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Featured Application: Ocean color remote sensing.

Abstract: An analytical radiative transfer (RT) model for remote sensing reflectance that includes
the bidirectional reflectance distribution function (BRDF) is described. The model, called ZTT
(Zaneveld-Twardowski-Tonizzo), is based on the restatement of the RT equation by Zaneveld (1995) in
terms of light field shape factors. Besides remote sensing geometry considerations (solar zenith angle,
viewing angle, and relative azimuth), the inputs are Inherent Optical Properties (IOPs) absorption
a and backscattering bb coefficients, the shape of the particulate volume scattering function (VSF)
in the backward direction, and the particulate backscattering ratio. Model performance (absolute
error) is equivalent to full RT simulations for available high quality validation data sets, indicating
almost all residual errors are inherent to the data sets themselves, i.e., from the measurements of IOPs
and radiometry used as model input and in match up assessments, respectively. Best performance
was observed when a constant backward phase function shape based on the findings of Sullivan
and Twardowski (2009) was assumed in the model. Critically, using a constant phase function in the
backward direction eliminates a key unknown, providing a path toward inversion to solve for a and
bb. Performance degraded when using other phase function shapes. With available data sets, the
model shows stronger performance than current state-of-the-art look-up table (LUT) based BRDF
models used to normalize reflectance data, formulated on simpler first order RT approximations
between rrs and bb/a or bb/(a + bb) (Morel et al., 2002; Lee et al., 2011). Stronger performance of
ZTT relative to LUT-based models is attributed to using a more representative phase function shape,
as well as the additional degrees of freedom achieved with several physically meaningful terms in
the model. Since the model is fully described with analytical expressions, errors for terms can be
individually assessed, and refinements can be readily made without carrying out the gamut of full
RT computations required for LUT-based models. The ZTT model is invertible to solve for a and bb
from remote sensing reflectance, and inversion approaches are being pursued in ongoing work. The
focus here is with development and testing of the in-water forward model, but current ocean color
remote sensing approaches to cope with an air-sea interface and atmospheric effects would appear to
be transferable. In summary, this new analytical model shows good potential for future ocean color
inversion with low bias, well-constrained uncertainties (including the VSF), and explicit terms that
can be readily tuned. Emphasis is put on application to the future NASA Plankton, Aerosol, Cloud,
and ocean Ecosystem (PACE) mission.
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scattering function; NASA PACE mission
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1. Introduction

Radiative transfer (RT) approximations linking inherent optical properties (IOPs), such as
spectral absorption a(λ) (m−1) and spectral backscattering bb(λ) (m−1) to ocean color remote sensing
reflectance Rrs(λ) are vital to interpreting Rrs because it is not possible to analytically invert the full
RT equation [1,2]. Once forward RT approximations are developed, inversions can then be explored
to solve for IOPs from Rrs and subsequently ocean biogeochemical properties [3]. Ocean color Rrs(λ)
(sr−1) here is defined as Lw(λ)/Ed(λ), or water leaving radiance (W m−2 sr−1 nm−1) normalized to
above water downwelling irradiance (W m−2 nm−1) (see Reference [4] for complete definitions of all
optical parameters and Appendix A, Table A1 for notation).

Ocean color expressions to date have almost exclusively relied on first order approximations of RT
relating Rrs to bb/a through a proportionality represented as f /Q [5–8], or to bb/(a + bb) with multi-term
polynomial expressions based originally on Gordon et al. [9] with coefficients represented as l or
G ([9–12]; see review by Werdell et al. [13]). The coefficients describing the relationship between Rrs

and IOPs are detailed in look-up tables (LUTs), or a neural network in the case of [8], with dependencies
on geometry (i.e., solar zenith, viewing angle, relative azimuth) and in some cases wavelength, wind
speed, atmospheric conditions, and/or chlorophyll concentration [Chl]. The LUTs are generated from
full RT computations with so-called synthetic data sets where IOPs and their interrelationships are
assumed and referenced to [Chl]. LUT coefficients are thus also implicitly dependent on IOPs.

These ocean color relationships have been tremendously useful to the ocean color community for
decades. Morel [14] discusses the first order analytical relationship and the empiricism necessary to
invert. Coefficients describing the relationship between Rrs and IOPs are dependent on the bidirectional
reflectance distribution function (BRDF), which describes the transformation of downwelling irradiance
for different solar zenith angles into the distribution of upwelling radiance. Morel et al. [7] describe the
current state-of-the-art BRDF model (herein referred to as M02), currently implemented operationally
by the ocean color community (NASA Ocean Biology Processing Group (OBPG); [15]) to convert Lw

measured at any viewing geometry to a conceptual “exact normalized” Lw, [Lw]
ex
N , with Sun at zenith

and nadir viewing in a non-attenuating atmosphere. This allows any measurement at any Sun-viewing
geometry to be directly intercompared. Inversion algorithms to derive IOPs are then typically applied
to [Lw]

ex
N and are often based on the same type of first order Rrs to IOP approximation [13,16]. The

current semi-analytical algorithm (SAA) application to water-leaving radiances is thus a two-step
process (after applying calibration coefficients, georeferencing, and atmospheric correction): (1) A
BRDF correction to carry out the conversion to [Lw]

ex
N , followed by (2) application of an inversion

algorithm to derive IOPs (see [13]).
A key potential source of uncertainty in current SAA approaches is associated with the volume

scattering function (VSF; β(ψ) m−1 sr−1, where ψ is scattering angle), and this uncertainty is
ambiguously dispersed in both steps. The VSF dependency is of paramount importance; as Morel and
Gentili [5] note, the BRDF “ . . . is essentially controlled by the shape of the VSF . . . .” Historically, very
few measurements of the VSF have been available to develop and test SAAs. The M02 BRDF tables
were developed from extensive RT modeling using VSF shapes (also known as phase functions P(ψ),
defined as the VSF normalized to total scattering, P(ψ) = β(ψ)/b, with units sr−1) tied to estimated
chlorophyll concentrations [Chl]. To obtain P(ψ) for modeling, Morel et al. [7] first mixed two phase
functions for populations dominated by large and small particles representing high and low [Chl]
extremes, respectively, and then mixed that particulate phase function with the phase function for
molecular seawater to a degree that was also linked to estimated [Chl]. The [Chl] estimate was initially
derived from Rrs with an empirical band ratio algorithm. Uncertainty is thus associated with how close
the assumed P(ψ) used in the BRDF modeling matches the actual P(ψ) associated with any given Lw

measurement. While the M02 model has been validated in Case 1 waters with atmospheric conditions
and IOPs that presumably agree with the underlying atmospheric and bio-optical models [17,18],
there have been limited attempts to assess any embedded phase function uncertainties with actual
VSF measurements in diverse water types [19,20]. No subsequent BRDF approach has demonstrated
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enhanced performance for Case 1 waters relative to the M02 approach while being feasible to implement
for ocean color. However, Talone et al. [21] have recently shown the Lee et al. [11] LUT-based approach
was more accurate for Case 2 waters sampled in the Adriatic, Baltic, and Black Seas.

Uncertainty also arises from exclusively using the bb term in the inversion algorithm, i.e., in step
two of the SAA approach described above. Effort has been devoted to trying to correct this uncertainty
by layering additional VSF dependence in the f /Q proportionality [22]. Interestingly, after the current
M02 BRDF normalization is applied (i.e., measurement geometry transferred to Sun at zenith and nadir
viewing), the scattering parameter that should be most closely linked to [Lw]

ex
N , and thus presumably

should provide the lowest associated uncertainties in IOP retrievals, is β(π) if single scattering is
assumed, which is typically a good approximation [23]. We are not aware however of any algorithm
using β(π) in lieu of bb. The practical but still arbitrary choice of converting measured Lw to [Lw]

ex
N

with Sun at zenith and nadir viewing may thus not optimize uncertainties in inversion algorithms.
The parameter β(π) is almost completely unknown in the ocean, as there are virtually no direct
measurements of β(π) in the literature and typical models of particle scattering with simplified particle
shapes do not account for possible particle-particle coherent scattering that may cause significant, but
poorly understood, enhancement near β(π) [24]. For example, a recent estimate of bb/β(π) made with
a combination of airborne lidar and in situ bb measurements [25] was 50% the value expected from
extrapolation of available β measurements [26].

Although the M02 BRDF correction as currently applied can be considered “conceptual” at
Lw(0,π) without creating a problem from a geometry point of view (i.e., Lw at any viewing geometry
can be corrected to a conceptual standard Lw at another geometry as long as it is consistent), it will
be problematic if we try to develop algorithms based on β(π) to reduce uncertainties because the
necessary data for algorithm development and validation are lacking. This would also suggest a
possible benefit in using the BRDF correction to obtain [Lw]

ex
N at another unique geometry (solar zenith,

viewing angle, and azimuth), one that was representative of single scattering at an angle that we can
measure directly with available instrumentation. To minimize the magnitude of BRDF correction, this
angle could be chosen as the centroid angle of the maximum in the frequency distribution of in-water
single scattering angles observed for polar orbiting satellites, which is about 150◦ (Figure 1). Since we
can accurately measure β at or near 150◦ with commercially available instrumentation (e.g., WET Labs
ECO, In-situ Marine Optics IMO-SC6, and legacy HOBI Labs Hydroscat sensors), there would appear
to be potential to reduce uncertainties with β(150◦)-based algorithms matched to a β(150◦)-based
BRDF correction using M02 relative to the current bb-based algorithms applied to a β(π)-based BRDF
correction. In the former approach, uncertainties associated with the phase function are thus mostly
restricted to the BRDF correction step.

Herein we explore a different approach, working with a RT expression from Zaneveld [27,28] that
explicitly incorporates a dependency on VSF shape, as well as specific viewing geometry. A path to
inversion to IOPs is also presented where SAA steps 1 and 2 mentioned above are combined in a single
relationship and uncertainties related to VSF shape and other parameters can be directly assessed.
This approach has several potential benefits, including (1) a single, fully analytical and invertible
expression describing the RT process for all remote sensing geometries, (2) optimal retention of native
RT relationships with more degrees of freedom than the first order approximation, directly linked to
physically meaningful terms, (3) all parameters including the VSF are explicit in the model with readily
characterized uncertainties, (4) model can be readily enhanced by tuning one or more terms rather than
developing new LUTs from complete recomputations of full RT, and (5) native viewing geometries
produce scattering at angles that can be resolved with available instrumentation. A challenge in an
explicitly VSF-dependent approach is amenability to inversion, as some information about the phase
function is ostensibly required [1,20]. However, it should be pointed out this is also the case with any
model, including the M02 BRDF correction, and subsequent inversion algorithms and their inherent
assumptions about VSF shape. In fact, as is assessed herein, the same assumptions of M02 in linking
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changes in VSF shape with an independent estimate of chlorophyll can be directly applied to this RT
model, with the benefit of being able to directly quantify associated errors.

Figure 1. Refracted, in-water scattering angles made between the solar zenith and viewing angle,
simulated for the upcoming NASA PACE satellite imager through a complete polar orbit (solid blue).
Scattering angle distributions for SeaWiFS were similar. Data courtesy Bryan Franz (NASA GSFC).
Angular weighting functions of commercial backscattering sensors WET Labs ECO-BB, ECO-NTU, and
MCOMS and IMO-SC6 (see text) are overlaid after scaling by 5 × 106.

In this paper we focus on the performance of a forward implementation of the Zaneveld expression
using a modified formulation in terms of IOPs that is now amenable to inversion. Performance of
the inversion to IOPs is being fully assessed in ongoing work. A key advance promoting inversion is
the finding by Sullivan and Twardowski [26] that the shape of the particulate VSF in the backward
direction is relatively constant for a wide range of water types, and so may be represented by a
constant function in an algorithm without introducing significant error. Importantly, we have also now
overcome a limitation in practically assessing this approach by collecting a database of measured VSFs
resolved over a large dynamic range concurrently with other high quality IOPs and radiometry under
ideal cloud-free environmental conditions [29].

2. Forward Model Development

Zaneveld [27,28] derived an exact restatement of the RT equation assuming a plane-parallel,
optically deep water column in terms of upwelling radiance Lu in viewing direction θv:

Lu(θs, θv, φ)

Eod
=

fb(θs, θv, φ) bb
2π

− cos(θv)KLu(θs, θv, φ) + c− fL(θs, θv, φ)b f
, (1)

where Eod is the scalar downwelling irradiance, KLu is the attenuation coefficient for upwelling radiance,
bf is forward scattering, and c is the attenuation coefficient. Parameters fb and fL are light field shape
factors representing the path radiance term of the RT equation [27,28]. Factor fb describes the redirection
of downwelling radiance into the upwelling viewing angle for a given VSF and is normalized to the
redirection that would be observed if the VSF was isotropic. Factor fb is thus directly linked to the shape
of the VSF in the backward direction. The factor fL is defined similarly but describes the redirection
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of upwelling radiance into the upwelling viewing angle and is thus directly linked to the shape of
the near forward VSF. These shape factors are expected to vary within a relatively narrow range
near unity. All terms are a function of depth z and wavelength λ. The Zaneveld expression does not
account for any inelastic processes, such as molecular Raman scattering or fluorescence [30–33]. Using
physically reasoned approximations for fb including the assumption of single scattering, the following
was obtained by Zaneveld ([28]; his Equation (14)):

Lu(θs, θv, φ)

Eod
=

β(ψ)

− cos(θv)KLu(θs, θv, φ) + c− fL(θs, θv, φ)b f
, (2)

where β is the VSF (including water) and ψ is the in-water scattering angle formed between peak
incident sunlight at solar zenith angle θs and scattered light traveling in viewing direction (θv,Φ), where
cos(ψ) = cos(θs)cos(θv)− sin(θs)sin(θv)cos(φ). Azimuth φ is relative to the Sun’s direction. Zenith angles
θ are in-water, refracted through the air-sea interface and determined from a vertically downward
direction. For nadir viewing, ψ = π − θs and −cos(θv) = 1 in the denominator. Note approximations of
Equation (2) provided in Zaneveld [28] assumed only nadir viewing while we retain the full BRDF
functionality here.

In theoretical analyses, Weidemann et al. [34] showed bb retrievals based on the Zaneveld
expression had errors as large as −20% and +40%. However, an extraordinarily wide range of
VSF shapes was applied in their simulated data, including VSF shapes for specific particulate
subcomponents, such as bacteria, minerals, and phytoplankton. These populations were considered
separately as quasi-monodispersions with phase function shapes computed from Lorenz-Mie theory,
i.e., assuming homogeneous spheres. These phase function shapes thus had large oscillations with
respect to angle, structure that we now know is extremely unrealistic for VSFs representative of bulk in
situ particle populations (e.g., [26,35–37]). Weidemann et al. also showed with these phase functions
that the Zaneveld approximation of the shape factor at nadir viewing, i.e., fb ≈ 2πβ(π − θs)/bb, had
an average error of only 5% (their Figure 11) and this included overcast conditions that would not
occur in remote sensing. To our knowledge, the only study attempting to test the Zaneveld model with
directly measured data was He et al. [20] with a subset of the NOMAD data set, which included no
VSF measurements, where performance for the BRDF component of the model was comparable to the
current state-of-the-art [7,11].

Equation (2) demonstrates the direct link between Lu(θs, θv, φ) and β(ψ). However, for the
Zaneveld expression to be a practical tool for ocean color, the terms KLu and fL must be expressed
in terms of IOPs. Furthermore, the IOPs in the model should ideally be coefficients that are closely
linked to reflectance and directly measurable with good accuracy using existing sensor technology. For
example, the term in the denominator [c− fL(θs, θv, φ)b f ] has two IOPs that are difficult to determine
directly because of acceptance angle issues with standard transmissometer designs [38,39]. However,
since fL is close to unity, this term is also closely related to a + bb, immediately recognizable from
commonly used first order approximations. Goals of the next several sections are: 1) To represent
Equation (2) entirely in terms of such IOPs, 2) to rework in terms of the commonly used remote sensing
reflectance Lu/Ed, since these are the measurements currently available in validation data sets, and
3) to include the inelastic effects associated with water Raman scattering.

2.1. Diffuse Attenuation of Upwelling Radiance KLu

For the term KLu, Zaneveld [28] suggested an assumption of equivalency to K∞, the diffuse
attenuation coefficient in the asymptotic regime. Asymptotic theory is based on the principle that the
shape of the light field with depth gradually transforms from being dependent on the incident surface
light field to being constant, azimuthally symmetric (so L is only a function of θ), and dependent only
on IOPs. Attenuation coefficients for all aspects of the light field, i.e., for all radiances and therefore all
irradiances, are equivalent in the asymptotic regime and are also IOPs. This is a critical assumption for
the purposes of model development since K can then be described only in terms of IOPs. Zaneveld
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justified the assumption, even though the omnidirectional light field in surface waters is far from
asymptotic, due to the decoupling of upwelling radiances to downwelling radiance distributions.
Measurements of upwelling radiance fields from the 1960s and 1970s showed a near constant shape
and attenuation rate with depth. Recently, Twardowski and Tonizzo [40] confirmed this assumption
in RT simulations with no more than 3% error when the sun was at solar zenith and the following
relationship held for above water solar zeniths θs

′ up to 75◦:

KLu − K∞

K∞
= F

(
θs
′) = f1θs

′4 + f2θs
′3 + f3θs

′2 + f4θs
′ + f5, (3)

which included a full range of possible natural water types. Coefficients f are provided in Appendix A,
Table A2. Angle θs

′ is related to θs by Snell’s Law, i.e., θs
′ = sin−1(1.34 sin(θs)). Only nadir viewing

was considered in the simulations for KLu in Equation (3), and we make the assumption that KLu for
other viewing angles that define a specific scattering angle ψ can be approximated by Equation (3)
with nadir viewing geometry after assigning a θs

′ that provides an equivalent in-water ψ. For example,
for θs

′ = 60◦, θs will be 40.3◦ and ψ will be 139.7◦ for nadir viewing; we assume the resulting F(60◦)
will also be applicable to any off-nadir viewing angle with ψ = 139.7◦. This assumption has been
verified using Hydrolight RT simulations (methodology addressed in Section 3.2) to no worse than
2% in the solar plane and no worse than 5% within the upwelling hemisphere for in-water scattering
angles consistent with remote sensing (i.e., Figure 1). This assumption implies a rotational reference
frame, where the first order determinant of radiance field shape in the model, i.e., ψ, is preserved. Two
potential drawbacks of this assumption are (1) the influence of skylight may be skewed in the rotated
reference frame, and (2) the range of viewing angles is restricted since the smallest ψ is ~134◦ for
underwater nadir viewing. The range ψ > 134◦, however, comprises >95% of the expected scattering
angles that will be measured by the PACE imager (Figure 1). Further work with field measurements is
needed to verify this assumption. Reformulating Equation (3) in terms of dependency on the in-water
scattering angle, we obtain:

F(ψ) = fA1ψ4 + fA2ψ3 + fA3ψ2 + fA4ψ + fA5. (4)

Coefficients fA are provided in Appendix A, Table A2.
From Gershun’s Law we can set K∞ = a/µ∞, where µ∞ is the average cosine of the asymptotic

light field. After inserting Equation (4) into Equation (2) and allowing for c = a + b, the following
is obtained:

Lu(θs, θv, φ)

Eod
∼=

β(ψ)

a
(
1− cos(θv)ΨKLu(ψ) µ∞

−1
)
+ b− fL(θs, θv, φ)b f

, (5)

where ΨKLu(ψ) = KLu/K∞ = [1 + F(ψ)]. (6)

The parameter ΨKLu is assumed spectrally independent with errors over the full range of possible
water types estimated at <2% [40]. Dividing numerator and denominator of Equation (5) by bb,
we obtain:

Lu(θs, θv, φ)

Eod
∼=

β(ψ)

bb
/
[

a
bb

(
1− cos(θv)ΨKLu(ψ)µ∞

−1
)
+ fL(θs, θv, φ)

(
1− b̃b

−1
)
+ b̃b

−1
]

, (7)

where b̃b = bb/b is the backscattering ratio. For IOPs we now have the backward phase function in the
numerator; in the denominator we have the recognizable bb/a, as well as b̃b, an IOP that incorporates
information on bulk particle composition (see Section 2.4; [41]), and is not typically associated with
ocean color remote sensing vis-à-vis the common first order approximation of rrs assumed proportional
to bb/a.
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2.2. Average Cosine of the Asymptotic Light Field µ∞

The µ∞ term in Equation (7) must be expressed in terms of IOPs to invert. Using a fit to theoretical
calculations of radiance fields by Prieur and Morel [42], Zaneveld [28] recommended 1/µ∞ be modeled
empirically with respect to the single scattering albedo ω (=b/c) using a quadratic fit. Additionally,
through more detailed RT computations, Berwald et al. [43] found a 4th order dependency of µ∞ on
the albedo.

In the study by Twardowski and Tonizzo [40], µ∞ was parameterized in terms of bb/a instead
of ω, including an assessment across a full range of environmentally representative phase function
shapes using the Fournier-Forand analytical model [44,45]. The data set used in the assessment was
not a representative synthetic data set (i.e., [46]), as it included a full range of possible bb/a values,
possible phase functions, and permutations thereof. Representing µ∞ in terms of bb/a has two distinct
advantages. First, bb and a can be measured with commercially available in situ instrumentation with
accuracies of a few percent [47–49] to enable performance assessment for algorithms. Parameters c and
b cannot be measured without significantly larger errors, typically >25–50%, because of the acceptance
of near forward scattered light in conventional transmissometer designs [38,39]. Secondly, b and c
are not parameters that are closely linked to rrs without additional information, whereas bb and a
are (e.g., Gordon et al. [50]), and a goal here is to represent the entire model in terms of bb and a to
enable inversion.

The Twardowski and Tonizzo [40] parameterization also explicitly depended on ηbb, the fraction
of bb attributable to molecular scattering, ηbb = bbw/(bbp + bbw) [6]. The natural range for ηbb is from
~0 to ~0.98 [40,51], and the range used for bb/a was 10−4 to 10−1. Since the water components of ηbb
may be assumed known [52], the effective unknown here is bbp. After extending the analysis from
Reference [40] to include near zero bb/a and increased resolution in ηbb, the resulting fit was obtained
for µ∞:

µ∞

(
bb
a , ηbb

)
≈

[
m1(log ηbb)

3 + m2(log ηbb)
2 + m3 log ηbb + m4

](
log bb

a

)3

+
[
m5(log ηbb)

3 + m6(log ηbb)
2 + m7 log ηbb + m8

](
log bb

a

)2

+
[
m9(log ηbb)

3 + m10(log ηbb)
2 + m11 log ηbb + m12

]
log bb

a

+m13(log ηbb)
3 + m14(log ηbb)

2 + m15 log ηbb + m16.

(8)

Coefficients m are provided in Appendix A, Table A2. Fits to simulated data were again made
with the polyfit function from MATLAB. Absolute errors %δabs for this fit vary from 0.19 to 3.5 for ηbb
ranging from 0.98 to 0.0098, respectively. Since both bb/a and ηbb are spectrally dependent, µ∞ will be
as well (not shown for clarity).

2.3. Backward Phase Function β(ψ)/bb

The scattering parameters in Equation (7) must be expanded into water and particulate
components. Expanding β(ψ)/bb gives:

β(ψ)

bb
=

βp(ψ) + βw(ψ)

bbp + bbw
, (9)

where the p and w subscripts represent particles and molecular seawater, respectively. In Equation (9),
the pure seawater terms, which are temperature and salinity specific, can be directly computed with
an estimated error of no more than 2% [52]. Introducing a term for the particulate phase function in
the backward direction, Pbb(ψ) = βp(ψ)/bbp, Equation (9) then becomes:

β(ψ)

bb
=

Pbb(ψ)bbp + βw(ψ)

bbp + bbw
. (10)
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Note bbp and bbw both have spectral dependencies as does β/bb, and the unknowns are bbp(λ)
and Pbb(ψ). Equation (10) can be easily rewritten in terms of ηbb, with the same unknowns. In coastal
waters where ηbb is near zero, βp >> βw, bbp >> bbw, and β(ψ)/bb will be approximated by Pbb(ψ). For
clear ocean waters, phase functions are represented by a mixture of both particles and pure seawater
with VSF shapes dependent on ηbb.

2.4. Backscattering Ratio b̃b

Expanding the backscattering ratio b̃b = bb/b in Equation (7) we obtain:

bb
b

=
bbp + bbw

bp + bw
=

bbp + bbw

bbp/b̃bp + bw
, (11)

where b̃bp is the particulate backscattering ratio. This b̃bp is the “true” b̃bp, distinct from the b̃bp typically
derived from measurements that include c data from transmissometers with significant acceptance
angle errors (e.g., [38,39]) (we note models linking particle biogeochemical properties and measured
b̃bp should account for the acceptance angle of c measurements [41,53]). Bootstrapping exercises using
Equation (7) readily show an impact on reflectance of up to several percent when b̃bp is varied over the
full ~0.003 to ~0.03 dynamic range observed in the oceanic environment [41,53–56]. All terms have
spectral dependencies.

2.5. Shape Factor fL

Zaneveld [28] recommended the term fL, i.e., the dimensionless upwelling radiance shape factor,
could be set to 1.05 with small error. The natural range was estimated at 1 to 1.12 [27]. In the Results,
we develop a new model for this term.

2.6. Remote Sensing Reflectance Formulation

Nearly all ocean RT algorithm work over the last several decades has used reflectance defined
as Lu/Ed instead of Lu/Eod. Zaneveld [28], however, pointed out, as is evident from Equation (1),
Lu/Eod is most closely aligned with RT theory. The irradiance parameter Eod is also less dependent
on solar zenith angle than Ed. Furthermore, sensor technology has been available to measure Eod,
historically from companies Biospherical (www.biospherical.com), Satlantic (www.satlantic.com), and
Trios (www.trio.de). Nonetheless, since nearly all field data over the last several decades has focused
on Ed, any testing and validation of the RT model described here requires modification in terms of
Ed. Substituting Ed/Eod = µd (the average cosine of downwelling radiance, just below the air-water
interface) into Equation (7) gives:

rrs ∼=
1

µd

β(ψ)

bb
/
[

a
bb

(
1− cos(θv)ΨKLu µ∞

−1
)
+ fL

(
1− b̃b

−1
)
+ b̃b

−1
]

, (12)

where rrs is the classically known remote sensing reflectance just below the water surface. Full
dependencies of variables not shown for clarity.

2.7. Average Cosine of the Downwelling Light Field µd

A model for µd is now required in the expression from Equation (12). If the sky is ignored and we
assume a negligible fraction of the incident solar beam is scattered in the near-surface, a reasonable
first-order approximation of µd should be µw ≡ cos(θs). Adding in a cardioidal radiance distribution
for skylight, Morel and Prieur [57] obtained:

1
µd
≈ 0.6

µw
+

0.4
0.859

, (13)

www.biospherical.com
www.satlantic.com
www.trio.de
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and noted that for sun angles between 8◦ and 62◦, µd varied only from 0.79 to 0.94. Thus, even without
knowledge of solar zenith angle, a median value could be used with an accuracy better than 10%.

Numerator values of 0.6 and 0.4 in Equation (13) represent the fractions of direct (Edd/Ed) and
diffuse (H = Eds/Ed) downwelling light, respectively, which together equal unity. These values primarily
depend on θs’ and horizontal visibility V, the latter of which depends on aerosol optical thickness
(AOT). For 20◦ ≤ θs’ ≤ 60◦ and for H between 0.2 and 0.5, the variability of µd is ~7% for a fixed θs’.

The term µd can be factorized in two parts, one part dependent on the IOPs, the other dependent
on the atmospheric conditions and geometry:

µd

(
θ′s, V,

bb
a

, ηbb

)
≈ M+

d
(
θs
′, V
)
×M∗d

(
bb
a

, ηbb

)
. (14)

The atmospheric component can be represented as:

M+
d
(
θs
′, V
)
=

[
1−H(θs

′ ,V)
µw

+ H(θs
′ ,V)

0.859

]−1

P3[cos(θs ′)]
. (15)

As mentioned, Morel and Prieur [57] assumed H = 0.4. Gregg and Carder [58] later provided a
relationship for H as a function of θs

′ and V that included skylight. Specifically, the results of ([58];
their Figure 4) can be fit as follows:

H(θ′s, V) =
[
e1V2 + e2V + e3

]
θs
′5 +

[
e4V2 + e5V + e6

]
θs
′4

+
[
e7V2 + e8V + e9

]
θs
′3 +

[
e10V2 + e11V + e12

]
θs
′2

+
[
e13V2 + e14V + e15

]
θ′s + e16V2 + e17V + e18 .

(16)

Coefficients e are provided in Appendix A, Table A2. Note the typical default value used in
Hydrolight is V = 15 km.

The P3 term in the M+
d relationship is a 3rd order polynomial in cos(θs

′) to correct where Morel
and Prieur’s original approximation deviates from the Gregg and Carder relationship at large θs

′. The
P3 term is:

P3[cos
(
θs
′)] = 0.7792 cos3(θs

′)− 1.7366 cos2(θs
′)+ 1.1551 cos

(
θs
′)+ 0.7842.

The IOP-dependent component M∗d was modeled using the approach in [40] with the extended
bb/a range and ηbb resolution discussed in Section 2.2. The final fitted relationship is:

M∗d
(

bb
a , ηbb

)
=

[
m∗d,1 log ηbb + m∗d,2

](
log bb

a

)3
+
[
m∗d,3 log ηbb + m∗d,4

](
log bb

a

)2

+
[
m∗d,5 log ηbb + m∗d,6

]
log bb

a + m∗d,7 log ηbb + m∗d,8.
(17)

Coefficients m∗d are provided in Appendix A, Table A2. Absolute percent error with this
relationship relative to computations using full radiative transfer (Hydrolight, see Section 3.2) varies
from 0.06% to 0.4% across all θs’. Error for the full µd expression is <1%. Spectral dependency enters
the expression through the V term, which is dependent on spectral AOT.

2.8. Including Inelastic Water Raman Effects

The molecular water Raman scattering contribution to rrs can be included in Equation (12) as an
additive term, resulting in the expression:

rrs(θs, θv, φ, V, a, bb) ∼= rrs,Raman(θs
′, a, bb) +

1
µd

(
θ′s ,V,

bb
a ,ηbb

) β(ψ)
bb

/
[

a
bb

(
1− cos(θv)ΨKLu(ψ)µ∞

(
bb
a , ηbb

)−1
)
+ fL(θs, θv, φ)

(
1− b̃b

−1
)
+ b̃b

−1
]

.
(18)
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Full dependencies for all parameters in the model are shown except for λ; all parameters exhibit
dependence on λ in the model except for ΨKLu(ψ). We note a similar approach has been taken in adding
water Raman effects in other reflectance models (e.g., [59]; reviewed in [13]). The term rrs,Raman can be
derived according to Westberry et al. ([60]; see their Equation (7)) with inputs of above water (z = 0+)
downwelling irradiance Ed(0+,θs’), a, and bb. The NASA Generalized IOP (GIOP) inversion model
implementation [16] also currently uses this Raman formulation. Terms for other inelastic effects,
such as fluorescence from dissolved organic matter and pigments may also be added if representative
models are available.

2.9. ZTT Model Summary

Equation (18) is the final model for ocean color reflectance defined as Lu/Ed, called the ZTT
model hereafter. In Equation (18) the µd term is approximated by Equation (14), the β(ψ)/bb term
approximated by Equation (10), the ΨKLu term described by Equations (4) and (6), the µ∞ term
described by Equation (8), and b̃b represented by Equation (11). The ultimate assignment of the fL
term is addressed in the Results. The geometry variables, Ed(0+,θs’), V, and molecular water scattering
parameters in the above can be considered knowns. The model is fully spectral. Key unknowns are
bb and a (or bb/a and ηbb), and since pure seawater absorption aw in the visible is considered known
with good accuracy [61] the effective unknowns are bbp and absorption by non-water constituents
apg. The two additional unknowns are Pbb(ψ) and b̃bp. In the forward implementation here, these
four parameters must be provided from direct measurements or through some assumptions. In the
inversion implementation, these are the parameters that may be solved through techniques to minimize
errors in the expression if there are enough spectral bands (i.e., degrees of freedom) in rrs, although a
priori assumptions may be required for Pbb(ψ) and b̃bp.

For ocean color reflectance defined as Lu/Eod, the simpler relationship in Equation (7) can be used.
Water Raman effects can still be considered by applying an algorithm, such as in Reference [60].

3. Methods

3.1. Synthetic Dataset

A synthetic data set referenced to [Chl] was developed to test the ZTT model and develop an
expression for the fL term (see Section 4.1). Twenty values of [Chl] were assumed, logarithmically
spaced between 0.01 and 30 mg m−3. Total absorption coefficient (a) was represented by a sum of
four components:

a(λ) = aw(λ) + aph(λ) + ad(λ) + ag(λ). (19)

Pure water absorption aw was taken from Reference [61]. Phytoplankton absorption aph was
calculated from chlorophyll concentration [Chl] and from spectrally averaged absorption coefficients
of micro- and pico-plankton (amicro(λ) and apico(λ), respectively) [62]:

aph(λ) = [Chl] ∗
([

S f apico(λ)
]
+
[(

1− S f

)
amicro(λ)

])
, (20)

where Sf = [0.25, 0.5, 0.75] is the shape mixing factor. Non-algal particulate absorption ad was given
by [63]:

ad(λ) = ad(440) ∗ e−0.011(λ−440), (21)

where ad(440) is equal to Rd aph(440), with Rd = [0.05, 0.1, 0.5, 1, 2]. Similarly, we used an exponentially
decaying expression for the absorption of chromophoric dissolved organic matter, ag [64]:

ag(λ) = ag(440) ∗ e−0.014(λ−440), (22)

where ag(440) is equal to Rg aph(440), with Rg = [0.1, 0.3, 0.5, 1, 2].
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Total backscattering bb was represented by the sum of water and particulate components:

bb(λ) = bbp(λ) + bbw(λ). (23)

To derive particulate backscattering bbp, total particulate scattering bp was first empirically
estimated at 550 nm [65]:

bp(550) = 0.416[Chl]0.766, (24)

and then extrapolated spectrally [66]:

bp(λ) = bp(550) ∗
(

λ

550

)v([Chl])
, (25)

where v([Chl]) = 0.5(log[Chl] − 0.3) when 0.01 ≤ [Chl] ≤ 2 mg m−3 and v([Chl]) = 0 when [Chl] >
2 mg m−3. The empirical relationship from [41] between the particulate backscattering ratio b̃bp and
[Chl] was then used to derive bbp:

bbp = bp b̃bp = bp ∗ 0.0096[Chl]−0.253. (26)

Pure seawater backscattering bbw was calculated according to Zhang et al. [52].

3.2. Radiative Transfer Simulations

RT simulations of rrs were performed with Hydrolight (Sequoia Scientific, Bellevue, WA),
following the procedure in Tonizzo et al. [29]. Fournier-Forand analytical phase functions were
derived for each [Chl] iteration following the method of Mobley et al. [67].

Inelastic water Raman scattering was not included in the simulations for the synthetic data set, as
this is separately addressed in the model (Equation (18)); fluorescence from any seawater constituents
was also not considered. Note water Raman effects were included in full RT simulations for all field
data (see [29]). Output wavelengths ranged from 350 to 800 nm at 5 nm resolution. Hydrolight default
atmospheric parameters were used for all runs. Computations were run for θs

′ of 10, 30 and 60◦.
Altogether, 1500 different IOP permutations based on [Chl] were simulated for each θs’.

3.3. Field Data Sets

Model performance was assessed using two aggregate data sets. The first is a high quality data set
of 23 stations from the Ligurian Sea, waters around the Marine Optics BuoY (MOBY) west of Lanai, the
southern California coast, and the New York Bight, collected in 2008 and 2009 as part of NASA Spectral
Ocean Radiance Transfer Investigation and Experiment (SORTIE) and NASA Ocean Color Validation
(OCVAL) exercises. Radiometric closure was assessed in detail for these data by Tonizzo et al. [29].
[Chl] ranged from 0.24 to 23.85 mg m−3. The VSF was directly measured using the custom Multi-Angle
SCattering Optical Tool (MASCOT) [26,36] and radiometric uncertainties were rigorously assessed
by Voss et al. [68]. Here we use WET Labs ac-9 absorption measurements corrected for scattering
using independent VSF measurements (i.e., the VSF98P correction [29]; also see Stockley et al. [49] for
detailed evaluation of this correction). The second data set is the NASA NOMAD database, where
80 data records were identified containing the parameters needed for performance assessments here,
i.e., a, bb, b̃bp, [Chl], and rrs. [Chl] ranged from 0.23 to 10.68 mg m−3 in this data set.

3.4. Depth Weighting IOPs

Depth-weighted contributions of IOPs to water-leaving radiance were derived after
Zaneveld et al. [69] using a 2-stream, first derivative approximation. The approach finds the IOP for
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a conceptual homogeneous ocean that reproduces the water-leaving radiance observed in a specific
stratified ocean case. The remote sensing depth weighting for generic IOP X is:

〈X〉 =
∫ z=∞

z=0
X f (z)dz, where f (z) =

d
dz

exp
[
−2

∫ z=∞

z=0
K(z)dz

]
. (27)

The exponential term can also be found in Gordon and Clark [70], where it is mentioned the
2K(z) term should actually be Ku + Kd, but approximating with Kd alone was not expected to lead to
appreciable errors. Several approximations of Kd in terms of IOPs are available from the literature
(e.g., [71,72]). The approximation by Lee et al. [73] for averaged Kd within the euphotic zone is used
here and conveniently represented in terms of a, bb and above water solar zenith θs

′:

Kd =
(
1 + 0.005θs

′)a + 4.18
(

1− 0.52e−10.8a
)

bb. (28)

For evaluating RT approximations, all IOP terms should ideally be weighted together. For
example, Zaneveld et al. [69] considered the simple R ∝ bb/a approximation and demonstrated that
<bb>/<a> was not equivalent to <bb/a> for an IOP stratified ocean. However, bb and a are considered
independently in the model here and an ultimate objective is to invert the approximation to derive bb
and a independently, so each IOP was individually depth weighted. For all stations sampled in the
validation data set, the difference between surface bb and depth weighted bb was <1%; with a, this was
also the case for most stations, but reached a difference of 5% for one station sampled.

3.5. Metrics for Error Assessment

Mean absolute percent error (MAPE), %δabs, is a commonly used metric in assessing performance
in rrs match ups:

%δabs = 100 ∗ δabs
y

, δabs =
∑n

i=1|yi − ŷi|
n

. (29)

The MAPE metric takes into account the absolute magnitude of the residuals, giving them equal
weight. Other commonly used metrics include root mean square error (RMSE), a measure of accuracy
and potential forecasting errors in simulating rrs when the errors may be assumed to be unbiased and
normally distributed [74]. RMSE gives greater weight to larger errors than δabs. Since bias errors are
often expected to be more significant than random, normally distributed errors in simulations, %δabs is
expected to be the most appropriate metric to assess match ups [29]. Other common metrics (e.g., [75])
are shown in the following plots as appropriate. Also see Werdell et al. [13] for a detailed discussion of
performance metrics.

4. Results

4.1. Developing an Expression for the fL Term

Dynamics of fL were explored in the synthetic data set. As found by Hoge et al. [76], dependencies
on wavelength and θs

′ were most important, and an average spectral shape fL,ave(λ) scaled to solar
zenith according to sin(θs’) was ultimately found to be most representative (Figure 2):

fL
(
θ′s, λ

)
= fL,ave(λ)

[
0.05959 sin

(
θs
′)+ 0.9728

]
. (30)

Function fL,ave(λ) is provided in Appendix A, Table A3. Equation (30) was developed by
minimizing residual errors between results from full radiative transfer and the ZTT model for each
wavelength and each solar zenith angle for the full synthetic data set. Spectral shapes for fL were
relatively consistent in the results, so the term fL,ave(λ) was derived from an average for these results
after spectral normalization. The scaling factor in brackets was a suitable function to minimize errors
with respect to solar zenith angle. Only nadir viewing was again considered in the simulations for
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fL, and we again make the assumption from Section 2.1 that fL for other viewing angles that define a
specific in-water scattering angle ψ can be approximated by fL observed at the nadir viewing geometry
with equivalent ψ. The potential caveats mentioned in Section 2.1 apply here as well. Restating
Equation (30) in terms of ψ, the following is obtained:

fL(ψ, λ) = fL,ave(λ)[0.07762 sin(ψ) + 1.0405]. (31)

Similarities between fL,ave(λ) and a typical ocean absorption spectrum are noted (Figure 2),
resulting from the effects of multiple scattering, where higher relative scattering (lower relative
absorption) promotes a radiance field closer to that which would result from isotropic scattering, i.e.,
where fL approaches unity.

1 
 

 
 

Figure 1 

 
 

Figure 2 Figure 2. Spectral dependency of the fL shape function at different θs’. Thin lines are solved fL functions
for each θs

′ for the synthetic data set and stars are from the model approximation with constant shape
described by fL,ave(λ) in Equation (30).

Figure 3A shows results deriving rrs using the ZTT model for the synthetic data set, applying
the approximation from Equation (31) for fL and using all synthetic data IOPs as input. This match
up is, thus, effectively assessing combined errors in the ZTT model from the approximations of fL, fb,
KLu, and µd. We note fL was specifically optimized to this data set, so in this respect Figure 3A shows
what may be considered a best-case matchup. MAPE %δabs for the full data set was relatively small at
2.68%. The largest errors were observed in three rrs spectra, with the model showing overestimation
bias centered around 570 nm. These spectra were associated with the highest [Chl] modeled in the
data set and lowest b̃bp.
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Figure 3. rrs derived from the ZTT model with the synthetic data set compared to rrs simulated
using Hydrolight (HL): (A) fL optimized spectrally (i.e., Equation (31) for the synthetic data set with
Fournier-Forand phase functions individually determined for each [Chl]; (B) fL optimized spectrally
for the synthetic data set with constant Pbb,ST(ψ) (see text); and (C) fL set to 1.05 with constant Pbb,ST(ψ).
Colors represent wavelengths, from 400 to 700 nm with gray used for 350 < λ < 400 nm and 700 < λ <
800 nm.
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4.2. Assessing Assumption of Constant βp(ψ)/bbp

Sullivan and Twardowski [26] found a high degree of consistency in the shape of the particulate
VSF in the backward direction, i.e., βp(ψ)/bbp, for a large data set covering a wide dynamic range in
bulk particle composition. Deviations from this relationship were no more than 5% through the entire
backward angular range. While it is well known the phase function shape over the full angular range
varies substantially (e.g., [37,41,45,77]), only the shape in the backward direction that is important for
remote sensing and the ZTT model is considered here.

If we assume βp(ψ)/bbp is a constant shape Pbb,ST(ψ) after Sullivan and Twardowski [26] in
the ZTT model, replacing Pbb,FF(ψ,b̃bp) from the synthetic data set, errors increase by only ~0.3%
(Figure 3B). We assume Pbb,ST(ψ) is constant spectrally after [41] and others. This result is significant, as
it demonstrates the potential for eliminating one of the key unknowns in the ZTT model. We note that
an averaged Fournier-Forand phase function in the backward direction could be used in the model,
which would enhance the analytical character of the model, but the Sullivan and Twardowski [26]
averaged phase function, derived from extensive measurements in a wide range of water types, may be
more representative of the natural environment. This is assessed further in the next section. Figure 3C
shows results of setting fL to a constant 1.05 after [28] and using a constant Pbb,ST(ψ). MAPE increases
significantly to 5.85%, showing the importance of using the fL model in the ZTT. Each of the three
distinct data groupings along the 1:1 relationship are associated with the individual solar zeniths that
were used, i.e., 10, 30, and 60◦, highlighting the influence of the fL model in removing the effects of
solar zenith. All ZTT model runs hereafter use the fL model from Equation (31). The constant backward
phase function Pbb,ST(ψ) is used unless another phase function is specified.

4.3. Assessment with High Quality Validation Data

Figure 4A shows results for the ZTT model, with inputs of constant Pbb,ST(ψ) and direct
measurements of apg, bbp, and b̃bp, compared to measured rrs for the validation data set [29]. MAPE
%δabs was 16% for all λ (summarized in Table 1; spectral %δabs provided in Table 2). Interestingly, this
result is slightly more favorable than rrs computed with the full radiative transfer (i.e., Hydrolight)
using measured phase functions, where %δabs was 17% for the same data (as reported in Tonizzo
et al. [29]). Based on closure analyses for these data [29], this 17% error represented the aggregate
inherent error from all sources within the data and computations, i.e., from the IOP and radiometric
measurements, as well as any errors from the assumptions within the Hydrolight RT code. For the
ZTT model evaluated using measured phase functions instead of the constant Pbb,ST(ψ), i.e., the same
approach followed with the full RT computations, %δabs was also 17% (Table 1). The different backward
phase functions applied in the ZTT model are shown in Figure 5. Measured backward phase functions
showed more variability at individual angles than the average Pbb,ST(ψ) derived from a large data set
of diverse Case 1 and Case 2 water types, likely the result of small scale hydrosol patchiness along
the different light paths for individual measurements at each angle. This observation is addressed
further in Section 5. Moreover, the strong agreement in absolute error between full radiative transfer
simulations and the ZTT analytical approximation for this diverse data set is encouraging.

Excluding the effects of water Raman from the ZTT model increased absolute error by 3%,
demonstrating Raman had a significant effect, especially >580 nm (results not shown).

Figure 4B shows ZTT model performance with a further constraint, setting b̃bp constant at 0.006, so
the only IOP inputs were measured apg and bbp. With respect to inversion, this approach has the same
unknowns, i.e., apg and bbp, as current algorithms based on the simple first order approximation [16].
Resulting MAPE %δabs was 17%, comparable to full RT computations. ZTT runs with other fixed b̃bp

are shown in Table 1. Some influence from b̃bp is apparent, which has not been fully appreciated in
previous models based on the first order approximation of rrs to bb/a.
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ZTT model runs with Fournier-Forand phase functions for the particulate component, computed
from measured b̃bp following the method of [67], resulted in %δabs of 19%, 3% higher than results using
the constant Pbb,ST(ψ) (Table 1).

 

3 

  

  
 

Figure 4  

 
 

Figure 5 

Figure 4. rrs computed from (A) ZTT, (B) ZTT with b̃bp fixed at 0.006, (C) M02, and (D) L11 models,
compared to measured rrs in the high quality validation data set from Tonizzo et al. [29]. Note L11 does
not account for Raman scattering. Chlorophyll input for M02 was derived from spectral absorption
using the Nardelli and Twardowski [78] line height algorithm. MAPE %δabs was 16%, 17%, 21%, and
21%, in A through D, respectively.

Table 1. Summary MAPE %δabs results for simulated or calculated rrs vs measured rrs for all λ.

Approach βp(ψ)/bbp Input
~
bbp Input

%δabs

SORTIE and OCVAL
(23 Stations) 1

NOMAD
(80 Stations)

Full RT 2 directly measured N/A 17 nd 4

Full RT 2 Fournier-Forand 3 measured 20 nd 4

ZTT directly measured measured 17 nd 4

ZTT Fournier-Forand 3 measured 19 25
ZTT Pbb,ST(ψ) measured 16 20
ZTT Pbb,ST(ψ) 0.005 18 22
ZTT Pbb,ST(ψ) 0.006 17 23
ZTT Pbb,ST(ψ) 0.008 18 25
ZTT Pbb,ST(ψ) 0.010 19 27
ZTT Pbb,ST(ψ) 0.015 22 29

ZTT

Large and small population
phase functions with b̃bp of

0.19% and 1.4%, blended
according to [Chl] 5

measured 23 26

Morel et al. [7]
(M02)

Large and small population
phase functions with b̃bp of

0.19% and 1.4%, blended
according to [Chl] 5

N/A 21 25

Lee et al. [11] (L11)
Blend of Petzold6 average and

1% b̃bp Fournier-Forand 3 N/A 21 26

1 see [29]; 2 Hydrolight; 3 derived from b̃bp according to [67]; 4 not determined; 5 algorithm of [7]; 6 [79].

Match ups in rrs were also assessed applying the M02 model, the current standard in BRDF
corrections for ocean color remote imagery (Figure 4C). The proportionality between rrs and bb/a is
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defined as f /Q, which is a function of viewing geometry, wind speed, and [Chl]. [Chl] can be estimated
from an empirical rrs band ratio algorithm. For the assessment here, [Chl] input was either quantified
directly from discrete samples or derived from spectral particulate absorption measurements using
the line height method with specific absorption ap*(676) of 0.0108 m2 mg−1 after [78]. Note that
bootstrapping exercises have shown relatively large errors in this estimated [Chl], i.e., up to +/−50%,
affect %δabs in match ups by typically no more than 1%. The other inputs were measured apg and bbp.
Match up %δabs for M02 was 21% for the data set from [29] (Table 1). Notably, M02 performed well in
the blue spectral region (Table 2).

To derive phase functions, Morel et al. [7] used randomly-oriented spheroidal particles, computing
the scattering phase function with the T-matrix method. Because the computations for spheroids were
lengthy, a single refractive index np of 1.06 was considered with sizes ranging from 0.02 to 14 µm.
A Junge-type particle size distribution was assumed, i.e., a power law model, with exponents of 3.1
and 4.2 representing two end-member populations. Particulate scattering phase functions were then
calculated from (see Figure 5):

Pp(ψ) = αs([Chl])Pps(ψ) + αl([Chl])Ppl(ψ),

with αs + αl = 1, and αs([Chl]) = 0.855
[
0.5− 0.25 log10([Chl])

]
.

If the Morel et al. [7] approach for deriving the phase function is used as input into the ZTT model,
replacing the constant shape Pbb,ST(ψ), MAPE %δabs increases significantly from 16% to 23% (Table 1).

Finally, match ups in rrs were assessed in a recently published BRDF model from Lee et al. ([11];
called L11 hereafter) that, like M02, developed a LUT based on RT simulations with a [Chl]-referenced
synthetic IOP data set (Figure 4D; Tables 1 and 2). L11 uses a quadratic form of bb/(a + bb) split into
particulate and molecular seawater components with each term scaled by a G coefficient, with solutions
provided in LUTs. In the synthetic data set, Lee et al. [11] used an averaged Petzold phase function
and Fournier-Forand phase function assuming b̃bp = 1% as particulate phase function endmembers.
L11 however does not include water Raman effects. Like M02, match up MAPE %δabs was also 21% for
all λ.
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Figure 5 Figure 5. Phase functions in the backward direction used to assess the ZTT model. “ST2009” is Pbb,ST(ψ)
from [26] with the assumption Pbb,ST(ψ > 170◦) = Pbb,ST(170◦); “Morel” is from Morel et al. [7] with
endmember populations dominated by small and large particles also shown; “Measured” were directly
measured; and “FF” are Fournier-Forand phase functions Pbb,FF(ψ,b̃bp) derived from measured b̃bp
following [67].
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4.4. Assessment with Global NOMAD Data Set

Figure 6A shows results for the ZTT model applied to a subset of 80 measurements from the
NASA NOMAD global data set. IOPs were averaged over the first optical depth. Match up MAPE
%δabs of 20% was observed for this global data set, comparing favorably to the error of 16% observed
with the high quality data set from Tonizzo et al. [29] (Table 1; see Table 2 for spectral breakdown). This
is especially true considering the different IOP and rrs processing approaches (e.g., there are several
scattering error correction options for in-water absorption measurements) used for these data sets. If
b̃bp is constrained to 0.006, MAPE %δabs increases to 23% (Figure 6B). Results from ZTT runs for other
fixed b̃bp are shown in Table 1, where the dependency of performance on b̃bp is again apparent.

If the Morel et al. [7] approach for deriving the phase function from [Chl] is used as input into the
ZTT model, %δabs increased from 20% to 26% for the NOMAD data (Table 1). If measured b̃bp are used
to derive Pbb,FF(ψ,b̃bp) following [67], %δabs increased to 25% for the ZTT model.

Table 2. Summary MAPE %δabs results for calculated rrs vs measured rrs for each λ, for SORTIE and
OCVAL data sets (see Figure 4) and NOMAD data (see Figure 6).

Approach βp (ψ)/bbp Input
~
bbp Input λ (nm)

%δabs

SORTIE and
OCVAL

(23 Stations)

NOMAD
(80 Stations)

ZTT Pbb,ST(ψ) measured

412 (410) 20 17
440 16 20

488 (490) 16 20
510 19 19
532 13 -
555 14 23
650 13 -
665 - 63

ZTT Pbb,ST(ψ) 0.006

412 (410) 20 20
440 16 23

488 (490) 19 23
510 13 25
532 14 -
555 13 26
650 22 -
665 - 63

Morel et al. [7]
(M02)

Large and small population phase
functions with b̃bp of 0.19% and

1.4%, blended according to [Chl]
N/A

412 (410) 17 22
440 14 25

488 (490) 16 25
510 18 26
532 22 -
555 38 21
650 17 -
665 - 71

Lee et al. [11]
(L11)

Blend of Petzold average and 1%
b̃bp Fournier-Forand N/A

412 (410) 22 22
440 21 26

488 (490) 24 27
510 21 27
532 20 -
555 19 24
650 26 -
665 - 66

Match ups are also shown for implementation of the full M02 and L11 models with the NOMAD
data set (Figure 6C,D). MAPE statistics are summarized in Tables 1 and 2. There are several possibilities
for the systematically lower measured rrs in the red spectral region for these data: (1) Suboptimal
surface extrapolation of radiances due to water Raman effects [80,81], (2) residual scattering errors in
reported in-water absorption measurements that may promote a bias to higher values of modeled rrs

(e.g., [29,49]), and/or (3) suboptimal corrections for sensor self-shading, which can be strong in clear
water at longer wavelengths due to water absorption [82,83].
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Figure 6. As in Figure 4, but for the NASA NOMAD data set containing a, bb, rrs, and [Chl]. MAPE
%δabs were 20%, 23%, 25%, and 26% in (A–D), respectively.

5. Discussion

The ZTT analytical model for remote sensing reflectance is based on the restatement of the RT
equation by Zaneveld [27,28] with the following refinements: (1) Full bidirectionality was retained in
the final model (no assumption of nadir viewing), (2) the assumption of asymptotic diffuse attenuation
for upwelling radiances at the surface was analytically described, (3) the entire model was formulated
in terms of bb and a to enable inversion, (4) the VSF was explicitly included with βp(ψ)/bbp set to
a constant shape defined by Pbb,ST(ψ) [26], which showed the strongest performance of any phase
function, including measured phase functions in disparate, diverse data sets, (5) water Raman effects
were added, and (6) for rrs, an analytical model for µd was developed that included dependency on
atmospheric visibility. IOP inputs to the ZTT model are bbp, apg, βp(ψ)/bbp, and b̃bp. Moreover, the ZTT
model enables systematic assessment of the effect of IOPs on the BRDF for the first time.

ZTT showed strong performance in match ups with field data sets spanning a wide range of water
types. In terms of MAPE, the model with constant phase function shape Pbb,ST(ψ) performed as well
as full RT computations. Stronger performance was observed for these available data sets relative to
current state-of-the-art LUT-configured models based on the first order approximation between rrs and
bb/a or bb/(a + bb), i.e., M02 and L11.

MAPE for the ZTT model was slightly better using Pbb,ST(ψ) (%δabs of 16%) when compared to
using directly measured backward phase functions for the validation data set (where %δabs was 17%).
It may be argued, under certain conditions, the broad average Pbb,ST(ψ) may be more accurate than an
isolated measurement because specific bias errors in any single VSF measurement at an individual
angle may be avoided. This of course assumes such biases may be larger than the natural variability in
the shape of the backward phase function. Another explanation is error assessments for the validation
data set were made over a relatively few number of stations, 23. To roughly estimate uncertainty in
this error metric, single stations were sequentially left out of the error determination for ZTT using
Pbb,ST(ψ), which gave a total range in %δabs of 14.8 to 16.8% with standard deviation of 0.6%. A ~1%
difference in error may thus not be particularly meaningful.
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The ZTT model is fully analytical in the sense it is described entirely by equations and “almost
fully analytical” with respect to the inclusion of empiricism. Empiricism comes from optimizing the fL
parameter to our synthetic data set based on [Chl]-based bio-optical models, with MAPE improving by
a significant ~3% compared to setting fL equal to a spectrally constant 1.05. Using the constant Pbb,ST(ψ)
backward phase function shape also introduced empiricism. If sample-specific Fournier-Forand
analytical phase functions, based on b̃bp were used, errors in the validation data set increased by 3–5%
(Table 1).

Particulate phase function shapes from Morel et al. [7] were modeled using the T-matrix approach,
assuming homogeneous spheroidal shapes with constant np of 1.06. Although the endmember phase
function shapes were not consistent with Pbb,ST(ψ) and Pbb,FF(ψ,b̃bp) shapes, many of the blended
phase functions were. If Pbb,ST(ψ) may be considered widely representative, increasing errors may be
expected in applying the M02 model to the lowest and highest Chl conditions where the endmember
phase functions would fully manifest. Phase functions in the Chl range 1 to 10 mg m−3 were in closest
agreement to Pbb,ST(ψ). Applying phase functions derived using the Morel et al. [7] approach in the
ZTT model increased errors relative to using a constant Pbb,ST(ψ) by a significant 7% for the validation
data set of [29] (from 16% to 23%) (Table 1). This error was also larger than the 21% error observed for
M02 (addressed further below).

Since L11 used a Fournier-Forand phase function where b̃bp = 1% and the average Petzold phase
function as endmembers [shown in 26, their Figure 3], many blended shapes from L11 should be
relatively similar in the backward to the Pbb,ST(ψ) used in ZTT (although the Petzold shape does exhibit
systematic discrepancies). This particular Pbb,FF with b̃bp = 1% is actually a very close match to Pbb,ST.
L11 was developed through least-squares fitting with respect to Hydrolight results, so all the blended
phase functions are weighted in the results.

A “typical marine atmosphere” and associated incident sky radiance distribution were used in
the Hydrolight RT computations for the synthetic data set, the effects of which enter the ZTT model
through spectral optimization of the upwelling radiance shape factor fL (Section 4.1). The parameters
ΨKLu and µ∞ were also solved with Hydrolight RT simulations assuming the same atmosphere. The
M02 and L11 models also assumed a single “typical marine atmosphere” in their simulations using
Hydrolight based on Reference [58], so this aspect of the models should be consistent. The µd term in
the ZTT model has added flexibility in accommodating varying atmospheric visibility (closely related
to AOT; [58]) inasmuch as V is an explicit term for µd.

One question arising from this work is, if the phase function shape Pbb,ST may indeed be
considered highly representative, how would a LUT-based model following the approach of M02 but
using Pbb,ST perform? To test this, we developed a LUT based on the first order rrs proportionality to
bb/a, using the synthetic data set described in Section 3.1. The particle phase function was constant,
consisting of Pbb,ST in the backward and a Fournier-Forand phase function with b̃bp = 0.006 for the
forward direction (this had the best performance for the ZTT model in the validation data set [29],
with MAPE = 17%). The LUT approach resulted in a MAPE of 22% for the validation data set and
26% for the NOMAD data. This performance is very close to M02 (21% and 25%, respectively) and
L11 (21% and 26%, respectively). An insight we can take from this analysis is that a component, such
as phase function shape in the different models cannot be considered in a vacuum, i.e., each model
has a large set of assumptions that ultimately influence final performance. Furthermore, although
not always explicitly stated in the literature, field validation efforts are likely to have had a role in
updating assumptions through the course of development and testing of some models to ensure the
model was well aligned with available data. For example, in our case, the fL expression (Section 4.1)
was developed from an assumed synthetic data set and the b̃bp value of 0.006 was recommended as it
ultimately provided the best results with the field validation data sets available.

Recent work by Zhang et al. [84] has suggested the possibility of substantial variability in phase
function shape in the backward direction, including up to a 40% increase for βp(ψ)/bbp in the near
backward relative to βp(120◦)/bbp. These results are in stark contrast to the comprehensive study
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of [26] and other published phase functions in the literature (e.g., [35,85]). Other recent works showing
increases in the VSF at ψ > 150◦ [86–88] were made in enclosed cuvettes and did not include any
correction for internal reflections (e.g., [89]), which are typically a difficult problem in laboratory VSF
devices, since the scattered signal in the backward direction is orders of magnitude smaller than the
forward. The Zhang et al. [84] results are also inconsistent with the phase functions used in previous
BRDF models, such as M02, which have been shown to have satisfactory performance in validation
efforts [17,18], even in many Case II coastal waters [19,90]. The recent theoretical rrs modeling study of
Xiong et al. [91] based on the phase function shapes presented in [84], where up to 50% disagreement
with L11 was observed, consequently appear unrealistic.

Calibration and possible bias errors in the VSF device MASCOT used in [26] to derive
Pbb,ST(ψ) have been evaluated in detail [36,48]. The MASCOT is an open path, in situ device with
17 independently calibrated detectors resolving the VSF from 10◦ to 170◦ in 10◦ increments. There
are two calibration coefficients for each channel, a dark offset (obtained with the source occluded)
and a scaling factor to convert digital counts to VSF units m−1 sr−1. Moreover, the observation of a
remarkably consistent shape in the backward phase function for VSFs spanning more than four orders
of magnitude in dynamic range cannot be explained by any known bias error in these coefficients.
In fact this observation argues against any systematic bias, as consistency in phase function shapes
during serial particle suspension experiments is a useful method to assess the accuracy of calibrations.

Recently, He et al. [20] developed a BRDF model also based on Zaneveld [28] but it differs from
our implementation is several ways: (1) only the BRDF aspect was considered; (2) one wavelength
was considered; (3) the formulation was in terms of a LUT (similar to M02 and L11) for aggregated
terms; (4) widely varying backward phase function shapes were assumed after [84] described above;
(5) the µd model depended only on “typical average” sky conditions; and (6) water Raman effects were
excluded. Direct comparisons were thus not possible here.

5.1. Assessing Residual Bias in the Model

The assumption of single scattering in the simplification of fb (Section 2, Equation (2)) is not
expected to invoke significant errors at turbidity levels found for most oceanic and coastal waters [5,13].
As shown by Gordon [23], secondary scattering events for light redirected toward the backward
direction, i.e., downwelling radiance scattered into the upwelling radiance field, has a negligible effect
on the shape of the upwelling radiance distribution because the vast majority of these scattering events
are in the near forward direction. The full effects of multiple scattering were included in relationships
for other terms in the model as they were determined using full RT modeling.

MASCOT VSF measurements used to determine Pbb,ST(ψ) only extended to 170◦, so the application
of this function for ψ > 170◦ in the model is uncertain. There were no ψ > 170◦ in the data sets tested
here, although such scattering angles may be expected for some viewing geometries for the PACE
imager (Figure 1). There is a need for a better understanding of phase function shapes for ψ > 170◦ and
this extends to other applications, such as lidar [92].

Only nadir viewing was considered for the analytical relationships for KLu and fL and we suggest
these relationships may be transferable to other viewing geometries as long as ψ is preserved. This
assumption has been verified in Hydrolight simulations to have small errors for representative cases,
but cannot be assessed with the field data sets available here, which all have nadir viewing. This is
being considered in future work, and, moreover, emphasizes the need for routine measurements of full
upwelling radiance distributions in ocean color validation work as validation only with nadir radiance
Lu(θs,θv = π) neglects the BRDF effects that are essential to any algorithm.

The optimization of fL was based on the [Chl]-based synthetic data set. A significant deviation
from the bio-optical model assumptions of that synthetic data set could lead to a discrepancy in match
ups, however it worth pointing out (1) fL has a relatively weak dependency on IOPs except for the VSF
shape in the backward direction (which is effectively accounted for in the solar zenith dependency in
Equation (30)), and (2) other state-of-the-art models (i.e., M02 and L11) are constructed entirely around
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such synthetic data sets. A benefit of the ZTT model is that an analytical relationship for a specific
term of the model may be replaced later if a more optimal approach is demonstrated.

As shown in Zaneveld [27,28], Lu normalized to Eod is more closely linked to the RT Equation
than Lu/Ed, where an additional µd term must be added to the model (Section 2.6). Adding this term
is expected to increase uncertainty in the RT model and inversion. Scalar irradiance has the additional
advantage of being less dependent on solar zenith angle and sky radiance distributions. As discussed in
Section 2.6, sensor technology is available to measure Eod and inclusion of these measurements in field
efforts focused on algorithm development and validation should be encouraged. When the µd term
must be included in association with Ed measurements, AOT is also a useful validation measurement
that may be made in the field [93] and used to derive visibility V [58] for input in Equation (16) or full
RT computations.

Lastly, potential uncertainties in the full RT computations must be considered, as this was used to
parameterize several ZTT terms. Polarization is not considered in the ZTT model or in Hydrolight,
which is likely important [29,33]. There is a need in the research community for commercially
available RT code with a focus on the ocean that includes full polarization, along with concomitant
measurements of polarized radiance in the field. Neither the Hydrolight simulations or ZTT model
included inelastic effects from DOM fluorescence, which could lead to bias errors as high as about 10%
in the mid-visible [33]. Another potential source of uncertainty is the water Raman estimation [60],
where bias errors as high as 10% can be typical.

5.2. Suitability for Inversion

The ZTT model can be used to directly solve for bb/a using least-squares minimization of a
rrs measurement at any wavelength. This is shown in Figure 7 for the validation data set from
Tonizzo et al. [29], assuming a constant b̃bp of 0.006. The typical value for V of 15 km was assumed.
MAPE %δabs in the inversion was 17%, which matches results from full RT simulations of closure in
the forward direction. Residual errors thus appear almost entirely comprised of the inherent errors of
the data set arising from IOP and radiometric measurements [29]. With respect to the use of Pbb,ST(ψ),
another potential approach to estimating VSF shape as it relates to the upcoming PACE mission is using
planned multi- and hyper-angular polarimetry data from the Hyper-Angular Rainbow Polarimeter-2
(HARP2; contributed by University of Maryland, Baltimore County) and the Spectrometer for Planetary
Exploration—one (SPEXone; contributed by the Netherlands Institute for Space Research) [94]. If
information on the backward shape of the VSF could be gleaned with sufficient accuracy from angular
polarimetry data (only a few angles would be necessary), this could be used directly in the ZTT model.

The ZTT model described here only addresses in-water RT, although the current approach to
normalize water-leaving radiances measured by a satellite imager is expected to directly apply (see [15],
Sections 3.1 and 6]). The BRDF is built-in to the Zaneveld model so an additional step to conceptually
shift the geometry to a normalized geometry standard would not be required for IOP inversion. A
normalized geometry (to nadir viewing or other geometry) could still be applied to intercompare
reflectances in images. Translation to water-leaving radiance by accounting for all the reflection and
refraction effects through the air-sea interface i.e.,

1 
 

 R  (θs,θv) [6,15], can still be applied. Similarly, the
effects of varying Earth-Sun distance and atmospheric attenuation can be removed following the
current approach. Moreover, we would expect a practical implementation of this analytical model to
have similar computational requirements as the current M02 LUT-based approach.
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Figure 7. Comparing measured bb/a to results of inverting ZTT using least-squares minimization
individually at each wavelength. Water Raman effects were removed before applying the ZTT model.

The ZTT model shows b̃bp exerts some influence on rrs (Table 1) and the potential to invert rrs for
b̃bp is also being investigated. The parameter b̃bp has not historically been associated with rrs and could
provide new insights into particle composition in natural waters (e.g., [41]). Even a retrieval of b̃bp
with relatively large errors could be useful for many research applications.

The ZTT model is fully spectral and can be applied over the full anticipated ocean color
hyperspectral wavelength range for the future PACE mission (350–800 nm). A primary goal in model
development was parameterization entirely in terms of a and bb. Inversion approaches, such as the
General IOP (GIOP) inversion using a least-squares minimization to solve for IOP subcomponents [16]
may consequently be readily applied. Spectral bbp and apg can be solved using assumptions for
subcomponent IOP spectra through least squares minimization of Equation (18). This is the step
where empiricism prominently enters the problem as spectral shapes for IOP subcomponents must be
assumed. This is being examined in ongoing work. Further investigation is needed to determine IOP
subcomponent spectra with a high spectral resolution for error minimization over this full spectral
range in inversion, which is currently being assessed by the PACE Science Team [13,95]. Hyperspectral
(i.e., 5 nm) resolution for PACE is expected to improve fidelity in inverting for subcomponents (and
potentially b̃bp) as there will be higher degrees of freedom than for multi-spectral imagers [96,97].

Code for the ZTT model in MATLAB is available at ioccg.org.
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Appendix A

Table A1. Notation.

Symbol Description Units

a total absorption coefficient m−1

ax absorption coefficient, where subscript x = w, p, d, ph, g, pg, pico, and micro specifies
water, particulate, non-phytoplankton particulate, phytoplankton, dissolved,

particulate plus dissolved, picoplankton, and microplankton

m−1

a* specific absorption coefficient m2 mg−1

b total scattering coefficient m−1

bp particulate scattering coefficient m−1

bf forward scattering coefficient m−1

bbx backscattering coefficient, where subscript x = w and p specifies water and particulate m−1

b̃b backscattering ratio -
b̃bp particulate backscattering ratio -
β total volume scattering function (VSF) m−1 sr−1

βx volume scattering function (VSF), where subscript x = w and p specifies seawater and
particulate

m−1 sr−1

c total attenuation coefficient m−1

[Chl] chlorophyll concentration mg m−3

δx error, where subscript x = abs and rel specifies absolute and relative -
Ex planar irradiance, where subscript x = d, ds, and dd specifies downwelling, diffuse

downwelling, and direct downwelling
W m−2 nm−1

Eod downwelling scalar irradiance W m−2 nm−1

f model coefficient for relating irradiance reflectance to bb/a -
fb, fL radiance shape factors -

Φ azimuth angle relative to solar plane ◦, rad
G model coefficient for above-surface remote sensing reflectance sr−1

ψ scattering angle ◦, rad
H fraction of diffuse downwelling light (Eds/Ed) -

ηbb fraction of total backscattering contributed by bbw -
Kx diffuse attenuation coefficient, where subscript x = Lu, u, d, and ∞ specifies upwelling

radiance, upwelling irradiance, downwelling irradiance, and asymptotic
m−1

Lu upwelling radiance W m−2 nm−1 sr−1

Lw water-leaving radiance W m−2 nm−1 sr−1

λ Wavelength nm
M+

d Atmospheric component of µd -
M∗d IOP component of µd -
µ∞ average cosine of the asymptotic light field -
µd average cosine of the downwelling light field -
µw cosine of the in-water solar zenith -
np particulate refractive index, relative to water -
P phase function (β/b) sr−1

Px particulate phase function (βp/bp), where subscript x = p, ps, and pl specifies
particulate, particulate small-dominant, and particulate large-dominant

sr−1

Pbb,x backward particulate phase function (βp/bbp), where subscript x = ST and FF specifies
functions from References [26,44]

sr−1

Q ratio of upwelling irradiance to nadir radiance sr
rrs remote sensing reflectance, the ratio of upwelling subsurface radiance to downwelling

irradiance
sr−1

Rrs remote sensing reflectance, the ratio of water-leaving radiance to downwelling
irradiance

sr−1

Rd scaling factor for ad -
Rg scaling factor for ag -
Sf mixing factor for aph -
θx zenith angle, where x = s and v specifies solar and viewing ◦, rad
θs’ above water solar zenith angle ◦, rad
v exponent of empirical spectral bp function -
V atmospheric horizontal visibility km
ω albedo (b/c) -

ΨKLu ratio of diffuse upwelling attenuation coefficient to asymptotic attenuation coefficient -
z depth m
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Table A2. Equation Coefficients. Full 15 decimal scaled fixed point precision in MATLAB is provided
to ensure accuracy in calculations.

Equation Symbol Value

Equation (3)

f1 −5.98948784303628 × 10−8

f2 5.95904039870752 × 10−6

f3 −6.975283717755 × 10−4

f4 2.07111856771792 × 10−3

f5 2.69046922858858 × 10−2

Equation (4)

fA1 −3.79435531537314 × 10−7

fA2 2.42117623125973 × 10−4

fA3 −5.76056692150838 × 10−2

fA4 6.04944577004764
fA5 −236.166389774491

Equation (16)

e1 −3.37021020153209 × 10−12

e2 2.25040435584125 × 10−10

e3 −2.25897880448836 × 10−9

e4 4.98402568695743 × 10−10

e5 −3.67440351688922 × 10−8

e6 4.02677827509591 × 10−7

e7 −2.52448256032736 × 10−8

e8 2.09631870150827 × 10−6

e9 −2.43068373614361 × 10−5

e10 5.98295717192273 × 10−7

e11 −5.36922068813161 × 10−5

e12 6.84105803724285 × 10−4

e13 −5.34168078899319 × 10−6

e14 4.95201118318049 × 10−4

e15 −6.09578731164684 × 10−3

e16 5.32097604773773 × 10−4

e17 −2.91276619216202 × 10−2

e18 0.589340234481004

Equation (17)

m∗d,1 0.00611094400155735
m∗d,2 −0.00104841847722295
m∗d,3 0.0498255758922950
m∗d,4 −0.0117672820980625
m∗d,5 0.128019358635212
m∗d,6 −0.0429896134897322
m∗d,7 0.103528931695373
m∗d,8 0.950921179229178

Table A3. fL,ave(λ) function, see Equations (30) and (31).

Wavelength Value Wavelength Value Wavelength Value

350 0.990 505 1.018 655 0.992
355 0.990 510 1.013 660 0.993
360 0.992 515 1.009 665 0.998
365 0.992 520 1.005 670 1.000
370 0.992 525 1.002 675 1.001
375 0.995 530 0.999 680 1.000
380 0.997 535 0.996 685 0.995
385 0.997 540 0.995 690 0.994
390 0.998 545 0.992 695 0.993
395 1.000 550 0.989 700 0.994
400 1.000 555 0.987 705 0.994
405 1.000 560 0.985 710 0.996
410 1.002 565 0.982 715 0.997
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Table A3. Cont.

Wavelength Value Wavelength Value Wavelength Value

415 1.003 570 0.981 720 0.999
420 1.006 575 0.982 725 1.000
425 1.008 580 0.983 730 1.000
430 1.010 585 0.984 735 1.000
435 1.013 590 0.986 740 0.999
440 1.016 595 0.987 745 0.999
445 1.020 600 0.988 750 0.999
450 1.023 605 0.988 755 0.999
455 1.024 610 0.989 760 0.999
460 1.025 615 0.989 765 0.999
465 1.025 620 0.989 770 0.999
470 1.026 625 0.990 775 1.000
475 1.026 630 0.990 780 1.000
480 1.026 635 0.990 785 1.001
485 1.026 640 0.990 790 1.002
490 1.026 645 0.990 795 1.002
495 1.024 650 0.990 800 1.002
500 1.022
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