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Featured Application: On-line point cloud data compression process for 3D free-form surface
contact or non-contact scanning measuring equipment.

Abstract: In order to obtain a highly accurate profile of a measured three-dimensional (3D) free-form
surface, a scanning measuring device has to produce extremely dense point cloud data with a
great sampling rate. Bottlenecks are created owing to inefficiencies in manipulating, storing and
transferring these data, and parametric modelling from them is quite time-consuming work. In order
to effectively compress the dense point cloud data obtained from a 3D free-form surface during the
real-time scanning measuring process, this paper presents an innovative methodology of an on-line
point cloud data compression algorithm for 3D free-form surface scanning measurement. It has the
ability to identify and eliminate data redundancy caused by geometric feature similarity between
adjacent scanning layers. At first, the new algorithm adopts the bi-Akima method to compress
the initial point cloud data; next, the data redundancy existing in the compressed point cloud is
further identified and eliminated; then, we can get the final compressed point cloud data. Finally,
the experiment is conducted, and the results demonstrate that the proposed algorithm is capable
of obtaining high-quality data compression results with higher data compression ratios than other
existing on-line point cloud data compression/reduction methods.

Keywords: data compression; data reduction; free-form surface; point cloud; scanning measurement;
redundancy identifying; redundancy eliminating; geometric feature similarity

1. Introduction

With the rapid development of modern industry, three-dimensional (3D) free-form surface parts
are being utilized more and more widely. These involve, but are not limited to, aviation, aerospace,
shipbuilding, automotive, biomedical and home appliance industries [1,2]. Recently, the automated
3D digitization of free-form surface objects has been widely applied in many areas, such as additive
manufacturing (3D printing), rapid prototyping, reverse engineering, civil buildings, medical prosthetics
and clinical diagnosis [3–13]. Scanning measurement is one of the key technologies for digitizing 3D
physical models with free-form surfaces [14–17]. Unfortunately, in order to obtain a high-quality profile
of a measured surface, scanning measuring devices have to produce massive amounts of point cloud
data with great sampling rates, and not all these points are indispensable [18–20]. Bottlenecks arise
from the inefficiencies of storing, manipulating and transferring them [21]. Furthermore, the parametric
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modelling from these massive amount of point cloud data is a time-consuming task [22–24]. For this
reason, compressing the measured point data while maintaining the required accuracy is a crucial
task during the scanning measuring process [25]. Herein, the required accuracy is a threshold of
distance, which is preset to a constant positive integer before the beginning of scanning measurement.
The accuracy of a certain data compression algorithm is characterized by the distance from each sampled
point in the initial dense point cloud data to the surface generated by the compressed point cloud.
Describing a measured surface with the least point data while guaranteeing a certain data compression
accuracy is always an expectation [26,27]. Therefore, a high-quality point cloud data compression
algorithm for 3D free-form surface scanning measurement is being pursued constantly [28].

Experts and scholars around the world have been paying more and more attention to this issue,
and a number of point cloud data compression/reduction algorithms for free-form/irregular surface
scanning measurement have been developed. Lee et al. [29] proposed an algorithm for processing
point cloud data obtained by laser scanning devices. This algorithm adopts a one-directional (1D)
or bi-directional (2D) non-uniform grid to reduce the amount of point cloud data. Chen et al. [5]
presented a data compression method based on a bi-directional point cloud slicing strategy for reverse
engineering. This method can preserve local details (geometric features in both two parametric
directions) when performing data compression. Ma and Cripps [30] proposed a new data compression
algorithm for surface points to preserve the original surface points. The error metric is defined
as the relative Hausdorff distance between two principal curvature vector sets for surface shape
comparison. After comparison, the difference between the compressed data points and original data
points can be obtained. Therefore, redundant points are repeatedly removed until the difference
induced exceeds the specified tolerance. Smith, Petrova, and Schaefer [31] presented a progressive
encoding and compression method for surfaces generated from point cloud data. At first, an octree
is built whose nodes contain planes that are constructed as the least square fit of the data within
that node. Then, this octree is pruned to remove redundant data while avoiding topological changes
created by merging disjointed linear pieces. Morell et al. [32] presented a geometric 3D point cloud
lossy compression system based on plane extraction, which represents the points of each scene plane
as a Delaunay triangulation and a set of points/area information. This compression system can be
customized to achieve different data compression or accuracy ratios. The above methods have focused
on optimizing data compression quality based on building and processing polyhedral models or
numerical iterative calculations. Nevertheless, they are all off-line data compression algorithms and
can only compress the point cloud data of a whole measured surface after data acquisition. In other
words, they cannot perform online data compression during real-time measurement. Data acquisition
and data compression processes are completely separate. A large amount of redundant point cloud
data occupies a great deal of storage space in scanning measuring devices. Moreover, the transmission
and processing of point cloud data still takes up a significant amount of time and hardware resources.

This problem has attracted the attention of many scholars and engineers, and they have proposed
quite a number of on-line point cloud data compression/reduction methods. Lu et al. [33] adopted the
chordal method to compress point cloud data, and realized the on-line data compression of point cloud
data during real-time scanning measurement for the first time. ElKott and Veldhuis [34] presented an
automatic surface sampling approach based on scanning isoparametric lines. The sampling locations
are confirmed by the deviations between the alternative geometry and sampled model, and the location
of each sampling line is confirmed by the curvature of the sampled surface model. Wozniak, Balazinski,
and Mayer [35] presented a point cloud data compression method based on fuzzy logic and the
geometric solution of an arc at each measured point. This is an on-line data compression method and
can be used in the surface scanning measuring process of coordinate measuring machines (CMMs).
Jia et al. [36] proposed an on-line data compression method based on the equal-error chordal method
and isochronous sampling. In order to solve the problem of massive data storage, dual-buffer and
dual-thread dynamic storage is adopted. Tao et al. [37] found that the essence of all the above on-line
point cloud data compression methods is the chordal method, which specifies that all discrete dense
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point sets are connected by straight segments. Therefore, the surface reconstructed by the compressed
point cloud will be full of cusp points, and so we cannot obtain a smooth interpolated surface. In view
of this limitation, they presented an on-line point cloud data extraction algorithm using bi-Akima
spline interpolation.

Although the above methods implement on-line point cloud data compression, they can only
eliminate data redundancy of the current scanning line. Nevertheless, most surface 3D scanning
measuring devices adopt a layer-by-layer scanning path (e.g., contact scanning probes [38], laser triangle
displacement sensors [39], linear structured light systems [40], industrial computed tomography (CT)
systems [41], etc.), and adjacent scanning lines are extremely similar in shape. The geometric feature
similarity between such scanning layers is bound to result in data redundancy, which makes it possible
to further compress the point cloud data during the scanning measuring process. Therefore, this study
focuses on identifying and eliminating this kind of data redundancy caused by geometric feature
similarity between adjacent scanning layers. After that, the massive amount of point cloud data can be
further compressed during the 3D free-form surface measuring process.

The contents of this paper consist of four sections. In Section 2, the innovative methodology of
the on-line point cloud data compression algorithm for 3D free-form surface scanning measurement is
described in detail. In Section 3, the proposed algorithm was tested in the real-time scanning measuring
process and compared with existing methods. Finally, some conclusions are drawn from this paper in
Section 4.

2. Innovative Methodology

As shown in Figure 1, the overall process of on-line point cloud data compression in this work
consists of four steps. in Step 1, the initial point cloud flow is obtained by 3D scanning measuring
devices using an isochronous [42] or equidistant sampling method and the layer-by-layer scanning
path is adopted (Figure 2). in Step 2, the initial point cloud data flow is immediately compressed by
the chordal method [36] or bi-Akima method [37], both of which compress the amount of point cloud
data based on the data redundancy in the current single scanning layer. In Step 3, the data redundancy
in the compressed point cloud which is obtained in the previous step is further identified. In Step 4,
the identified redundant point data is eliminated, and then we can obtain the final compressed
point cloud. At last, the final compressed data flow is transmitted to the storage space of the
measurement system.
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Figure 1. The overall process of on-line data compression for 3D free-form surface scanning measurement.

Herein, the real-time performance of the proposed data compression algorithm needs to be
further analyzed and described. The path planning is performed before the start of the scanning
measurement in Step 1. As shown in Figure 2, a layer-by-layer scanning path is adopted. The distance
between the adjacent scanning layers is determined by the preset measuring accuracy. The measured
surface is cut by the scanning layers to form a number of corresponding scanning lines. As shown
in Figure 2, there are two planning modes for scanning directions: (i) the progressive scanning
mode, and (ii) the S-type scanning mode. Regardless of the scanning mode, the measuring device in
Step 1 will continuously transmit the initial point cloud data flow to the data compressor in Step 2.
The compressor performs data compression immediately after receiving all initial point data of a
single scanning layer, rather than waiting for the entire surface to be scanned before performing data
compression. That is, each time the point cloud data in the current scanning layer is completely
transmitted to the compressor, the subsequent data compression algorithm is executed immediately.
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Therefore, the proposed data compression algorithm is essentially a quasi-real-time method, which we
call an on-line data compression method.
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2.1. Data Redundancy Identification

In order to identify redundant data points in the compressed point cloud data flow from Step 2,
it is first necessary to predict the current scan line in the unmeasured area. Herein, the prediction
is realized by Hermite extrapolation [43], and a predicted curve is created. The data redundancy
identification algorithm is detailed as follows:

Figure 4 shows the schematic diagram of the data redundancy identification algorithm, in which
line i is the current scanning line during the on-line measuring process, and Pi,j represents the jth point
in scanning line i. If j ≥ 2, a shape-preserving piecewise bicubic Hermite curve can be built to predict
the shape and direction of the current scanning line; here, we name this the predicted curve, as shown
in Figure 4. After that, suppose k is a positive integer and let 1 ≤ k < j and the coordinates of point
Pi,k be (xk, yk, zk); then, a series of specific Hermite interpolation polynomials can be determined by{

Hy(x) = ykαk(x) + yk+1αk+1(x) + y′kβk(x) + y′k+1βk+1(x)
Hz(x) = zkαk(x) + zk+1αk+1(x) + z′kβk(x) + z′k+1βk+1(x)

, (1)

where 

αk(x) =
(

1 + 2 x−xk
xk+1−xk

)(
x−xk+1
xk−xk+1

)2

αk+1(x) =
(

1 + 2 x−xk+1
xk−xk+1

)(
x−xk

xk+1−xk

)2

βk(x) = (x− xk)
(

x−xk+1
xk−xk+1

)2

βk+1(x) = (x− xk+1)
(

x−xk
xk+1−xk

)2

, (2)

and the first derivatives of y′k, y′k+1, z′k, z′k+1 can be estimated by the following formulas.
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When 1 < k < j:

y′k = fy
′(xk) =

 0, i f : yk+1−yk
xk+1−xk

· yk−yk−1
xk−xk−1

< 0
1
2

(
yk+1−yk
xk+1−xk

+
yk−yk−1
xk−xk−1

)
, i f : yk+1−yk

xk+1−xk
· yk−yk−1

xk−xk−1
≥ 0

, (3)

z′k = fz
′(xk) =

 0, i f : zk+1−zk
xk+1−xk

· zk−zk−1
xk−xk−1

< 0
1
2

(
zk+1−zk
xk+1−xk

+
zk−zk−1
xk−xk−1

)
, i f : zk+1−zk

xk+1−xk
· zk−zk−1

xk−xk−1
≥ 0

. (4)

When k = 1:

y′1 =

{
0, i f : dy· y2−y1

x2−x1
< 0

3· y2−y1
x2−x1

, i f :
∣∣dy
∣∣ > 3

∣∣∣ y2−y1
x2−x1

∣∣∣& (y2−y1)(y3−y2)
(x2−x1)(x3−x2)

< 0
, (5)
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z′1 =

{
0, i f : dz· z2−z1

x2−x1
< 0

3· z2−z1
x2−x1

, i f : |dz| > 3
∣∣∣ z2−z1

x2−x1

∣∣∣& (z2−z1)(z3−z2)
(x2−x1)(x3−x2)

< 0
, (6)

in which  dy = (x3+x2−2x1)(y2−y1)
(x2−x1)(x3−x1)

− (x2−x1)(y3−y2)
(x3−x2)(x3−x1)

dz =
(x3+x2−2x1)(z2−z1)

(x2−x1)(x3−x1)
− (x2−x1)(z3−z2)

(x3−x2)(x3−x1)

. (7)

When k = j:

y′ j =

 0, i f : dy·
yj−yj−1
xj−xj−1

< 0

3· yj−yj−1
xj−xj−1

, i f :
∣∣ey
∣∣ > 3

∣∣∣ yj−yj−1
xj−xj−1

∣∣∣& (yj−yj−1)(yj−1−yj−2)

(xj−xj−1)(xj−1−xj−2)
< 0

, (8)

z′ j =

 0, i f : dy·
zj−zj−1
xj−xj−1

< 0

3· zj−zj−1
xj−xj−1

, i f : |ez| > 3
∣∣∣ zj−zj−1

xj−xj−1

∣∣∣& (zj−zj−1)(zj−1−zj−2)

(xj−xj−1)(xj−1−xj−2)
< 0

, (9)

in which  ey =
(2xj−xj−1−xj−2)(yj−yj−1)

(xj−xj−1)(xj−xj−2)
− (xj−xj−1)(yj−1−yj−2)

(xj−1−xj−2)(xj−xj−2)

ez =
(2xj−xj−1−xj−2)(zj−zj−1)

(xj−xj−1)(xj−xj−2)
− (xj−xj−1)(zj−1−zj−2)

(xj−1−xj−2)(xj−xj−2)

. (10)

Herein, based on the compressed point cloud data flow from Step 2, the shape-preserving
piecewise bicubic Hermite polynomials can be created according to the above algorithm.
Then, Hermite extrapolation is performed to create a predicted curve, which is marked in blue as
shown in Figure 4, and its analytical formula can be described as follows:{

Hy(x) = yj−1αj−1(x) + yjαj(x) + y′ j−1β j−1(x) + y′ jβ j(x)
Hz(x) = zj−1αj−1(x) + zjαj(x) + z′ j−1β j−1(x) + z′ jβ j(x)

. (11)

After that, an estimated point Pest is created to move along the predicted curve with a stepping
distance of λ. Pi,j is the starting point of Pest. Meanwhile, a bounding sphere is built with point Pest as
the center. The radius of the sphere is

Rsph = κhls, (12)

in which κ ∈ [1, 2] is the radius adjustment coefficient, and hls is the distance between two parallel
scannning layers. As shown in Figure 4, the predicted curve with estimated point Pest are used to
search for the neighbor point Pnb from the previous scanning line i−1. The necessary and sufficient
conditions for point Pnb as the neighbor point of Pest are

∣∣PestPnb
∣∣ ≤ Rsph, which means that Pnb is inside

the bounding sphere with point Pest as its center. At the very beginning, Pest coincides with Pi,j. At this
point, there are two possibilities: (i) Pi−1,u is inside the bounding sphere (i.e.,

∣∣Pi−1,uPi,j
∣∣ ≤ Rsph), or (ii)

Pi−1,u is outside the bounding sphere. In case (i), Pi−1,u is the first found neighbor point. As Pest moves
along the scanning direction with a stepping distance of λ, if

∣∣PestPi−1,u
∣∣ < ∣∣Pi,jPi−1,u

∣∣, then Pi−1,u is
the neighbor point of Pest; otherwise, discard point Pi−1,u, as it is not the neighbor point of Pest but of
Pi,j. In case (ii), there is no operation because no neighbor point has been found. After case (i) or case
(ii) is completed, point Pest continues to move forward along the scanning direction until the neighbor
point Pnb of Pest is found; if the neighbor point cannot be found, the search is stopped.

If the neighbor point Pnb is found in line i− 1 (e.g., Pi−1,u+1 in Figure 4), then a new bounding
sphere is built with Pi−1,u+1 as the center and the radius is Rsph. After that, we use this new bounding
sphere to search for the neighbor point of Pi−1,u+1 in line i− 2; and if the neighbor point cannot be
found, we stop searching. Next, we take the new neighbor point in line i− 2 (e.g., Pi−2,v+1) as a new
center to build a bounding sphere and repeat the above process until we find three neighbor points in
different scanning lines (e.g., Pi−1,u+1, Pi−2,v+1, Pi−3,w+1 in Figure 4).
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Based on the neighbor point set {Pi−1,u+1, Pi−2,v+1, Pi−3,w+1}, the coordinates of estimated point Pest

can be fixed uniquely. As shown in Figure 4, a bi-cubic Hermite curve is built, and it can be expressed as{
Hx(y) = xi−2αi−2(y) + xi−1αi−1(y) + x′ i−2βi−2(y) + x′ i−1βi−1(y)
Hz(y) = zi−2αi−2(y) + zi−1αi−1(y) + z′ i−2βi−2(y) + z′ i−1βi−1(y)

, (13)

in which y is an independent variable; αi−1(y), αi−2(y), βi−1(y), βi−2(y) are obtained by Equation (2);
x′ i−2, z′ i−2 are acquired by Equations (3) and (4); and x′ i−1, z′ i−1 are obtained by Equations (8)–(10).
Obviously, the bicubic Hermite curve must be in the curved surface with the equation

Hx(y) = xi−2αi−2(y) + xi−1αi−1(y) + x′ i−2βi−2(y) + x′ i−1βi−1(y), (14)

and the predicted curve will pass through this curved surface. Therefore, estimated point Pest can be
fixed at the intersection of the predicted curve and the curved surface which is described in Equation (14).
That is, the coordinates of estimated point Pest(xest, yest, zest) can be determined by Equations (11) and (14).

2.2. Data Redundancy Elimination

After the coordinates of estimated point Pest are determined, we use Pest to replace Pi,j+1 in
scanning line i. Afterwards, the new point set that contains Pest is used for bi-Akima interpolation,
and there is a deviation hi,k between the interpolated curve and each initial sampled point Qk, where i
is the scanning line number and k is the serial number of initial point cloud in line i. As mentioned
earlier, the initial point cloud is obtained by 3D scanning measuring devices using the isochronous or
equidistant sampling method in Step 1 as shown in Figure 1. The deviation hi,k can be obtained by

hi,k = MIN
x∈(Xj ,Xj+1)

(s) = MIN
x∈(Xj ,Xj+1)

(√
(x− xk)

2 + (y− yk)
2 + (z− zk)

2
)

, (15)

where point Qk(xk, yk, zk) is an initial sampled point between Pi,j(Xj, Yj, Zj) and Pi,j+1(Xj+1, Yj+1, Zj+1),
and Pcurv(x, y, z) is the point in interpolated curve that makes the distance S shortest. Then, the max
deviation dmax of the whole curve (i.e., from Pi,1 to Pest) can be calculated by the following formula:

dmax = MAX(hi,k), (16)

which is compared with the required accuracy ε. If dmax > ε, discard point Pest. If dmax < ε, delete
current compressed point Pi,j+1 which is input from Step 2. Next, create an estimative flag Fi,j+1 = 1
to replace point Pi,j+1. This flag takes up only one bit of data storage space. After completing the
above process, output the final compressed point cloud data flow, which contains the point coordinate
and estimative flag information to the data storage devices. Afterwards, make j = j + 1, build a new
shape-preserving piecewise bicubic Hermite curve to predict the shape and direction of the current
scanning line, and create a new estimative point Pest to loop through the above data redundancy
identification and elimination process until Pi,j is the end point of the current scanning line i or the
data sampling is over. In addition, when Pi,j is the end point of line i, make i = i + 1 and continue to
loop the above algorithm until the measurement is completed.

3. Experimental Results

In order to verify the feasibility of the proposed methodology, some experiments were performed
in this section.

3.1. Test A

The on-line point cloud data compression algorithm was tested in the industrial real-time
measuring process and compared with existing methods (chordal method and bi-Akima method).
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The measuring system consists of a contact 3D scanning probe, a vertical lathe and a commercial
computer numerical control (CNC) system of SINUMERIK 840D (Munich, Bayern, Germany) as shown
in Figure 5. The proposed algorithm is integrated in the original equipment manufacturer (OEM)
application that runs on the host computer of the CNC system. The product model of the contact 3D
scanning probe is DIGIT-02 (Dalian, Liaoning Province, China). More detailed technical characteristics
of the measuring instrument are shown in Table 1.
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Table 1. Detailed technical characteristics of the measuring system.

Technical Characteristics Values

Scope of X axis 2400 mm
Positioning accuracy of X axis 0.019 mm/1000 mm

Repeatability of X axis 0.016 mm/1000 mm
Scope of Z axis 1200 mm

Positioning accuracy of Z axis 0.010 mm/1000 mm
Repeatability of Z axis 0.003 mm/1000 mm

Positioning accuracy of C axis 6.05”
Repeatability of C axis 2.22”

Measuring range of scanning probe ±1 mm
Accuracy of scanning probe ±8 µm

Repeatability of scanning probe ±4 µm
Stylus length of probe 100 mm/150 mm/200 mm

Contact force (with stylus of 200 mm) 1.6 N/mm
Weight of scanning probe 1.8 kg

The measured part is a half-ellipsoidal surface which is welded together by seven pieces of
thin-walled aluminum alloy sheet, as shown in Figure 5d, with a semi-major axis of 1450 mm and
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semi-minor axis of 950 mm. A rotational progressive scanning mode is adopted, and the layer spacing
is 7 mm. Figure 6 shows the spatial distribution of the initial point cloud data. The isochronous
sampling method is adopted and the number of initial sampling points is 272,638.Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 20 
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Using the same initial point cloud data set as shown in Figure 6, the comparison of data
compression performance is made between the proposed method, chordal method and bi-Akima
method under different required accuracies (i.e., from 0.001 mm to 1 mm). Table 2 summarizes the
results of the data compression performance including the number of points and data compression ratio,
where the compression ratio is defined as the ratio between the uncompressed size and compressed size:

Compression Ratio =
Uncompressed Size

Compressed Size
=

Number of Initial Points
Number of Compressed Points

. (17)

Obviously, the proposed method has a higher data compression ratio than the chordal method
and bi-Akima method, and the chordal method obtains the lowest data compression ratio under the
same required accuracy. The number of data points obtained by the proposed method is about half of
that obtained by the bi-Akima method under the same required accuracy.

Table 2. Compression performance under different required accuracies.

Required
Accuracy (mm)

Number of Points Compression Ratio

Chordal
Method

Bi-Akima
Method

Proposed
Method

Chordal
Method

Bi-Akima
Method

Proposed
Method

0.001 237,363 122,929 67,448 1.15 2.22 4.04
0.002 189,824 120,952 67,121 1.44 2.25 4.06
0.005 152,674 110,175 63,813 1.79 2.47 4.27
0.01 136,027 93,588 51,062 2.00 2.91 5.34
0.02 123,891 71,629 41,862 2.20 3.81 6.51
0.05 103,205 44,072 28,837 2.64 6.19 9.45
0.1 87,008 27,894 15,974 3.13 9.77 17.07
0.2 61,124 12,191 7102 4.46 22.36 38.39
0.5 28,473 5594 3140 9.58 48.74 86.83
1 9029 3969 2217 30.20 68.69 122.99
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Figure 7 provides the comparison of the compression ratios between the three methods under
the different required accuracies. With the decrease in accuracy requirements, the compression ratio
increases for all methods; however, for all levels of required accuracy, our proposed compression
method manifests a superior compression ratio than the other two methods. Obviously, the chordal
method has the lowest data compression ratio. Therefore, we focus on comparing our proposed
method with the bi-Akima method in the subsequent experiments.
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To make the comparison more vivid and intuitive, Figure 8 visually illustrates the difference
between the proposed method and bi-Akima method by displaying spatial distributions of compressed
point sets under different required accuracies. Subfigures a, d, g and j show the point cloud distribution
compressed by bi-Akima method while subfigures b, e, h and k give the point cloud distribution after
data redundancy identification by the proposed method, with the identified redundant points marked
in red. In subfigures c, f, i and l, the identified redundant points are eliminated. These subfigures
show the distributions of the final compressed point cloud data. By contrast, we can clearly observe
the difference of point cloud density between these two methods under the same required accuracy.
Take subfigures g–i, for example: when using the bi-Akima method, we can observe that there are
many curves roughly along the welded region (Figure 8g), because the bi-Akima method can only deal
with the point set in the current scanning line and the data redundancy outside the current scanning
line cannot be eliminated. With the involvement of our proposed method, redundant data points are
identified and marked in red (Figure 8h) and the data redundancy in the adjacent scanning layers is
eliminated and the final compressed point cloud data is obtained (Figure 8i).

To verify the accuracy of the proposed algorithm, Figure 9 analyzes the spatial distribution of
deviation between each initial sampled point and the interpolated surface obtained from the final
compressed point cloud data under different required accuracies. As can be seen, all the deviations are
within the allowable range of required accuracy. Our method can tightly control the deviation within
the error tolerance range (i.e., the deviation between each initial sampled point and interpolation
curve is less than or equal to the required accuracy). In addition, deviations are far lower than the
required accuracy in most of the measured area. In Figure 9d, there is an interesting and noteworthy
phenomenon: the upper right sector has a higher deviation. As mentioned earlier, the measured
part is a large thin-walled surface which is welded together by seven pieces of aluminum alloy sheet
(Figure 5d). The aluminum alloy sheet has a thickness of only 0.8 mm, but its size is very large
(the semi-major axis of the ellipse is 1450 mm). The part has undergone great deformation after
welding. There is a large and random deviation between each welded part and the original design
size. According to past experience, the maximum deviation in a local section can even reach 3 mm.
Consequently, we infer that the upper right sector has a higher deviation because of deformation in
this area. In the case where the required accuracy is on the order of millimeters (e.g., required accuracy
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ε= 1 mm in Figure 9d), the compressed point cloud data is very sparse. Therefore, this phenomenon is
formed in a region where the point cloud density is low and the local deformation is large. However,
in any case, the proposed method can tightly control the deviation within the preset range.
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compression, ε = 1 mm; (k) redundancy identification, ε = 1 mm; (l) redundancy elimination,
ε = 1 mm.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  13 of 20 

 
Figure 8. Spatial distributions of compressed point cloud data under different required accuracies 
ε : (a) bi-Akima compression, =0.001 mmε ; (b) redundancy identification, =0.001 mmε ; (c) 
redundancy elimination, =0.001 mmε ; (d) bi-Akima compression, =0.01mmε ; (e) redundancy 
identification, =0.01mmε ; (f) redundancy elimination, =0.01mmε ; (g) bi-Akima compression, 

=0.1 mmε ; (h) redundancy identification, =0.1 mmε ; (i) redundancy elimination, =0.1 mmε ; (j) 
bi-Akima compression, =1 mmε ; (k) redundancy identification, =1 mmε ; (l) redundancy 
elimination, =1 mmε . 

 
Figure 9. Cont.



Appl. Sci. 2018, 8, 2556 12 of 18
Appl. Sci. 2018, 8, x FOR PEER REVIEW  14 of 20 

 
Figure 9. Spatial distributions of deviation under different required accuracies ε : (a) =0.001 mmε ;  
(b) =0.01mmε ; (c) =0.1 mmε ; (d) =1 mmε . 

3.2. Test B 

The overall structure of the model in Test A is relatively simple. In order to further verify the 
universality and adaptability of the proposed method, we chose a more complex surface model with 
a large number of details, edges and sharp features for experimentation. As shown in Figure 10, the 
tested model is a piece of jewelry, which is inlaid with 30 diamonds of different sizes. 

 
Figure 10. The tested complex surface model: jewelry. 

Figure 11 shows the initial point cloud data acquisition result. The progressive scanning mode 
and equidistant sampling mode were adopted. Scanning lines are along the X-direction (horizontal 
direction). The distance between two adjacent scanning layers is 0.1 mm, and the distance between 
adjacent points is 0.05 mm in each scanning layer. The initial point number is 63,376. 

 
Figure 11. Spatial distribution of initial point cloud data. 

Figure 9. Spatial distributions of deviation under different required accuracies ε: (a) ε = 0.001 mm;
(b) ε = 0.01 mm; (c) ε = 0.1 mm; (d) ε = 1 mm.

3.2. Test B

The overall structure of the model in Test A is relatively simple. In order to further verify the
universality and adaptability of the proposed method, we chose a more complex surface model with
a large number of details, edges and sharp features for experimentation. As shown in Figure 10,
the tested model is a piece of jewelry, which is inlaid with 30 diamonds of different sizes.

Figure 11 shows the initial point cloud data acquisition result. The progressive scanning mode
and equidistant sampling mode were adopted. Scanning lines are along the X-direction (horizontal
direction). The distance between two adjacent scanning layers is 0.1 mm, and the distance between
adjacent points is 0.05 mm in each scanning layer. The initial point number is 63,376.

The comparison is made between the proposed method and bi-Akima method under different
required accuracies (i.e., from 0.001 mm to 1 mm). Table 3 gives the results of data compression
performance, including the number of points and data compression ratio. Obviously, the proposed
method has a higher data compression ratio than the bi-Akima method. The number of points
obtained by the proposed method is about half of that obtained by bi-Akima method under the same
required accuracy.

Figure 12 provides the comparison of the compression ratios between these two methods under
different required accuracies. With the decrease in accuracy requirements, the compression ratio
increases for all methods; however, for all levels of required accuracy, our proposed compression
method manifests a superior compression ratio than the bi-Akima method.
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Figure 10. The tested complex surface model: jewelry.

Figure 13 visually illustrates the difference between the proposed method and bi-Akima method
by displaying spatial distributions of the compressed point sets under different required accuracies.
Subfigures a, d, g and j show the point cloud distribution compressed by the bi-Akima method,
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while subfigures b, e, h and k give the point cloud distribution after data redundancy identification by
the proposed method, with the identified redundant points marked in red. In subfigures c, f, i and l,
the identified redundant points are eliminated. These subfigures show the distributions of the final
compressed point cloud data. By contrast, we can clearly observe the difference in point cloud density
between these two methods under the same required accuracy. Take subfigures j, k and l, for example:
when using the bi-Akima method, we can observe that there are many curves roughly along the
vertical direction (Figure 13j). This is because the bi-Akima method can only deal with the point set
in the current single scanning line, which is along the horizontal direction, and the data redundancy
outside the current scanning line cannot be eliminated. With the involvement of our proposed method,
redundant data points are identified and marked in red (Figure 13k), the data redundancy in adjacent
scanning layers is eliminated and the final compressed point cloud data is obtained (Figure 13l).
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Table 3. Compression performance under different required accuracies.

Required
Accuracy (mm)

Number of Points Compression Ratio

Bi-Akima Method Proposed Method Bi-Akima Method Proposed Method

0.001 18,906 8516 3.35 7.44
0.002 16,857 7609 3.76 8.33
0.005 14,323 6563 4.42 9.66
0.01 12,432 5743 5.10 11.04
0.02 10,720 5007 5.91 12.66
0.05 8767 4232 7.23 14.98
0.1 7190 3535 8.81 17.93
0.2 5892 2974 10.76 21.31
0.5 4625 2412 13.70 26.28
1 4204 2213 15.08 28.64
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In order to verify the accuracy of the proposed algorithm, Figure 14 analyzes the spatial 
distribution of deviation between each initial sampled point and the interpolated surface obtained 
from the final compressed point cloud data under different required accuracies. As can be seen, all 
the deviations are within the allowable range of required accuracy, which proves that the proposed 
method can tightly control the deviation within the error tolerance range (i.e., the deviation between 

Figure 13. Spatial distributions of compressed point cloud data under different required accuracies ε:
(a) bi-Akima compression, ε = 0.001 mm; (b) redundancy identification, ε = 0.001 mm; (c) redundancy
elimination, ε = 0.001 mm; (d) bi-Akima compression, ε = 0.01 mm; (e) redundancy identification,
ε = 0.01 mm; (f) redundancy elimination, ε = 0.01 mm; (g) bi-Akima compression, ε = 0.1 mm;
(h) redundancy identification, ε = 0.1 mm; (i) redundancy elimination, ε = 0.1 mm; (j) bi-Akima
compression, ε = 1 mm; (k) redundancy identification, ε = 1 mm; (l) redundancy elimination,
ε = 1 mm.

In order to verify the accuracy of the proposed algorithm, Figure 14 analyzes the spatial
distribution of deviation between each initial sampled point and the interpolated surface obtained
from the final compressed point cloud data under different required accuracies. As can be seen, all the
deviations are within the allowable range of required accuracy, which proves that the proposed method
can tightly control the deviation within the error tolerance range (i.e., the deviation between each initial
sampled point and interpolation curve is less than or equal to the required accuracy). In addition,
deviations are far less than the required accuracy in most of the measured area.
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4. Discussion

The experimental results in Section 3 indicate that the proposed on-line point cloud data
compression algorithm for free-form surface scanning measurement has the following features:

• It can further compress point cloud data and obtain a higher data compression ratio than the
existing methods under the same required accuracy. Its compression performance is obviously
superior to the bi-Akima and chordal methods;

• It is capable of tightly controlling the deviation within the error tolerance range, and deviations in
most measured area are far less than the required accuracy;

• Test A preliminarily verifies the application feasibility of the proposed method in an industrial
environment. Test B demonstrates that the method is equally effective for complex surfaces with
a large number of details, edges and sharp features, and it has stable performance;

• The proposed method has the potential to be applied to industrial environments to replace
traditional on-line point cloud data compression methods (bi-Akima and chordal methods).
Its potential applications may be in the real-time measurement processes of scanning devices
such as contact scanning probes, laser triangle displacement sensors, mobile laser scanners,
linear structured light systems, industrial CT systems, etc. The application feasibility of this
method needs to be further confirmed in subsequent case studies.

However, the proposed method is not perfect and still has the following limitations. In future
work, the following aspects need to be further developed:
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• This method can only handle 3D point cloud data streams and is not suitable for processing
point cloud data containing additional high-dimensional information (e.g., 3D point cloud data
with grayscale or color information). We will try to solve the above problem in our future
research work;

• This method can only compress the point cloud data stream which is scanned layer by layer. If the
3D point cloud is randomly sampled and there are no regular scan lines (e.g., 3D measurement
with speckle-structure light), our method cannot perform effective data compression. It is a huge
challenge to solve the above problems.

5. Conclusions

In an attempt to effectively compress dense point cloud data obtained from a 3D free-form surface
during the real-time scanning measuring process, this paper presents a novel on-line point cloud data
compression algorithm which has the ability to identify and eliminate data redundancy caused by
geometric feature similarity between adjacent scanning layers. At first, the new algorithm adopts
the bi-Akima method to compress the initial point cloud data obtained by 3D scanning measuring
devices. Next, the data redundancy in the compressed point cloud obtained in the previous stage
is further identified and eliminated, and then we can obtain the final compressed point cloud data.
Finally, the proposed on-line point cloud data compression algorithm was tested in the real-time
scanning measuring process and compared with existing methods (the chordal method and bi-Akima
method). The experimental results have preliminarily verified the application feasibility of our
proposed method in industrial environment, and shown that it is capable of obtaining high-quality
compressed point cloud data with a higher compression ratio than other existing methods. In particular,
it can tightly control the deviation within the error tolerance range, which demonstrates the superior
performance of the proposed algorithm. This algorithm could be used in the data acquisition process
of 3D free-form surface scanning measurement to replace other existing on-line point cloud data
compression/reduction methods.
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