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Abstract: Localization is a fundamental problem in Wireless Sensor Networks, as it provides useful
information regarding the detection of an event. There are different localization algorithms applied
in single-hop or multi-hop networks; in both cases their performance depends on several factors
involved in the evaluation scenario such as node density, the number of reference nodes and the
log-normal shadowing propagation model, determined by the path-loss exponent (η) and the noise
level (σdB) which impact on the accuracy and precision performance metrics of localization techniques.
In this paper, we present a statistical analysis based on the 2k factorial methodology to determine
the key factors affecting the performance metrics of localization techniques in a single-hop network
to concentrate on such parameters, thus reducing the amount of simulation time required. For this
proposal, MATLAB simulations are carried out in different scenarios, i.e., extreme values are used
for each of the factors of interest and the impact of the interaction among them in the performance
metrics is observed. The simulation results show that the path-loss exponent (η) and noise level (σdB)
factors have the greatest impact on the accuracy and precision metrics evaluated in this study. Based
on this statistical analysis, we recommend estimating the propagation model as close to reality as
possible to consider it in the design of new localization techniques and thus improve their accuracy
and precision metrics.
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1. Introduction

Wireless Sensor Networks (WSN) are relevant in the real world because they can determine
physical behaviors based on the collaborative work of many sensors [1]. There are several applications
for this kind of network, and they can be classified into two categories: monitoring and tracking [2].
There is also a taxonomy of the application domains [3]. The taxonomy includes military and
crime prevention [4], disaster prevention and reduction crime in the city [5], health care (Body Area
Networks) [6–8], industry and agriculture [9–11], urbanization [12] and environmental monitoring
applications [13–15].

The task of collecting data is well defined if the location of sensors is known [16]; localization
information is also useful for coverage estimation, deployment, routing, location service, target
tracking, and rescue [17,18]. A solution is to add GPS receivers, but it is expensive and inconvenient for
some application scenarios, such as indoors. Localization is one of the main problems in WSNs, since
location information is essential for the detection of an event. In the field of underwater environments,
localization is one of the most important technologies, since it plays a critical role in many applications.
Some applications in underwater environments where location is useful are: data collection, climate
change, aquatic animal life time and coral reef population variations, underwater exploration, natural
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disaster prevention (tornadoes, hurricanes, tsunamis, etc.), ecological applications (pollution, water
quality, environmental monitoring, etc.), assisted navigation, military surveillance, etc. The localization
problem in WSN is addressed with different approaches; nevertheless, the inherent characteristics
of a WSN, such as limited processing resources, storage, and power, inevitably make localization
an engineering challenge. In that sense, several proposals, including some novel solutions, have
been developed; in most cases, the evaluation of proposals is done through simulations since their
physical implementation involves a high cost and intensive work. The evaluation of all proposals is
based on common metrics related to the estimation error and the cost, (i.e., accuracy, precision, and
computational complexity [19,20]). The network’s performance can be influenced by the choice of key
factors when a localization scenario is simulated, for example, node density [21], and propagation
model, among others, and the simulation of all possible combinations can prove to be excessive.

The main purpose of this paper is to qualitatively determine the key factors affecting the accuracy
and precision performance metrics of localization techniques in some of the principal localization
algorithms in a single-hop network, to concentrate on such parameters, thus reducing the amount of
simulation time required. For this proposal, the 2k factorial design analysis methodology is used, and
MATLAB simulations are carried out in different scenarios, i.e., the extremes values are used for each
of the factors of interest and the impact of the interaction among them in the performance metrics is
observed. It is important to point out that there is a high degree of variability in some of the simulation
factors reported in the literature, and up to now no study has been done of the factors’ impact in the
performance of localization techniques or on the relations among them. In other words, the literature
reports many proposals to improve localization algorithms, but their design is not based on the factors
that have the greatest impact on performance metrics; they are only used to evaluate their algorithm.
Thus, the main contribution of this paper is to formally identify these factors to generate more precise
and accurate localization algorithms.

The remainder of the paper is organized as follows: Section 2 describes the classification of
localization techniques and some scenarios for evaluating localization algorithm performance in
real and simulated environments [19,22–26]; mention is also made of some examples of experiment
designs that use 2k factorial analysis [27–30]. Section 3 describes the 2k factorial methodology used.
Section 4 shows the results of the study factors’ impact on the localization algorithms’ performance
metrics. Next, the conclusions of this paper are presented: the main results, the paper’s contribution,
and proposed future lines of research. Finally, the references that sustain the validity of this paper
are presented.

2. Related Work

2.1. Classification of the Localization Techniques

Localization techniques are classified into two categories: range-free [31] and range-based [19].
The former use connectivity information from the network to estimate the distance between the Node
of Interest (NOI) and the Reference Nodes (RNs). This group includes techniques such as centroid;
Distance Vector-Hop (DV-Hop) [32]; Approximate Point In Triangle (APIT); circular, rectangular,
and hexagonal interaction, respectively; among others. Range-free localization techniques are more
inaccurate in localizing the NOI than range-based localization techniques, but they are less complex
in terms of computational cost [19]. Range-based techniques, for their part, need distance between
the NOI and the RNs to estimate the position of the NOI. The distance between the NOI and the RNs
can be calculated using the Received Signal Strength (RSS), Time of Arrival (ToA), Time Difference
of Arrival (TDoA) or Angle of Arrival (AoA) [19]. Some range-based localization techniques are
multilateration, Multidimensional-Scaling (MDS), hyperbolic and weighted hyperbolic positioning
algorithm, circular and weighted circular positioning algorithm, and Weighted Least-Squares (WLS)
multilateration [19].
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In [19,31] the range-free and range-based localization techniques are evaluated using three
performance metrics: Mean Squared Error (MSE), Cumulative Distribution Function (CDF), and
computational complexity. Christine L. and Michel B. Ref. [22], as in [23], use the Average Localization
Error (ALE) and the CDF to measure the performance of free-range localization techniques and [23]
also uses them in range-based techniques.

In multi-hop scenarios the DV-Hop, Improved DV-Hop (IDV-Hop) and Weighted DV-Hop
(WDV-Hop) algorithms are used to estimate the distance between the NOI and the RNs using the
number of hops between them [32]. The algorithms DV-Hop and its variations IDV-Hop and WDV-Hop
use the network connectivity information to estimate the average distance per hop. Once the average
distance per hop is obtained, the distance separating the NOI and the RNs is obtained to estimate
the position of the NOI. There are different localization techniques to estimate the position of the
NOI. In [33] the Least-Squares DV-Hop (LSDV-Hop) algorithm is used; this improves the accuracy
of the localization of the NOI by extracting a minimum-squares transformation vector between the
real and estimated position of the RNs, which are chosen at random. This method does not require
extra hardware to estimate the position of the NOI, and it is more suitable for networks with high
node densities and long scale. In [32] the hyperbolic and weighted hyperbolic algorithm is used to
estimate the position of the NOI; the weighted hyperbolic algorithm offers better performance than
the hyperbolic algorithm in terms of the accuracy of the position of the NOI, because this method
uses a covariance matrix, whose elements from the main diagonal depend on the estimated distance
between the NOI and the RNs. In [34] the meta-heuristic optimization algorithm is used based on
Particle Swarm Optimization (PSO) to estimate the position of the NOI through an iterative process
that minimizes one cost function. In [35] the PSO algorithm is also used with learning strategies; this
technique improves convergence speeds and the PSO algorithm’s search efficiency, thus solving the
problem of the local minimum of the PSO algorithm. In other multi-hop scenarios, ToA is used to
estimate the distance separating the NOI and the RNs [36], where the localization algorithms used
are the Vertex-Projection (VP) based on a pyramid-shaped structure; the VP with correction factor,
which diminishes the localization error; and the maximum-likelihood algorithm, which shows less
localization error than the VP algorithm with the correction factor for high noise levels.

Table 1 shows a classification of the localization techniques according to whether they are distance-
based or not, the performance metrics used, the number of hops between the NOI and the RNs, and the
simulation environments for which they were designed. Ref. [19] presents the performance evaluation
in terms of accuracy and precision measured by the MSE and the CDF, respectively, of range-free
localization techniques such as Centroid Localization (CL) [22], Weighted CL (WCL) [22], Relative
Weighted Localization (RWL) [22], Relative Exponential Weighted Localization (REWL) [22] and of
range-based techniques such as Hyperbolic positioning algorithm, Weighted Hyperbolic positioning
algorithm, circular algorithm and WLS multilateration [37], considering a one-hop network and
both indoor and outdoor environments. For its part, in [32] performance is also analyzed in terms
of accuracy and precision as measured by the MSE and the CDF, respectively, of the localization
techniques DV-Hop, IDV-Hop, WDV-Hop, Weighted Hyperbolic positioning algorithm and PSO
algorithm [34,35] considering a multi-hop network in an outdoor environment. The performance
of the LSDV-Hop algorithm is evaluated in terms of the ALE considering a multi-hop network in
outdoor environments [33]. Finally, in [36] the Vertex Projection, Vertex Projection with Correcting
Factor and maximum-likelihood algorithms are evaluated for normalized Root Mean Squared Error
(RMSE) considering a one-hop and multi-hop network in outdoor environments.

Since the localization techniques described in Table 1 are evaluated in different scenarios and with
different performance parameters, they cannot be compared directly. In this paper, four localization
techniques were selected, and evaluated in a single localization scenario [19]. In the proposed
evaluation scenario, Received Signal Strength Indicator (RSSI) is used to estimate the distance between
the NOI and the RNs [19,26].
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Table 1. Classification of the localization techniques.

Localization
Technique Type Description Performance

Metrics
Number of

Hops
Simulation

Environment

CL range-free This method calculates the position of the NOI as the
centroid of the RNs. MSE, CDF One-Hop Indoors

Outdoors

WCL range-free
Based on the CL algorithm considering a vector of

weights, where these weights depend on the
distance separating the NOI and the RNs.

MSE, CDF One-Hop Indoors
Outdoors

RWL range-free
Based on the WCL algorithm, where the vector of
weights depends on a linear relation of the RSS

between the NOI and the RNs.
MSE, CDF One-Hop Indoors

Outdoors

REWL range-free
Based on the WCL algorithm, where the vector of
weights depends on an exponential relation of the

RSS between the NOI and the RNs.
MSE, CDF One-Hop Indoors

Outdoors

DV-Hop range-free
This method calculates the average distance of a hop
on the network, to estimate the distance separating

the NOI from the RNs.
MSE, CDF Multi-Hop Outdoors

IDV-Hop range-free
This technique takes the average of all the average
distances per hop, to diminish the variance of the

average distance per hop.
MSE, CDF Multi-Hop Outdoors

WDV-Hop range-free
This technique considers the average distance per

hop calculated by the IDV-Hop algorithm adding a
compensation factor.

MSE, CDF Multi-Hop Outdoors

PSO range-free
This localization algorithm calculates the position of
the NOI as the overall optimum using an iterative

process that minimizes the cost function.
MSE, CDF Multi-Hop Outdoors

Hyperbolic range-based
This method converts the problem of non-linear

localization into a linear problem using a
least-squares estimator.

MSE, CDF One-Hop
Multi-Hop

Indoors
Outdoors

Weighted Hyperbolic range-based
This method converts the problem of non-linear

localization into a linear problem using a weighted
least-squares estimator.

MSE, CDF One-Hop
Multi-Hop

Indoors
Outdoors

Circular range-based
This method calculates the position of the NOI by
iteratively using the descending gradient method

until the cost function is minimized.
MSE, CDF One-Hop

Multi-Hop
Indoors

Outdoors

WLS multilateration range-based
This method converts the problem of non-linear

localization into a linear problem using a weighted
minimum-squares optimization algorithm.

MSE, CDF One-Hop
Multi-Hop

Indoors
Outdoors

Vertex-Projection range-based Localization technique of low computational
complexity based on a pyramid-shaped structure. RMSE One-Hop

Multi-Hop Outdoors

Vertex-Projection
Correcting Factor range-based

Considers a correction factor in the distance
separating the NOI from the RNs, which diminishes

the localization error.
RMSE One-Hop

Multi-Hop Outdoors

Maximum-likelihood range-based
This method uses the maximum-likelihood principle
to estimate the distance separating the NOI from the

RNs as a function of the number of hops.
RMSE One-Hop

Multi-Hop Outdoors

LSDV-Hop range-based

This method improves the precision of the NOI
localization by extracting a minimum-squares

transformation vector between the real and
estimated position of the randomly selected RNs.

ALE Multi-Hop Outdoors

2.2. Evaluation Scenarios Reported

These localization techniques have been evaluated in different real-world scenarios [23–25]
and simulations [19,22]. In [24] the authors describe a real-world outdoor scenario with a sensing
area measuring 10 m × 10 m and four RNs on the corners of the sensing area, where range-free
localization techniques are evaluated [19,22] for their simple implementation in hardware. In this
scenario, the log-normal shadowing propagation model is used to calculate the RSSI between the NOI
and the four RNs. Since this scenario is represented in a small area, the MSE is evaluated as a function
of the noise σdB ∈ {0.5, 1, 2, . . . , 10}, because the number of RNs is always constant and node density
is assumed to be unitary, i.e., one NOI on the 10 m × 10 m grid. CDF represents the localization error
distribution, when two localization techniques are compared, that technique with a localization error
distribution concentrated on the small values is the better [19], since this implies that the technique has
a high probability of having small localization errors. Up to now no large sensing area scenario has
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been used to evaluate localization technique performance. In [23] the authors propose two testbeds for
characterizing the channel by means of the RSSI. In this scenario range-free localization algorithms
such as Ring Overlapping Circle RSSI (ROCRSSI) [38] and range-based localization algorithms such as
minmax [39,40], multilateration [19] and Maximum-Likelihood [36,41] are evaluated in an indoor area
measuring 10 m × 10 m with six RNs. These algorithms are evaluated using two testbeds where the
ALE is measured by varying the number of RNs and the CDF vs. localization error.

In the simulation scenarios, range-free and range-based localization techniques are evaluated
in different sensing areas. In [19] the authors propose a sensing area of 1000 m × 1000 m where
the log-normal shadowing propagation model is used. In this scenario the MSE is evaluated based
on noise σdB ∈ {4, . . . , 12} dB and node density ρ ∈ {1, . . . , 9} nodes on an area of 100 m × 100 m.
Again, the CDF is evaluated based on localization error. In [22] range-free localization techniques are
also evaluated on an area of 1000 m × 1000 m where the log-normal shadowing model is used for
different propagation settings, at 2.4 GHz Wi-Fi/802.11g [42,43] and 5.8 GHz [44,45]. In this scenario
the localization technique performance is evaluated on the basis of the ALE and the CDF, by varying
the node density ρ ∈ {0.25, 0.5, 0.75, 1, . . . , 9} and the number of RNs Nrx = {2, 4, 8, 16} for 2.4 GHz
and 5.8 GHz environments.

2.3. Localization Techniques Analyzed

For this paper, four localization techniques were selected to determine the impact of the study
factors on the performance metrics of accuracy and precision, using the 2k factorial methodology.
The CL and REWL range-free localization techniques were selected, because the CL technique yields
the worst performance and the REWL technique yields the best performance in terms of accuracy and
precision, respectively, in the proposed evaluation scenario. Range-based localization techniques were
also selected, such as the hyperbolic positioning algorithm and the WLS multilateration algorithm,
which are the techniques that yield the worst and best performance, respectively, in terms of accuracy
and precision in the proposed evaluation scenario. The purpose of selecting range-free and range-based
techniques is to determine the localization techniques where the study factors show the greatest impact
on their performance in terms of accuracy and precision.

Below are brief descriptions of the selected localization algorithms.

• CL Algorithm

Given a set of N RNs within the range of transmission of the NOI, the localization of the NOI is
calculated by way of the average of the positions of the RNs [22]. The centroid p of a set of N RNs is
calculated by

p =
1
N

N

∑
i=1

pi (1)

where pi is the position with coordinates (xi, yi) of the RN i.

• REWL Algorithm

This algorithm is a variation of the WCL algorithm [22]. The weighting factor increases exponentially
as the RSS given in dBm increases. Considering a positive real λ constant factor between 0 and 1,
the weighting factor ωi of each RN i is given by

ωi = (1− λ)vmax−vi (2)

where vi is the RSS in dBm between the NOI and the RN i and vmax is the maximum RSS of the set of
RNs. Therefore, the centroid p of a set of RNs is calculated by

p =
∑N

i=1 pi(1− λ)vmax−vi

∑N
i=1(1− λ)vmax−vi

. (3)
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• Hyperbolic Positioning Algorithm

The hyperbolic positioning algorithm converts the non-linear problem into a linear problem
by using a minimum-squares estimator [22]. The distance between a mobile node and the RN i is
calculated by the Pythagorean theorem

di
2 = (xi − x)2 + (yi − y)2. (4)

Developing the subtraction di
2 − d2

1, Equation (4) becomes a linear problem, leading to
the following:

2xxi + 2yyi − 2xx1 − 2yy1 = xi
2 + yi

2 − x1
2 − y1

2 − di
2 + d1

2. (5)

Expressing Equation (5) in matrix form for i = 2, . . . , N x2 − x1 y2 − y1
...

...
xN − x1 yN − y1

[ x
y

]
=

1
2

 x2
2 + y2

2 − x1
2 − y1

2 − d2
2 + d1

2

...
xN

2 + yN
2 − x1

2 − y1
2 − dN

2 + d1
2

. (6)

Thus, the linear problem can be formulated by

Hp = b. (7)

where H =

 x2 − x1 y2 − y1
...

...
xN − x1 yN − y1

, p =

[
x
y

]
and b is a random vector given by

b =
1
2

 x2
2 + y2

2 − x1
2 − y1

2 − d2
2 + d1

2

...
xN

2 + yN
2 − x1

2 − y1
2 − dN

2 + d1
2

. (8)

Finally, position p of the mobile node can be calculated by the following expression:

p =
(

HTH
)−1

HTb (9)

where p is the estimated position of the NOI.

• WLS Multilateration Algorithm

In the presence of unwanted noise, the distance between the RN i and the NOI can be calculated
by ri = fi(x, y) + ni, where fi(x, y) is the real distance between RN i and the NOI and ni is
a Gaussian random variable, i.e., ni ∼ N

(
0, σ2) [22]. The distance fi(x, y) is calculated by the

following expression:

fi(x, y) =
√
(x− xi)

2 + (y− yi)
2. (10)

Defining q = [x, y]H as a vector of the position of the NOI, then for a set N observations,
the expression ri = fi(x, y) + ni, can be expressed in vector form, i.e., r = f(q) + n. Therefore, the
localization problem can be solved by a WLS optimization algorithm as shown in the equation given by

^
q = argmin

q
[r− f(q)]HK−1[r− f(q)] (11)

where Equation (11) represents a non-linear optimization problem. The solution of this kind of problem
can present certain inconveniences, such as computational cost, or convergence caused by points with
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a local minimum. To avoid these problems, a linearization process emerges based on the expansion
of the first-order Taylor series of the vector function f(q) considering a known point q0 = [x0 y0]

H .
Considering q0 close enough to the real position of the NOI, i.e., q, the Taylor series are given by
fl(q) = f(q0) + D(q− q0), where fl(q) is the linearized function and D is a matrix measuring Nx2,
given by

D =


∂f1(q)

∂x

∣∣∣
q=q0

∂f1(q)
∂y

∣∣∣
q=q0

...
...

∂fN(q)
∂x

∣∣∣
q=q0

∂fN(q)
∂y

∣∣∣
q=q0

 (12)

∂fi(q)
∂x

∣∣∣∣
q=q0

=
x0 − xi√

(xi − x0)
2 + (yi − y0)

2
, i = 1, 2, . . . N (13)

∂fi(q)
∂y

∣∣∣∣
q=q0

=
y0 − yi√

(xi − x0)
2 + (yi − y0)

2
, i = 1, 2, . . . N (14)

Redefining the observation vector r as r
′
= r− f(q0)+Dq0, then the WLS estimator is expressed as

^
q = (DHK−1D)

−1
DHK−1r

′
. (15)

Substituting the vector r
′
, then Equation (15) is redefined by

^
q = q0 + (DHK−1D)

−1
DHK−1[r− f(q0)]. (16)

Observing Equation (16), the WLS estimator can be found with a recursion, where in each iteration

the current position
^
q is used as q0 for the following iteration. Thus, the recursion is given by

^
q(n + 1) =

^
q(n) + (DHK−1D)

−1
DHK−1

[
r− f

(
^
q(n)

)]
. (17)

Equation (17) shows that the position of the NOI is calculated by an iterative process until the

convergence is obtained when the term r− f
(

^
q(n)

)
tends to zero.

2.4. Experiment Desing Using 2k Factorial

The statistical experiment design considers a wide variety of experimental strategies that are
optimal for generating the information being sought. One of these strategies is the complete 2k factorial
design. This method describes the most adequate experiments for simultaneously determining the
effect that k factors have on a response and discovering whether they interact among themselves.
These experiments are planned in such a way that various factors vary simultaneously but are kept
from always changing in the same direction. The absence of correlated factors serves to avoid
redundant experiments. Furthermore, the experiments complement one another in such a way
that the information being sought is obtained by combining the responses of all of them. This makes it
possible to obtain the information with the lowest number of experiments (and therefore at the lowest
cost) and with the least uncertainty possible (because the random errors of the responses are averaged).

In [27] the author proposes a systematic statistical Design of Experiments (DOE) used for analyzing
the factors and performance of Mobile Ad Hoc Networks (MANETs). The 2k factorial method is used
to quantify the effects of 7 factors on a performance metric (Mean Opinion Score (MOS) calculated with
the Peak Signal-to-Noise Ratio (PSNR) with the EvalVid computer package) [27]. In [28] the authors
address the issue of energy consumption optimization, the objective of which is to keep a network
connected while transmitting the lowest power from each node; two algorithms are used: PSO and
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Prim’s algorithm [46]. In this experiment, the 2k factorial method is used to compare the performance
of two algorithms according to the metrics of energy savings and processing time. Different network
performance factors are used such as sensing area, node density (%) and the PSO and Prim’s algorithms.

In MANETs, routing is a difficult task due to the changes in network topology, making it difficult
to select a particular protocol. Several studies have focused on comparing protocols, paying less
attention to other factors such as packet size, node mobility, Direct Sequence Spread Spectrum (DSSS)
rate and the mobility pattern, among others [29]. Therefore, it is essential to determine the importance
of these factors for network functioning. In [29] the authors consider three factors: the routing protocol
(Dynamic MANET On-demand (DYMO) and Ad hoc On-Demand Distance Vector (AODV)), packet
size, and DSSS rate. These factors influence the average delay and the average jitter, which are
network performance factors that affect the buffering requirements for video devices and downstream
networks [29]. This experiment used the Qualnet 5.1 simulator to analyze the DYMO and AODV
protocols. After using the 2k factorial methodology for the simulation scenario, the results obtained
show that when it comes to the average delay, the routing protocol has an impact of 37.4%, the packet
size has an impact of 37.9% and the DSSS rate has no impact. The combination of the routing protocol
and the packet size has an impact of 23.6%. Similar results were obtained on average jitter: it was
shown that the routing protocol, the packet size, and the combination of the two have a greater impact
on this metric [29]. In a networking area, we can find several works that use 2k factorial methodology.
In [47] this methodology is used to determine the factors that most affect the Warning Message
Dissemination (WMD) in a Vehicular Ad hoc networks (VANET) under real roadmaps; the result
shows that the density of vehicles and the type of map used are the factors that most affect, displacing
a second term broadcast scheme used and the channel bandwidth. The 2k factorial methodology [48]
has also been used to determine which aspects influence the performance of antennas in Body Area
Networks (BAN) at 60 GHz.

3. 2k Factorial Methodology

The research, development and testing of different experiments can involve high costs and intense
work. Simulation is therefore a useful alternative before actual implementation; however, simulations
involve extensive, heterogeneous scenarios. The number of possible factors and their values can be
very high. This section explains how 2k factorial analysis can be used to determine the most relevant
factors that affect a certain variable of interest and describe a system’s behavior. The use of 2k factorial
analysis is important for the following reasons: (1) it reduces the number of simulations that need to be
done, (2) it evaluates the relation among different factors, and (3) it reduces the simulation time needed.

This study uses the following complete 2k factorial design methodology whose flow diagram
is shown in Figure 1. First, a set of k interest factors is defined, determined by two critical levels
(−1 and 1), for each one the them, which represent extreme values of said factors, i.e., values for the
best and worst simulation scenario. Then, the experiment is run for all the 2k possible combinations

of factors. From each simulation

(
k
2

)
two-factor interactions are extracted,

(
k
3

)
three-factor

interactions, and so on. Finally, using the sign table method the results are analyzed and the variation
is assigned, depending on the combination of the different factors. A factor’s importance depends on
the proportion of the total metric variation explained by the factor. The variation refers to the variance
of a metric [30]. The total variation of y is known as the total sum of squares (SST), which is calculated
using Equation (18).

Total variation of y = SST =
2k

∑
i=1

(yi − y)2 (18)

where y denotes the mean of the responses of all the experiments. The variable yi is calculated with
a non-linear regression model of the study factors. The fraction of variation explained calculates the
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percentage of variation or impact of a factor or combination of various study factors on a performance
metric. The methodology used is described below.Appl. Sci. 2018, 8, x 9 of 17 

 
Figure 1. Flowchart of the 2௞ factorial design. 
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3.1. Selection of k Factors

This section the study factors and performance metrics for the 2k factorial analysis of the range-free
and range-based localization algorithms are selected. The analysis involves two performance metrics,
the MSE and the CDF of the range-free localization algorithms CL and REWL (λ = 0.15), of the
range-based algorithm WLS multilateration, and of the Hyperbolic algorithm [19]. MSE and CDF
performance metrics are determined by four study factors (k = 4), such as the path-loss exponent, the
level noise, the node density, and the RNs. This selection was made base on the previous work [19,22],
where the study factors determine the MSE and CDF performance metrics, through which the accuracy
and precision of the localization algorithms are evaluated. The accuracy is the MSE of the position
estimated and true position of the NOI throughout all the realizations [19]; this is, if (x, y) is the real
position of the NOI and (xi, yi) is the estimated position of the NOI in the realization i = 1, 2, . . . , M,
this metric is given by Equation (19). The precision considers the distance error distribution, while
the accuracy considers the average value of those errors [19]. When two techniques are compared,
a technique with concentrated distance errors on small values is preferred.

MSE =
1
M

M

∑
i=1

[
(x− xi)

2 + (y− yi)
2
]

(19)

3.2. Simulations of Experiments

This experiment uses (k = 4) study factors that have an impact on the MSE and CDF, it therefore
requires 16 possible combinations for each experiment. Table 3 shows the results obtained from
5000 runs for each of these combinations. The simulations were carried out MATLAB R2014a
(MathWorks, Inc., Natick, MA, USA).

3.3. Interaction Among Factors

In this section,

(
k
2

)
two-study-factor interactions are used to measure the impact of the study

factors on the MSE and the CDF, since the interactions of three or more study factors have no impact
on the performance metrics.
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4. Results

The Table 2 shows the factors selected for this analysis and their respective critical values. Each
factor is labeled with a symbol A, B, C, D and is determined by two critical levels −1 and 1 that
represent extreme values of the factors defining the simulation environment.

Table 2. Characterization of the study factors.

Symbol Factor Level −1 Level 1

A Path-loss exponent (η) 1.5 5
B Level noise (σdB) 2 dB 10 dB
C Node density (ρ) 1× 10−4m 9× 10−4m
D Anchor nodes (Nrx) 5 20

4.1. Path-Loss Exponent

This experiment uses the log-normal shadowing model, which was used in [19,22] to evaluate
the localization algorithms in the same evaluation scenario proposed for this study, as it is the most
commonly used due to its simplicity and its fidelity to real Wireless Sensor and Actuator Network
(WSAN) scenarios. In this model, two propagation settings are proposed with variation in the path-loss
exponent η, since the frequency bands that operate in the IEEE 802.15.4 standard are a parameter that
has no impact on any WSN localization scenario. The path-loss exponent η was considered between
1.5 and 5 for this experiment, that being the typical range for WSN applications [37]. Inside a building
with line of sight, the path-loss exponent η = 1.5, is considered, while in obstructed in building where
there is not line of sight, the path-loss exponent η = 5, is considered [49].

4.2. Level Noise

In the evaluation scenario proposed in [19] the noise level was considered from 4 to 12 dB; however,
in this experiment 2 and 10 dB critical levels are considered. The noise level of 2 dB represents a value
that does not impact the RSS, and therefore does not affect the localization algorithms’ performance
either, while a noise level of 10 dB does have a considerable impact on the performance metrics of the
localization algorithms evaluated in this scenario.

4.3. Node Density

Node density describes the number of nodes distributed over an area of 100 m× 100 m considering
the evaluation scenario proposed in [19,22]. Based on our references, in our experiment, the node
densities of 1 and 9 nodes were used within the NOI´s coverage area of 100 m × 100 m; these numbers
represent the critical node density values (minimum and maximum) over the total network area of
1000 m × 1000 m, which correspond to low and high node density, respectively.

4.4. Anchor Nodes

This is the number of nodes with a known position closest to the NOI, which are necessary to
estimate the NOI’s position. For our purpose, 5 and 20 RNs are used as critical values. This experiment
considered 5 RNs as the lower critical level, because experiments considering 4 or 3 RNs do not provide
enough information for obtaining a precise localization, especially with range-based algorithms, which
are more affected by Gaussian noise. Thus, 5 RNs were used as the lower critical level and 20 RNs as
the upper critical level, since higher numbers of RNs have not been observed to increase the impact of
this factor on localization.

Table 3 show the results obtained from the performance evaluation of the localization techniques
using the MSE and CDF, respectively. To obtain the CDF values, a localization error of 10 m was
considered, since for higher values of localization error a very high probability of obtaining said
parameter is obtained. To obtain the MSE and CDF of the localization techniques being analyzed,
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four study factors are used; it therefore, 16 testing cases are required for each experiment and each case
represents a specific combination of the critical levels of the study factors (A, B, C and D) as shown in
Table 3.

Table 3. MSE and CDF of the localization techniques.

Levels MSE (m) CDF (%)

A B C D CL REWL Hyperbolic WLS CL REWL Hyperbolic WLS

−1 −1 −1 −1 69.76 57.39 78.1 57.91 5.829 8.2119 9.7503 11.31

−1 −1 −1 1 127 87.85 104.45 73.04 5.663 7.5301 4.388 9.444

−1 −1 1 −1 19.23 15.91 22.94 15.94 17.68 25.452 19.241 28.15

−1 −1 1 1 26.52 18.97 28.56 16.34 15.56 22.738 11.722 27.26

−1 1 −1 −1 265.6 255.06 372.4 390.34 2.554 3.9807 1.8664 3.096

−1 1 −1 1 293.6 251.69 361.98 315.37 1.208 2.7236 0.2898 1.247

−1 1 1 −1 170.2 160.64 325.19 320.49 4.41 5.6936 4.2078 5.828

−1 1 1 1 183.2 154.97 322.31 255.76 2.296 3.5721 0.2872 3.82

1 −1 −1 −1 58.3 44.28 20.77 24.28 6.254 7.8482 23.726 25.25

1 −1 −1 1 108.2 43.61 16.63 10.19 6.29 9.2447 23.604 48.6

1 −1 1 −1 16.33 13.15 5.89 6.04 22.61 31.812 84.193 78.08

1 −1 1 1 22.86 12.42 4.49 2.94 18.31 35.898 98.97 100

1 1 −1 −1 86.24 66.16 135.69 97.77 5.506 8.1518 8.5659 8.559

1 1 −1 1 154.9 66.26 186.81 134.98 4.385 8.6823 1.8456 5.577

1 1 1 −1 24.62 19.63 43.14 33.24 13.53 19.913 12.608 16.63

1 1 1 1 32.65 18.18 62.36 30.68 12.34 22.398 6.3494 14.2

Table 4 shows the percentage of variation of the performance metrics being studied for each of
the study factors. A very high percentage of variation indicates that the study factor has a very high
impact on the performance metric.

Table 4. Impact of the study factors on the MSE and the CDF.

Factors

Variation Explained (%)

MSE (m) CDF (%)

CL REWL Hyperbolic WLS CL REWL Hyperbolic WLS

A 22.47 32.37 29.07 29.74 11.07 15.01 22.69 22.71

B 30.85 30.62 52.22 45.84 25.8 19.84 30.07 38.49

C 23.66 13.17 4.773 4.347 45.56 45.18 14.01 13.76

D 3.019 0.03 0.156 0.277 1.451 0.011 0.146 0.587

AB 17.68 21.48 13.18 18.25 2.622 1.821 13.86 11.14

AC 0.111 1.31 0.015 0.028 3.697 6.177 8.213 3.483

AD 0.04 0.046 0.048 0.489 0.006 0.854 0.211 1.147

BC 0.659 0.801 0.475 0.739 9.299 11.08 10.53 7.261

BD 0.000 0.113 0.021 0.26 0.006 0.022 0.215 1.425

CD 1.512 0.061 0.04 0.027 0.486 0.011 0.062 0.000

The results obtained from the 2k factorial analysis show that:
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– The MSE and the CDF are affected to a great extent by the noise level (σdB), which shows a strong
impact on range-based localization techniques.

– The path-loss exponent η has a greater impact on the MSE and the CDF of the range-based
algorithms than on those of the range-free algorithms.

– The combination of factors A and B shows greater impact on the MSE of the localization
algorithms and very little on their CDF.

– Node density (ρ) has a greater impact on the MSE and the CDF of the range-free algorithms than
on those of the range-based algorithms.

– Node density (ρ) is the factor that have the greatest impact on the localization algorithms’ CDF.
– The path-loss exponent and the noise level are the factors that have the greatest impact on the

localization algorithms’ MSE.
– The number of RNs has zero impact on the range-based algorithms and shows very little impact

on the CL algorithm’s MSE.

4.5. Impact of the Path-Loss Exponent.

Figure 2 shows the performance graphs of the MSE as the path-loss exponent η varies. Figure 2a
shows that the Hyperbolic and Multilateration range-based algorithms show greater MSE variation
than the range-free algorithms, considering a noise level (σdB = 2 dB), a node density (ρ = 1) and
5 RNs. Figure 2b shows an increase in the node density (ρ = 5) and the same behavior is seen in
Figure 2a. Consequently, the path-loss exponent factor shows greater impact on the range-based
algorithms than on the CL and REWL range-free algorithms. According to the log-normal shadowing
model, the greater the path-loss exponent, the less the RSS value is affected by the Gaussian random
variable (χσ), meaning that this factor has less impact on the RSS between the NOI and the RNs than
on the distance separating the NOI and the RNs, which is observed using Equation (20), i.e., the error
of the actual and estimated distance between the NOI and the RNs is greater than the error from the
actual RSS to the estimated RSS between the NOI and the RNs. Therefore, greater localization error
variation can be seen in the range-based algorithms than in the range-free algorithms, as shown in
Figure 2.

RSSdB = A− 10η log(d)− χσ (20)

where RSSdB is the power received in dB, A is the average power received at a reference distance d0

and χσ is the Gaussian random variable with zero mean and standard deviation σ in dB.
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4.6. Impact of Node Density

Figure 3a shows the variation of the MSE for different node densities (ρ); it is evident that this
study factor has greater impact on the CL and REWL range-free algorithms than on the range-based
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algorithms. On the other hand, Figure 3b shows that when the noise level rises (σdB = 10 dB),
the range-based algorithms show greater MSE variation than the range-free algorithms; thus, the noise
factor has greater impact on the range-based algorithms. The results shown in Figure 3 were obtained
for a path-loss exponent (η = 3). The greater the node density, the greater the RN proximity to the NOI,
meaning there is less distance separating the NOI from the RNs, which reduces the NOI localization
area and leads to less localization error, as shown in Figure 3 for both cases.Appl. Sci. 2018, 8, x 13 of 17 
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Figure 4 shows the CDF behavior of the localization techniques. As shown in Figure 4a,b,
the greater the node density, the greater the CDF value of the localization techniques. Figure 4a shows
that the node density (ρ) has greater impact on the CL and REWL range-free algorithms considering
a small noise level (σdB = 2 dB), since these algorithms show greater CDF variation for different node
densities. In Figure 4b the noise level increases to (σdB = 10 dB) for different node densities (ρ), and
the noise level has greater impact on the Hyperbolic algorithm, since this algorithm shows greater
CDF variation here than in Figure 4a.

Appl. Sci. 2018, 8, x 13 of 17 

 
Figure 3. MSE vs Node Density (𝜌) for different noise levels (𝜎ୢ୆). 

Figure 4 shows the CDF behavior of the localization techniques. As shown in Figures 4a and 4b, 
the greater the node density, the greater the CDF value of the localization techniques. Figure 4a shows 
that the node density (𝜌) has greater impact on the CL and REWL range-free algorithms considering 
a small noise level (𝜎ୢ୆ = 2dB), since these algorithms show greater CDF variation for different node 
densities. In Figure 4b the noise level increases to (𝜎ୢ୆ = 10dB) for different node densities (𝜌), and 
the noise level has greater impact on the Hyperbolic algorithm, since this algorithm shows greater 
CDF variation here than in Figure 4a. 

 
Figure 4. CDF vs Localization Error for different node densities (𝜌). 

4.7. Impact of Noise Level 

Figure 5 shows the MSE variation for different noise levels (𝜎ୢ୆); this factor has greater impact 
on the Hyperbolic and WLS Multilateration range-based localization techniques than on the range-
free localization techniques, since these algorithms show greater MSE variation for different node 
densities (𝜌). The noise level (𝜎ୢ୆) is a factor that has greater impact on the distance separating the 
NOI from the RNs than on the RSS respectively; thus, the greater the noise level (𝜎ୢ୆), the greater the 
error of the distance separating the NOI from the RNs, than the error of the RSS respectively, which 
is observed using Equation (21); therefore, the localization error is greater in the range-based 
localization algorithms than in the range-free algorithms, as shown for both cases in Figure 5. 𝑑ሚ = 10ቀಲష౎౏౏ౚాభబആ ቁ = 𝑑10ቀ ഖ഑భబആቁ 

(21) 

Figure 4. CDF vs. Localization Error for different node densities (ρ).

4.7. Impact of Noise Level

Figure 5 shows the MSE variation for different noise levels (σdB); this factor has greater impact on
the Hyperbolic and WLS Multilateration range-based localization techniques than on the range-free
localization techniques, since these algorithms show greater MSE variation for different node densities
(ρ). The noise level (σdB) is a factor that has greater impact on the distance separating the NOI from
the RNs than on the RSS respectively; thus, the greater the noise level (σdB), the greater the error
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of the distance separating the NOI from the RNs, than the error of the RSS respectively, which is
observed using Equation (21); therefore, the localization error is greater in the range-based localization
algorithms than in the range-free algorithms, as shown for both cases in Figure 5.

d̃ = 10(
A−RSSdB

10η )
= d10(

χσ
10η ) (21)

where d̃ is the separation range between the NOI and the RNs, RSSdB is the power received in dB for
the shadowing effects obtained in Equation (19) and d is the true Euclidean distance between the NOI
and the RNs.

Appl. Sci. 2018, 8, x 14 of 17 

where 𝑑ሚ is the separation range between the NOI and the RNs, RSSୢ୆ is the power received in dB for 
the shadowing effects obtained in Equation (19) and 𝑑 is the true Euclidean distance between the NOI 
and the RNs. 

 
Figure 5. MSE vs Noise level (𝜎ୢ୆) for different node densities (𝜌). 

Figure 6 shows the CDF behavior of the localization techniques. As shown in Figure 6a, the noise 
level has greater impact on the Hyperbolic algorithm, as this algorithm shows greater CDF variation 
for different node densities (𝜌). Figure 6b shows that the Hyperbolic algorithm shows a high level of 
CDF variation for high noise levels (𝜎ୢ୆ = 10dB) , with a higher node density (𝜌 =0.0009 nodes mଶ⁄ ). In this figure, with low noise levels (𝜎ୢ୆ = 2dB), the CL and REWL range-free 
localization algorithms show greater CDF variation than the Hyperbolic algorithm, meaning that 
node density (𝜌) is a factor that shows greater impact on the range-free localization algorithms. 

 
Figure 6. CDF vs Localization Error for different noise levels (𝜎ୢ୆). 

The results obtained show that the path-loss exponent (𝜂) and noise level (𝜎ୢ୆) factors show 
greater impact on the MSE of the range-based algorithms, because as both factors increase, they have 
more and more impact on the error of the distance separating the NOI from the RNs while the node 
density shows greater impact on the MSE of the range-free algorithms. As the path-loss exponent (𝜂) 
increases, the range-based localization algorithms show less MSE than the range-free algorithms, 
since the range-based algorithms have greater precision in localizing the NOI. Considering high noise 
levels (𝜎ୢ୆) , the range-based localization algorithms show greater MSE than the range-free 
algorithms, since this factor shows greater impact on the range-based algorithms. The number of RNs 
is a factor that shows a very small impact on the MSE and the CDF of the localization algorithms; the 
results obtained show that 5 RNs are enough to localize the NOI in the proposed evaluation scenario. 

Figure 5. MSE vs. Noise level (σdB) for different node densities (ρ).

Figure 6 shows the CDF behavior of the localization techniques. As shown in Figure 6a, the noise
level has greater impact on the Hyperbolic algorithm, as this algorithm shows greater CDF variation
for different node densities (ρ). Figure 6b shows that the Hyperbolic algorithm shows a high level of
CDF variation for high noise levels (σdB = 10 dB), with a higher node density

(
ρ = 0.0009 nodes/m2).

In this figure, with low noise levels (σdB = 2 dB), the CL and REWL range-free localization algorithms
show greater CDF variation than the Hyperbolic algorithm, meaning that node density (ρ) is a factor
that shows greater impact on the range-free localization algorithms.
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The results obtained show that the path-loss exponent (η) and noise level (σdB) factors show
greater impact on the MSE of the range-based algorithms, because as both factors increase, they have
more and more impact on the error of the distance separating the NOI from the RNs while the node
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density shows greater impact on the MSE of the range-free algorithms. As the path-loss exponent (η)
increases, the range-based localization algorithms show less MSE than the range-free algorithms, since
the range-based algorithms have greater precision in localizing the NOI. Considering high noise levels
(σdB), the range-based localization algorithms show greater MSE than the range-free algorithms, since
this factor shows greater impact on the range-based algorithms. The number of RNs is a factor that
shows a very small impact on the MSE and the CDF of the localization algorithms; the results obtained
show that 5 RNs are enough to localize the NOI in the proposed evaluation scenario.

5. Conclusions

This study made an analysis of the impact of the different study factors on the localization
algorithms in a single-hop network, considering a simulation environment. Up to now no study has
been found in the literature that looks witch factors present the most impact on the accuracy and
precision metrics of localization algorithms, or on the interaction among said factors. The complete
factorial method is used for the purpose of identifying the representative factors that have an impact on
the accuracy and precision metrics of the localization algorithms. The performance of the localization
techniques is evaluated through the accuracy and precision metrics; these performance metrics are
determined using MSE and CDF, respectively. The results obtained show that the path-loss exponent
(η) and the noise level (σdB) factors show greater impact on the MSE and the CDF of the evaluated
localization algorithms. Node density shows greater impact on the MSE and the CDF of the range-free
algorithms than on those of the range-based algorithms. Finally, it can be concluded that the complete
factorial method shows the magnitude of a study factor’s impact on a performance variable of the
localization algorithms.
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