based Techniques

The concept of deformable model is used to describe a set of computer vision techniques and
algorithms that abstractly model the variability of a certain class of objects in an image (vessels in retina
image). The most basic versions of these algorithms concern shape variations modeling, where the
shape is represented as flexible curve or surface, and is then deformed to match specific instance of
the object class [108]. The deformation is not an arbitrary process, rather it is performed based on two
powerful theories, Energy Minimization and Curve Evolution, which have roots in physics, geometry and
approximation theories [109]. Deformable models can be divided into two main categories: parametric
and geometric ones [110].

4.5.1. Parametric Deformable Models

Parametric deformable modeling, also called snakes or active contours, are parametrized curves
that depend inherently on particular parameters to be created. The major goal of active contour
modeling is to segment objects in retinal images by fitting the curve to objects” boundaries in the
image. It is called dynamic contour modeling since it initialized at a place in the neighborhood of
target object, then the model can evolve dynamically to fit the shape of object by an iterative adaption.
The major idea of snakes is to represent a curve via parametric curve; however, since it depends on a
parameter to control the movement of curves (when slithering as snakes) during fitting process, it is
rigid topologically, namely, it does not have the flexibility required to represent objects composed of a
variable number of independent parts [108]. Moreover, another widely-recognized issue associated
with snake-based segmentation technique is the incapability of snakes to converge to the correct vessel
edges in the presence of high level noise or if the vessels were “empty” or have relatively low contrast
levels [74].

A novel segmentation algorithm built on snake contours was developed by Jin et al. [74].
The proposed technique consists of three major steps: (1) First, parameter initialization technique
based on Hessian feature boundaries, where the Hessian feature was used to extract all darker linear
structures in retinal image, and then, the retinal image was divided into (IN) segmentation regions (R),
based on the seeds of extracted linear structure; (2) Second, each segmentation region R was represented
as image through utilizing pixels” average intensity influence, and then, the snake energy function
was constructed on this image representation to realize the snake’s locations from the neighborhood
of vessel edges to real ones; (3) Finally, as all model-based methodologies end, a region growing
technique was used r to get the final vessels’ area, and then, the grown area was post-processed via
context feature. The proposed methodology, validated on DRIVE dataset, reported a competitive
performance, reaching up to 95.21% (accuracy), 75.08% (sensitivity), and 96.56% (specificity).

An efficient and effective infinite perimeter active contour model with hybrid region terms for
vessel segmentation was proposed by Zhao et al. [31]. The proposed model used hybrid region
information of the retinal image, such as the combination of intensity information and local phase
based enhancement map. For its superiority, the local phase based enhancement map was used
to preserve vessel edges, whereas the given information of image intensity guaranteed a correct
feature segmentation. The proposed method was applied to DRIVE and STARE datasets where the
methodology achieved sensitivity, specificity and accuracy of 0.780, 0.978 and 0.956, respectively,
on STARE, whereas, for DRIVE, the measures are reported to be 0.7420, 0.9820 and 0.9540, respectively.
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4.5.2. Geometric Deformable Models

Fast Marching methods and level sets methods are considered numerical techniques devised to
track the propagating interfaces, the starting point for geometric deformable methods comes from
the evolution analysis of the curves and surfaces, considered inferfaces, and was first proposed by the
mathematician, Sethian [111,112]. Afterwards, Caselles et al. [110] suggested representing the curve
depending on Euclidian distance rather than parameters-dependency by representing a curve as a
level set, which means the contour is represented as zero-level set of an auxiliary distance function &.
Level sets theory paved the way to represent contours in flexible manner, where it can join or break
apart without the need of reparameterization.

Gong et al. [75] used a novel level set technique does not need level set function initialization,
by using local region area descriptor. The proposed technique involves two major steps: (1) a contour C
is found, and then used to divide the entire retinal image into several parts based on whether the pixel
position is inside the contoured area or not; and (2) a clustering algorithm is applied on the sub-regions
that result from the first step, which, in turn, yield local cluster value, namely, a new region information
used to redefine an energy functional in the first step until the algorithm converges. The second step
represents key contribution of this paper, since it eliminates the effect of inhomogeneity of retinal
image pixels’ intensities. Moreover, it gives more information about the local intensity information
at level of image pixel, which eliminates the need for level set function re-initialization, considered a
major drawback of level sets-based techniques. The proposed technique was tested on DRIVE dataset
and an accuracy of 0.9360, sensitivity of 0.7078 and specificity of 0.9699 are reported.

A novel modification to level set based retinal vessels segmentation was presented by
Dizdaro et al. [73] in terms of initialization and edge detection phases, which are needed as a
pre-requirement for level set based techniques. In the initialization phase, the seed points were
determined by sampling centerlines of vessels based on ridge identification, and then accurate
boundaries of the retinal vessel tree are determined through phase map built based on ridge detection
technique. The proposed algorithm was tested on both DRIVE dataset and a dataset created by paper’s
authors. The algorithm achieved values of 0.9412, 0.9743, and 0.7181 for accuracy, specificity and
sensitivity, respectively, for DRIVE, and 0.9453, 0.9640 and 0.6130, respectively, on the proposed dataset.
As a conclusion, both deformable models, either parametric or geometric, share a common problem:
both require, as essential step, a set of seed points that are determined either manually or automatically.

4.6. Adaptive Local Thresholding Techniques

Thresholding is considered one of the most well-known, plain and direct methodologies to
image segmentation in general and to medical image segmentation in particular. Whereas the objects
arrangement in the natural scene images looks relatively undistinguishable, the arrangement of
objects including the organs and tissues in the medical image is usually more discernible. Therefore,
thresholding segmentation techniques are used extensively in the research that involves the medical
image segmentation, where different tissues and organs are represented in different grey levels.
Typically, thresholding techniques, in their basic framework, search for a global value (level) that
optimally maximizes the separation between different classes (different tissues in our case) in the
image. The effectiveness of thresholding with a global level manifests if the objects in the image under
consideration have well-defined areas and if the grey levels can be congregated around values with
minimum interference.

Uneven illumination, inferior quality of source material, camera artifacts/distortions, and
anatomical objects with multi-classes and hybrid features make the global thresholding for the
entire retinal image a major source for segmentation errors. Moreover, since retinal image shows
soft transition between different grey levels, uneven illumination or noise distortions, the principal
segmentation errors begin to appear due to pixel-wise approach that adopted by global thresholding,
namely, the pixels that have same grey levels (pixel intensity) will be segmented into the same
anatomical object, which is considered a long-standing issue of global thresholding with a single
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hard value. To resolve these issues, region-wise thresholding methodologies have been suggested
for case of retinal vessels identification, developed and implemented via different techniques which
can be classified into three major categories: statistical, knowledge-based and fuzzy-based adaptive
thresholding, as shown in Figure 14.

A novel work by Christodoulidis et al. [78] focused on segmenting small thin vessels through
Multi Scale Tensor Voting (MTVF) scheme, based on the fact that small vessels represent nearly
10% of the total surface of vascular network [42] which, in turn, represents the framework of
statistical-based adaptive thresholding. The proposed technique consists of four major stages:
pre-processing; multiscale line detecting vessel enhancement; adaptive thresholding and MTVF
processing; and post-processing stage. In the pre-processing stage, the green channel of raw retina
image was extracted. Then, image contrast was enhanced by applying a contrast correction approach
proposed by [113]. Dual-tree complex wavelet transform [114] was used to remove noise. Following the
pre-processing stage, retinal vessels were enhanced via multi-scale line detection approach proposed
by [115]. The output of multi-scale line detector was fed into adaptive thresholding processer to isolate
vessels. To obtain various levels of adaptive thresholding, authors have fitted the histogram of MSLD
response to a simple Gaussian function and modified the optimum global threshold [116] by varying
the distance from the mean of Gaussian function through following equation:

T= |,uGaussitm | + “‘U_Gaussiun| ®)

where 1Gaussian and 0Gaussian are the mean and standard deviation of the fitted Gaussian function,
respectively. Then, various thresholds revealed through experimentally changing a parameter, which is
considered the heart of adaptive thresholding. Once the adaptive thresholding step has been performed,
many smaller vessels separate. Thus, a multi-scale tensor voting framework inspired by [117,118] has
been used to reconnect them. In summary, adaptive thresholding was used to extract large- and
medium-sized retinal vessels, while MTVF was used to extract the smallest ones. Finally, as a
post-processing step, morphological cleaning was used to remove the non-vasculature components
remaining after applying adaptive thresholding. The proposed methodology was tested on a recently
available Erlangen dataset [47], where it achieved average accuracy of 94.79%, and 85.06% and 95.82%
for sensitivity and specificity, respectively.
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Figure 14. Adaptive local thresholding taxonomy.
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Akram et al. [77] used adaptive thresholding technique to locate and extract retinal vessels
automatically. The statistical-based adaptive thresholding was used to create the binary vascular mask
by selecting points that isolate vessels from the rest of image. The proposed method has two major
phases: pre-processing and adaptive thresholding phases. In the first phase, the monochromatic RGB
retinal image was fed into Gabor wavelet filter for vasculature pattern enhancement, specifically for
thin and less visible vessels, based on an image analysis technique proposed by [119]. The yielded
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enhanced retinal image has maximum grey values occur for background whereas pixels belong to
vessels have a slightly greater intensity values rather than that belong to background. The proposed
technique has been tested using DRIVE dataset, where it achieved an average accuracy of 0.9469 with
area under ROC curve approximate value of 0.963.

A knowledge-guided local adaptive thresholding was proposed by Jiang and Mojon [76] where a
verification-based multi-thresholding probing scheme was used. In its most basic form, given a binary
image Ipary results from thresholding process at a threshold level T, a classification procedure is used
to decide if any region in Ip;;,y, can be defined as an object. The operation is carried out on a series of
different thresholds. The final image segmentation is set by combining different results of different
thresholds. In summary, the objects hypotheses in an image are generated by binarization via some
hypothetic thresholds, and then, according to a particular classification procedure, the object is accepted
or rejected. The classification procedure represents the core of this proposed algorithm, where any piece
of information related to object under consideration is incorporated, such as shape, color intensity and
contrast. This is why it is called knowledge-guided technique, since, during segmentation, thresholding
levels varying according to the knowledge available about the target object.

4.7. Machine Learning Techniques

While pattern recognition has its roots in engineering, machine learning was developed in
computer science [120]. Pattern recognition has become a more well-known and active research
field since the 1960s [121], and has undergone considerable development for many years, which
yields a variety of paradigms and methods that have important applicability in many fields; retinal
vascular structure is such a one. Machine learning algorithms are typically divided into three major
categories: supervised, unsupervised and reinforcement learning. This categorization is mostly based on
the availability of responses y for input data x. Supervised learning addresses the problems where,
for each input x, there is a corresponding observed output y, whereas, in the case of the latter two
categories, this correspondence cannot be found due to the lack of data. Unsupervised learning explores
interesting patterns in the input data without a need for explicit supervision [122]. Reinforcement
learning assumes that the dynamics of the system under consideration follows a particular class of
model [123].

A back propagation artificial neural network vessel classifier was designed by Nekovei and
Ying [79] to identify the blood vasculature structure in angiogram images. The proposed technique
uses the raw grey-intensity values of pixels instead of feature extraction. Each pixel in the image
is processed by creating a window around it that covers number of pixels, and then, the raw grey
intensities of these pixels are fed into the neural network as input. To cover the entire image, a process
of sliding windows, pixel by pixel, takes place. Training dataset consists of manually selected patch
samples of angiogram, where the distribution of vessel and background pixels is kept roughly equal
to prevent neural network biasing towards background pixels’ classification. The proposed method
avoids the complexity of feature extraction. Besides, the method achieved vessel detection performance
of 92% on angiograms.

Transfer learning and domain adaptation [124] has been investigated in the field of retinal vessels
segmentation by [86], where a denoised stacked auto-encoder neural network was trained with ample
labeled mini-patches of retinal images taken from DRIVE dataset. DRIVE dataset represents the source
domain where the auto-encoder was adapted to deploy on STARE dataset which represent target
domain. The stacked auto encoder consists of two encoding layers with 400 and 100 nodes per layer,
respectively, and is followed by a SoftMax regression layer. Due to power of knowledge transfer, the
proposed technique exhibited an accelerated learning performance with area under ROC curve of 0.92.

For an exhaustive detection of fine retinal vessels, Maji et al. [84] designed a hybrid framework
of deep and ensemble learning, where a Deep Neural Network (DNN) was used for unsupervised
learning of vesselness via denoising auto-encoder, utilizing sparse trained retinal vascular patches.
The learned representation of retinal vasculature patches was used as weights in the deep neural
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network, and the response of deep neural network was used in supervised learning process with a
random forest for sake of vasculature tissues identification. The high capability of denoising auto
encoder to learn feature representation was furiously exploited. The method was trained and tested
via DRIVE dataset. Although the achieved average accuracy was 0.9327, it is considered marginally
weak in contrast with state of the art approaches; the performance consistency of the method and the
ability to identify both coarse and fine retinal vascular structures are considered its unique ambience.

Invigorated by the success of [84,86], Lahiri et al. [87] presented an ensemble of two parallel
levels of stacked denoised auto-encoder networks. Each kernel is accountable for distinguishing a
particular orientation of vessel. First level of the ensemble is composed by training (n) parallel stacked
denoised autoencoders that have the same architecture, whereas second level is implemented by
parallel training of two stacked denoised autoencoders, and the final architecture was fine-tuned until
a satisfied accuracy was achieved. The decisions of individual members of the ensemble are combined
by a simple SoftMax classifier. The method proves to be reliable and consistent in addition to high
average detection accuracy that reached up to 0.953.

Contemporaneous research proposed by Maji et al. [88] uses deep neural network technique
ensemble of twelve convolutional neural networks to distinguish vessel pixels from non-vessel ones.
Each convolutional neural network has three convolutional layers; each one was trained separately
using a set of 60,000 randomly selected 31 x 31 x 31-sized patches taken from 20 raw color retinal
images of DRIVE dataset. At the time of deduction, the probabilities of vesselness were produced
by each convolutional network in a separate manner. Then, the individual responses were averaged
to form the final vesselness probability of each pixel. Although the method did not achieve the
highest detection accuracy (0.9470) among other methods, it exhibited superior performance in
terms of learning vessel presentation from data because multiple experts represented by ensemble of
conventional networks are more powerful and accurate than one neural network.

Detecting and restoring small foreground retinal filamentary structure was handled by Gu and
Cheng [22] using an iterative two-step approach built based on Latent Classification Tree (LCT)
model. After the confidence map has been constructed, a sufficiently high thresholding was placed
on it, yielding a partially segmented image containing the main (thick and long) vessels. Using
latent classification tree, the remaining low confidence map (filamentary filaments) was obtained.
The filamentary structure was re-connected to main filaments (large vessels) via novel matting and
completion field technique. These steps were performed iteratively until the whole retina surface was
scanned. The proposed method achieved high detection accuracy, up to 97.32% for DRIVE dataset and
97.72% for STARE dataset, which is considered an expected result due to the noticeable degradation in
the false positives produced by false detection of fine retinal filaments. The proposed method achieved
encouraging performance, and also has a broad range of applications in fields other than retinal vessels
extraction such as 3D magnetic resonance angiography and neural tracing.

A fast and accurate automated segmentation method for retinal and optic disc structures was
proposed by Maninis et al. [24]. Their method uses deep Conventional Neural Networks (CNNs)
as supervised segmentation methods. As all neural networks, the layers of CNN were trained in a
specialized manner to address both retrial and optic disc segmentation. The proposed method was
validated using DRIVE and STARE dataset for retinal vessel segmentation task where the area under
recall-precision curve reached up to 0.822 for DRIVE dataset and 0.831 for STARE dataset. In context
of CNN-based approaches, remarkable performances have been achieved by Liskowski et al. [89] with
supremum area under curve (AUC) of 0.99 and accuracy of 95.33%, while AUC of 0.974 was achieved
by Dasgupta and Singh [91] for automated retinal vessel segmentation.

A novel enhancement applied on the classic K-nearest neighbor (KNN) clustering algorithm for
retinal vessel segmentation has been demonstrated by Salem et al. [80]. Each pixel was represented by
a feature vector composed of green channel intensity, local maxima of the gradient magnitude and the
local maxima of the largest eigenvalue. Based on these features, image pixels were clustered using the
modified version of KNN without using training set. The segmentation algorithm was evaluated on the
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STARE dataset resulting in an average sensitivity and specificity of 77% and 90%, respectively, for three
feature vectors, and 76% and 93%, respectively, using only one feature (maximum eigenvalue) vector.

A fuzzy-based retinal vessel segmentation methodology proposed by Sharma and Wasson [85]
used the difference between low-pass filtered and high-pass filtered version of retinal image as input
for fuzzy-logic based processing. The fuzzy logic consists of different sets of fuzzy rules; each fuzzy
rule was built based on different thresholding values. Thresholding values were used to select and
discard pixel values according to fuzzy rules, which, in turn, led to vessel extraction. The methodology
attained an average accuracy of 95% on DRIVE dataset.

A two-stage combination between vessel tracking and fuzzy logic techniques was proposed
by Akhavan and Faez [82]. In the first stage, the centerlines of enhanced retinal image were
detected, while retinal vessels were filled using Fuzzy C-Means (FCM) clustering technique in the
second stage. The final segmented result was obtained by combining centerlines images with fuzzy
segmented images. Centerlines are used as initial points for a FCM-based region growing algorithm.
The evaluation of the technique resulted in an average accuracy of 72.52% on DRIVE dataset and
77.66% on STARE dataset.

A novel scheme based on combination of genetic algorithm and fuzzy c-means clustering
algorithm was proposed by Xie and Nie [81]. In pre-processing stage, the green channel of raw
retinal image was extracted and enhanced by histogram equalization. Then, the retinal image was
divided into two major layers: texture layer and smooth layer. Texture layer was directly fed as input
to the processing stage due to the amount of information that contains. The features, containing data
obtained in the first stage, were clustered via fuzzy c-means algorithm in conjunction with genetic
algorithm, where, firstly, the genetic algorithm is used to obtain the approximate solution of the
global optimal solution; and, secondly, the approximate solution was used as initial value of the fuzzy
c-means algorithm. Genetic algorithm eases and enhances the duty of fuzzy c-means in finding the
optimal solution without falling into issue of local detection of optimal solutions.

To overcome the issues related to the objective function of the classic fuzzy c-means classifier,
Emary et al. [83] utilized the possibilistic version of fuzzy c-means algorithm optimized by Cuckoo
search algorithm. They used the new clustering methods, possibilistic c-means proposed by [125] and
possibilistic fuzzy c-means proposed by [126]m to establish an optimal version of fuzzy c-means that
were used accordingly for retinal vessels segmentation. The optimality of the proposed method was
examined by the heuristic search algorithm Cuckoo Search (CS). The evaluation on the STARE dataset
indicated an average accuracy, specificity and sensitivity of 0.94478, 0.987 and 0.586, respectively,
whereas, for DRIVE dataset, the measures were 0.938, 0.984 and 0.628, respectively.

5. Discussion and Conclusions

The existing retinal blood vessel segmentation methodologies are categorized, and described in
the last section. We discussed various techniques used in these methodologies for the segmentation of
blood vessels in retinal image and compare performance result of the methods. These methodologies
were evaluated using publicly available datasets. Various retinal vessels segmentation methodologies
follow similar procedures: each methodology initiates by pre-processing step, where the green layer
(or grey) is extracted from the raw color retinal image, and then the contrast of the image is enhanced.
Processing step represents the heart of algorithm, where the different techniques categorized in last
section are used. Finally, in the post-processing step, the initial segmented image undergoes steps of
smoothing and edge preserving and enhancement.

Regarding retinal segmentation categories shown in Figure 7, there is neither a best technique
or algorithm to face all performance metrics in high segmentation achievement, nor a best
mathematical scheme to do so. Deciding whether the methodology is best depends on a set of factors
including: (1) Achieved accuracy, which in turn, depends on the achieved specificity and sensitivity,
where segmentation is considered the best if it achieves the highest possible sensitivity value (or shows
low false detection to other retinal structures), while also maintaining the specificity at optimal level.
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On the other hand, the optimality of the method increases as detection capability of the method records
high performance in pathological retinal images; (2) Time and computational complexity: The time and
computational power required by the methods tend to be low, as the accuracy has increased tendency
on the condition that high performance of high accuracy has achieved; (3) Robustness: The method is
considered to be best if it shows robustness against method parameters variation.

The accurate detection and segmentation of the retinal vascular structure forms the backbone
of a variety of automated computer aided systems for screening and diagnosis of ophthalmologic
and cardiovascular diseases. Even though many promising methodologies have been developed and
implemented, there is still room for research improvement in blood vessel segmentation methodologies,
especially for noisy and pathological retinal images outside the limited number of retinal images
available in public datasets. In real-life applications, retinal vessels segmentation systems will not
replace the experts’ role in diagnosis; rather, they will enhance the diagnosis accuracy and reduce the
workload of the ophthalmologists. Therefore, large volume of patients’ images can be processed with
high diagnosis accuracy and comparable time.
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