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Abstract: Global dynamic analysis of a 700-m-long SFT section considered in the South
Sea of Korea is carried out for survival random wave and seismic excitations. To solve the
tunnel-mooring coupled hydro-elastic responses, in-house time-domain-simulation computer
program is developed. The hydro-elastic equation of motion for the tunnel and mooring is based on
rod-theory-based finite element formulation with Galerkin method with fully coupled full matrix.
The dummy-connection-mass method is devised to conveniently connect objects and mooring lines
with linear and rotational springs. Hydrodynamic forces on a submerged floating tunnel (SFT)
are evaluated by the modified Morison equation for a moving object so that the hydrodynamic
forces by wave or seismic excitations can be computed at its instantaneous positions at every
time step. In the case of seabed earthquake, both the dynamic effect transferred through mooring
lines and the seawater-fluctuation-induced seaquake effect are considered. For validation purposes,
the hydro-elastic analysis results by the developed numerical simulation code is compared with those
by a commercial program, OrcaFlex, which shows excellent agreement between them. For the given
design condition, extreme storm waves cause higher hydro-elastic responses and mooring tensions
than those of the severe seismic case.

Keywords: submerged floating tunnel (SFT); mooring line; coupled dynamics; hydro-elastic
responses; wet natural frequencies; mooring tension; seismic excitation; wave excitation; seaquake

1. Introduction

The submerged floating tunnel (SFT) is an innovative solution used to cross deep waterways [1,2].
The SFT consists mainly of a tunnel for vehicle transportation and mooring lines for station-keeping.
The tunnel is usually positioned at a certain submergence depth, typically greater than 20 m,
with positive net buoyancy that is balanced by mooring lines anchored in the seabed [3,4].

Considering that wave/current/wind effects are greatly reduced, the cost is almost constant
along the length [5], and ship passage is not obstructed by the structure, the SFT has been regarded as
a competitive alternative to floating bridges and immersed tunnels. In this regard, since Norway’s first
patent in 1923 [6], many proposals and case studies have been published worldwide, which includes
Høgsfjord/Bjørnafjord in Norway [7–9], the Strait of Messina in Italy [10], Funka Bay in Japan [11,12],
Qiandao Lake in China [13,14], and the Mokpo-Jeju SFT in Korea [15]. Even though there is no actually
installed structure in the world despite extensive research [16], the first construction of the SFT is being
considered by Norwegian Public Road Administration (NPRA) with global interest [17].

To provide sufficient confidence for the concept, feasibility studies under diverse catastrophic
environmental conditions, such as extreme waves and earthquakes, must be extensively studied in
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advance. Along this line, numerous researches have been carried out to verify structural safety in wave
and seismic excitations on the SFT. Regarding wave-excitation effects, Kunisu et al. [18] evaluated
the effect of mooring-line configurations on SFT dynamic responses including possible snap loading.
Lu et al. [11] and Hong et al. [19] focused on slack mooring phenomena at various buoyancy-weight
ratios (BWRs) of the SFT and inclination angles of mooring lines. Long et al. [3] conducted parametric
studies to investigate the effects of the BWR and mooring-line stiffness. Dynamic motions at varying
BWRs and the corresponding comfort index were investigated by Long et al. [20]. Seo et al. [21]
compared experimental results with simplified numerical approach for a segment of the SFT. Chen et
al. [22] evaluated the influence of VIV (vortex induced vibration) of mooring lines on the SFT dynamic
responses using a simplified numerical model. In addition, with regard to seismic-excitation effects,
Di Pilato et al. [4] carried out a coupled dynamic analysis to investigate the effect of wave and seismic
excitations. Martinelli et al. [13] suggested detailed procedures to generate artificial seismic excitations
and performed the corresponding structural analysis. Dynamic responses at various shore connections
under transverse earthquake were investigated by Xiao and Huang [23]. Martinelli et al. [24] and Wu et
al. [25] focused on hydrodynamic fluid-structure interaction induced by vertical fluid fluctuations
known as the seaquake. Mirzapour et al. [26] derived simplified analytical solutions for 2D and 3D
cases and computed SFT dynamic responses in diverse stiffness conditions. Muhammad et al. [6]
compared the dynamic effects induced by wave and seismic excitations.

During the past decade, various SFT-related studies have been carried out in the second author’s
research lab. Cifuentes et al. [27] compared the dynamics of a moored-SFT segment in regular waves
for various BWRs and mooring types between experimental results and numerical simulations. For the
numerical simulations, both commercial program (OrcaFlex) and in-house program CHARM3D
(Coupled Hull And Riser Mooring 3D) were used for cross-checking. Lee et al. [16] further investigated
the dynamics of the short tunnel segment under irregular waves and random seabed earthquakes.
Then, the initial studies of hydro-elastic responses of a long SFT with many mooring lines by random
waves and seabed earthquakes were conducted by Jin and Kim [28] and Jin et al. [29] by using
commercial software, OrcaFlex. However, when using OrcaFlex for seismic excitations, an indirect
modeling with many seabed dummy masses has to be introduced instead of direct inputs of dynamic
boundary conditions at those anchor points.

In this research, to add the capability of hydro-elastic analyses of a long SFT with many
mooring lines in the in-house coupled dynamic-analysis program, a new approach called
‘dummy-connection-mass method’ is developed. The equation of motion for the line element is
derived by rod theory, and finite element modelling is implemented by using Galerkin method. Linear
and rotational springs are employed to conveniently connect several objects with given connection
conditions. The Adams–Moulton implicit integration method combined with the Adam–Bashforth
explicit scheme, is used for the time-domain-integration method so that stable and time-efficient
numerical integration can be done without iteration. The newly developed program is applied to
calculate the hydro-elastic responses of a 700-m-long SFT (with both ends fixed) with many mooring
lines by extreme random waves or severe random earthquakes. The results from the newly developed
program are cross-checked against those from OrcaFlex program. In the case of seabed earthquake,
the seabed motions are transferred to the SFT through mooring lines and through seawater fluctuations
called seaquake, which is extensively discussed in Section 4 based on the produced numerical results.
In the present study, the effect of seismic-induced acoustic pressure is not considered since the resulting
frequency range is much higher [30], and thus it is of little importance for the mooring design.

2. Configuration of the System

Figure 1 shows 2D and 3D views of the entire structure, and Table 1 summarizes major design
parameters of the tunnel and mooring lines. The tunnel, which has a diameter of 23 m and a length of
700 m, is made of high-density concrete. Since the structure in this study is a section of the 30-km-long
SFT, the fixed-fixed boundary condition at both ends are applied assuming that strong fixtures (or
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towers) will be built at 700-m intervals, as shown in the Figure 1. Considering that the water depth
of the planned site is 100 m, the submergence depth, a vertical distance between free surface and
the tunnel centerline, is set to be 61.5 m. The BWR is fixed at 1.3, and the tunnel thickness is 2.3 m.
The tunnel thickness is actually greater than the real value to have the equivalent tunnel bending
stiffness including inner compartment structures. The axial and bending stiffnesses are calculated
based on the given data of Table 1.

Chain mooring lines with a nominal diameter of 180 mm are used. High static and dynamic
mooring tensions are expected based on the given BWR and wave condition [28]. In addition,
the maximum mooring tension should be smaller than the MBL (minimum breaking load) divided by
safety factor (SF). Thus, chain might be the best choice considering high MBL of 30,689 kN for Grade
R5. As shown in Figure 1, four 60-degree-inclined mooring lines are installed for every 25 m interval
toward the center locations. The lengths of mooring lines are 51.1 m for line #1 and #2 and 37.8 m
for line #3 and #4. The wet natural frequencies of the tunnel hydro-elastic responses coupled with
mooring lines are calculated and presented in Table 2.
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Figure 1. 2D and 3D views of the entire structure.

Table 1. Major parameters of the tunnel and mooring lines.

Component Parameter Value Unit

Tunnel

Length 700 m
Outer diameter 23 m

End boundary condition Fixed-fixed condition -
Material High-density concrete -

Young’s modulus 30 GPa
Bending stiffness (EI) 2.34 × 1011 kN·m2

Axial stiffness (EA) 4.27 × 109 kN
Buoyancy-weight ratio (BWR) 1.3 -

Added mass coefficient 1.0 -
Drag coefficient 0.55 [31] -

Mooring lines
(Chain, Stud-less type)

Length 51.1 (Line # 1 and 2),
37.8 (Line # 3 and 4) m

Mass/unit length 644.7 kg/m
Nominal diameter (d) for wave drag

force calculation 0.18 m

Equivalent outer diameter (DE) for
wave inertia force calculation

0.324
(DE = 1.8d) m

Bending stiffness (EI) 0 kN·m2

Axial stiffness (EA) 2.77 × 106 kN
Added mass coefficient 1.0

Drag coefficient 2.4 [32]
Minimum breaking load (MBL) 30,689 (Grade R5) [33] kN
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Table 2. Wet natural frequencies of the tunnel hydro-elastic responses coupled with mooring lines.

Component Wet Natural Frequency (rad/s) Mode Number

Tunnel (Horizontal direction)
1.92 1st mode
2.70 2nd mode
4.53 3rd mode

Tunnel (Vertical direction)
3.12 1st mode
3.45 2nd mode
4.89 3rd mode

Mooring lines #1 and #2 (Center) 5.78 1st mode

Mooring lines #3 and #4 (Center) 9.04 1st mode

3. Numerical Model

Tunnel-mooring coupled dynamic analysis was conducted by using the in-house program,
CHARM3D. This in-house code has been developed by second author’s research lab for the coupled
dynamic simulations of complex offshore structures with mooring lines and risers during the past two
decades [34,35]. In addition, the capability has further been expanded for various applications including
multiple bodies connected by lines, wind turbines [36], dynamic positioning [37], and ice-structure
interactions [38]. The program is further extended in this paper to study the SFT hydro-elastic
dynamics for seismic excitations. In addition, some of the computed results are compared with
those by widely-used commercial program OrcaFlex for cross-checking. In the following equations,
bold variables represent vectors or matrices.

3.1. Governing Equations of Dynamic Simulation

The entire structure is modelled by rod elements and the rod theory suggested by Garrett [39] is
used. The behavior of the rod element is determined by the position of the rod centerline. The equation
of motion is solved in general coordinate whose tangential direction follows the line profile; therefore,
coordinate transformations, which increase computation time, are not required. In addition, geometric
non-linearity is considered without specific assumptions associated with the shape or orientation of
lines [34]. The equation of motion and the extensible condition are presented in Equations (1) and (2).

− (EIr”)
′′
+ (λr

′
)
′
+ q = m

¨
r (1)

1
2
(r
′ · r′ − 1) =

T
AI E

≈ λ

AI E
(2)

where r(s, t) is a position vector, which is a function of arc length s and time t in order to define space
curve, E is Young’s modulus, I is second moment of sectional area, λ is Lagrange multiplier, q and m are
the distributed load and mass per unit length, T is the tension, and AI is the cross sectional area filled
with the material. In addition, dot and apostrophe denote time and spatial derivatives, respectively.
The distributed load includes the weight of the rod and hydrostatic and hydrodynamic loads induced
by the surrounding fluid. The hydrostatic load is subdivided into buoyancy and force induced by
hydrostatic pressure. The hydrodynamic force is estimated by Morison equation for moving objects,
which consists of linear wave inertia and nonlinear wave drag forces. Thus, Morison equation, which is
given by Equation (3), enables to compute wave force per unit length at instantaneous rod-element
positions at each time step.

Fd = −CAρAE
¨
r

n
+ CMρAE

·
V

n
+

1
2

CDρD
∣∣∣Vn − ·r
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where CM, CA, and CD are the inertia, added mass, and drag coefficients, ρ is density of water,

and AE is the cross-sectional area for the element, D is the outer diameter, and Vn and
·

V
n

represent
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velocity and acceleration of a fluid particle normal to the rod centerline. The inertia coefficient
of the tunnel and mooring lines is 2.0 considering that the added mass is the same as displaced
mass [40]. The drag coefficient of the tunnel is a function of Reynolds number, KC (Keulegan-Carpenter)
number, and relative surface roughness, and the representative value of 0.55 is used here based on the
experimental results (e.g., [31]). The drag coefficient of mooring lines is 2.4 for stud-less chain [32].
It was shown in Cifuentes et al. [27] that the use of Morison equation for SFT dynamics is good enough
compared to the case by using 3D diffraction/radiation panel program. Here, the Morison equation
is further modified to include hydrodynamic force induced by vertical pressure variations during
earthquake excitations i.e., the seaquake effect, as supported by Islam and Ahrnad [41], Martinelli
et al. [24], Mousavi et al. [42], and Wu et al. [25]. In the equation, inertia and drag force terms are

modified by introducing seismic velocity vn
g and acceleration

·
v

n
g as shown in Equation (4). The vertical

component of seismic velocity and acceleration is considered only for the seaquake simulations.

Fd = −CAρAE
¨
r

n
+ CMρAE(

·
V

n
+
·
v

n
g) +

1
2

CDρD
∣∣∣Vn + vn

g −
·
r

n∣∣∣(Vn + vn
g −

·
r

n
) (4)

Therefore, the final form of the equation of motion is given by Equations (5)–(9):
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λ̃ = T̃ − EIκ2 (7)
~
w = w + B (8)

T̃ = T + P (9)

where κ is local curvature,
~
w is wet weight of the rod per unit length, which is comprised of weight w

and buoyancy B, T̃ is effective tension in the rod, and P is the hydrostatic pressure, which is a scalar,
at the position r on the rod. Therefore, Equation (5) combined with the stretching condition given in
Equation (2) are the governing equations for dynamic simulations.

The governing equations are further formulated by Galerkin finite element method [39,43].
The position vector and Lagrange multiplier for a single element of the length L are expressed
as follows:

r(s, t) = ∑
m

Am(s)Um(t) (10)

λ(s, t) = ∑
n

Pn(s)λn(t) (11)

where Am and Pn are shape functions defined on the interval 0 ≤ s ≤ L. The weak form of the
governing equation is generated by using the Galerkin method and integration by part:
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where first and second terms of the right-hand side in Equation (12) are related to moment and force at
the boundary. Cubic and quadratic shape functions, which are continuous on the element, are defined
for the position vector and Lagrange multiplier, respectively:
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A1 = 1− 3ξ2 + 2ξ3, A2 = L(ξ − 2ξ2 + ξ3),
A3 = 3ξ2 − 2ξ3, A4 = L(−ξ2 + ξ3),
P1 = 1− 3ξ + 2ξ2, P2 = 4ξ(1− ξ),
P3 = ξ(2ξ − 1)

(14)

where ξ = s/L. The position vector, tangent of the position vector, and Lagrange multiplier are chosen
to be continuous at the node between the neighboring elements. Therefore, the parameters Um and λn

can be written as:
U1 = r(0, t), U2 = r

′
(0, t),

U3 = r(L, t), U4 = r
′
(L, t),

λ1 = λ(0, t), λ2 = λ(L/2, t), λ3 = λ(L, t)
(15)

The position and its tangent vectors are obtained at both ends of the element while the Lagrange
multiplier are computed at both ends and the middle point of the element. The final finite element
formulation of the governing equation for the 3 dimensional problem are presented in Equation (16).

(Mijlk + Ma
ijlk)

¨
Ujk + (K1

ijlk + λnK2
nijlk)Ujk = Fil (16)

For Ujk, subscript j is dimension, which is 1–3 for the 3 dimensional problem, and subscript k is
for 1–4 given in Equation (15). In Equations (17)–(21), the general mass, the added mass, the general
stiffness from the bending stiffness and rod tension, and external force matrices are defined with
Kronecker Delta function δij:

Mijlk =
∫ L
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mAl Akδijds (17)
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∫ L
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Pn A′ l A′kδijds (20)

Fil =
∫ L

0
(w̃i + F̃d

i )Alds (21)

In addition, the stretching condition can be formulated as given in Equation (22):

Gm = AmilUklUki − Bm − Cmtλt (22)

where

Amil =
1
2

∫ L

0
Pm Ai

′Al
′ds (23)

Bm =
1
2

∫ L

0
Pmds (24)

Cmt =
1

AI E

∫ L

0
PmPtds (25)

A dummy 6 DOF rigid body, which is equipped with negligible properties, is introduced to
conveniently connect the tunnel and mooring lines. The dummy mass means negligible mass (1 kg in
proto type) of dummy rigid body used only for connection purpose. Therefore, force and moment
are transferred by using both linear and rotational springs of very large stiffness from the tunnel and
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mooring lines through the rigid body. Force and moment transmitted from the mooring line to the
rigid body are computed as follows [43]:

~
FP = K̃(T̃P

~
uP −

~
uI) + C̃(T̃P

·
~
uP −

·
~
uI) (26)

where K̃ and C̃ represent coupling stiffness and damping matrices, T̃P denotes a transformation matrix
between the rigid body origin and the connection location,

~
uP and

~
uI are the displacements of the rigid

body and the connecting location. Infinite stiffness values are used in the coupling stiffness matrix
to tightly connect lines, and damping matrix is not utilized in the simulations. Therefore, the entire
stiffness matrix that couples tunnel elements with mooring lines is created as shown in Figure 2.
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mooring lines, n(1) means number of sub-elements of line #1, k is the number of the 6 DOF rigid body).

Newton’s iteration method is used in static analysis of the SFT. The Adams–Moulton implicit
integration method, which has 2nd-degree of accuracy, is used for the time-domain-integration method.
Since instantaneous velocity and acceleration are required to calculate hydrodynamic force from
Morison equation, the Adam–Bashforth explicit scheme is combined with the Adams–Moulton implicit
scheme to avoid iteration.

3.2. Theory of OrcaFlex

A similar approach is used to model the whole structure in OrcaFlex, a well-known commercial
program. The tunnel and mooring lines are modelled by line elements, and the line-element theory
is based on the lumped mass method. The line element consists of a series of nodes and segments.
Force properties are lumped in the node, which includes weight, buoyancy, and drag etc. Stiffness
components i.e., axial, bending, and torsional stiffness, are represented by massless springs [44].
The equation of motion is expressed in Equation (27).

M(p, a) + C(p, v) + K(p) = F(p, v, t) (27)

where M(p, a), C(p, v), and K(p) are mass, damping, and stiffness matrices. F(p, v, t) is external force
vector, which is hydrodynamic force in this case. Symbols, p, v, a, and t denote position, velocity,
acceleration vectors, and time, respectively. Hydrodynamic force is also computed by the same Morison
equation for a moving object with consideration for relative velocity and acceleration. The advantage
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of the developed program compared to OrcaFlex for the present application can be summarized as
follows: (i) In OrcaFlex, hydrodynamic force generated from the seaquake effects is not included.
(ii) In CHARM3D, higher-order rod FE elements are used compared to lumped-mass-based OrcaFlex.
(iii) The seabed movements can be directly imputed in the developed program.

3.3. Environmental Conditions

Simultaneous random-wave and seismic excitations are considered for global performance
analysis. The same wave and seismic time histories are inputted in both programs for cross-checking.
JONSWAP wave spectrum is used to generate time histories of random waves. Significant wave height
and peak period for the 100-year-storm condition are 11.7 m and 13.0 s. Enhancement parameter
is 2.14 that is the average value in Korea [45]. Random waves are generated by superposing 100
component waves with randomly perturbed frequency intervals to avoid signal repetition. The lowest
and highest cut-off frequencies of input spectrum is 0.3 rad/s and 2.3 rad/s, respectively. The wave
direction is perpendicular to a longitudinal direction of the tunnel. A 3-h simulation is carried out to
analyze the statistics of dynamic behaviors and mooring tensions under the storm condition. Figure 3
shows theoretical JONSWAP wave spectrum and the reproduced spectrum from the time histories
of wave elevation. It also shows the time histories of wave elevation produced by the JONSWAP
wave spectrum.

Regular (sinusoidal) and recorded irregular seismic excitations data are also employed.
The amplitude of regular seismic motion in the vertical direction is 0.01 m at diverse frequencies
from 0.781 rad/s to 7.805 rad/s. Figure 4 shows the time histories of seismic displacements and
corresponding spectra for recorded irregular seismic excitations in three directions, which are obtained
by USGS [46]. The earthquake occurred in 78 km WNW of Ferndale, California, USA in 2014, and the
magnitude of this earthquake is 6.8 in Richter scale. Seismic displacements in three directions are
inputted for each anchor point of mooring lines and two ends of the tunnel fixture at every time step.
Hydrodynamic force from the seaquake effect is also computed for the tunnel and mooring lines.
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4. Results and Discussions

4.1. Static Analysis

The developed code is first cross-checked with OrcaFlex in the static condition before dynamic
simulations. Because static displacements of the tunnel are only affected by weight, buoyancy,
and stiffness components of tunnel and mooring lines, direct comparison can be made after initial
modeling of the entire SFT system. Figure 5 shows the vertical displacements of tunnel and mooring
tension in the static condition. The results produced by the developed program coincide well with
OrcaFelx’s results. The reference dashed line in the tension figure indicates the allowable tension
(minimum break load divided by safety factor).
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Figure 5. Submerged floating tunnel (SFT) vertical displacement (a) and mooring tension (b) in the
static condition.

4.2. Dynamic Behaviors under Extreme Wave Excitations

Dynamic simulations under the 100-year-strom condition (Hs = 11.7 m and Tp = 13.0 s) are
performed for three hours. As mentioned before, the same wave time histories are inputted to both
programs to directly compare the dynamics results. Both computer programs produce almost identical
results. Figure 6 shows the envelopes of maximum and minimum for SFT displacements and mooring
tension. The maximum horizontal and vertical responses and mooring tension occur in the middle
location. The horizontal responses are larger than the vertical responses since the 1st natural frequency
of horizontal motion is closer to the input wave spectrum than that of vertical motion. Mooring-tension
results show that shorter mooring lines (Line #3) have higher mooring tension than longer mooring
lines (Line #1). The maximum mooring tension at the middle section is smaller than the MBL (minimum
breaking load) divided by the SF (safety factor), which is presented in Figure 6b as a pink line. Recall
that the MBL is 30,689 kN for Grade R5, which is obtained by DNV regulation [33]. The SF 1.67 is used
as recommended by API RP 2SK [47]. Even if the extreme 100-year-storm condition is considered,
the maximum mooring tension is still smaller than the allowable tension.

Figures 7–9 show the time histories and corresponding spectra of horizontal/vertical responses
of the tunnel and mooring tension at the middle section. The spectra of responses indicate that
wave-induced motions are dominant since the lowest natural frequencies in both directional motions
(1.92 and 3.12 rad/s for horizontal and vertical directions) are away from the dominant input-wave
spectral range of Figure 3. It means that there is negligible contribution from the structural elastic
resonances. In case of mooring tension, under the given BWR = 1.3, snap-loadings characterized by
extraordinary high peaks do not occur, as shown in the time series. However, it should be noted that
the snap-loadings tend to occur at lower BWRs [28]. Obviously, smaller dynamic motions and mooring
tensions can be obtained by further increasing submergence depth [28]. The relevant statistics obtained
from the time series are summarized in Table 3.
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Table 3. Statistics of the SFT motions and mooring tensions at the middle location under 100-yr
irregular wave excitations (from the time series of Figures 7–9).

Parameter Maximum Minimum Standard Deviation Unit

Horizontal displacement 0.243 −0.261 0.059 m
Vertical displacement 0.058 −0.066 0.014

Mooring tension (line #1) 14,765.75 885.56 1917.55

kN
Mooring tension (line #2) 15,276.12 902.94 1919.01
Mooring tension (line #3) 17,334.93 1206.64 2015.53
Mooring tension (line #4) 16,542.11 953.24 2014.32
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4.3. Dynamic Behaviors under Severe Seismic Excitations

Regular and irregular seismic excitations are utilized for SFT dynamic analysis. Since the
fixed–fixed boundary condition is applied at both ends of the tunnel, both ends as well as all anchoring
points are assumed to move together with seismic motions. As a result, seismic time histories are
inputted to every anchor location of mooring lines and both ends of the tunnel. The hydrodynamic
forces generated by sea-water fluctuations under vertical seismic motions are computed by using
modified Morison equation (e.g., Islam and Ahrnad [41], Martinelli et al. [24], Mousavi et al. [42],
and Wu et al. [25]). The effect is well known and called seaquake. As a result, there are two mechanisms
causing SFT dynamics under seabed seismic motions. First, the seismic motions are transferred through
mooring lines. Second, sea-water fluctuations in the vertical direction. In this paper, the former will be
called earthquake effect and the latter will be called seaquake effect. To investigate the seaquake effect,
regular seismic cases only in the vertical direction are simulated and the resulting SFT dynamics are
analyzed. Subsequently, strong real seismic displacements are applied to the SFT system to check the
global performance and structural robustness.

Figure 10 shows tunnel’s vertical motion amplitudes at the mid-section and the corresponding
vertical responses of mooring line #1 at its center under regular (sinusoidal) seismic excitations. Vertical
motions of tunnel are largely amplified at 3.12 rad/s and 4.89 rad/s, the 1st and 3rd natural frequencies.
The amplified tunnel motions at those frequencies directly influence high mooring dynamics, as shown
in Figure 10b. A small peak can also be observed at 5.78 rad/s, the lowest natural frequency of mooring
lines #1 itself.

The hydrodynamic force by seaquake directly acts on the tunnel with earthquake frequencies.
Whereas, the seismic excitations are delivered to the tunnel through mooring lines, as discussed earlier.
Then, the resulting tunnel response also causes hydrodynamic force on the tunnel. Therefore, there exist
phase effects between the two components. We can see that the tunnel dynamics are significantly
reduced after including the seaquake effect when compared to the earthquake-only case. The reason
can be found from Figure 11 by plotting the contribution of each constituent component separately.
In the figure, the phase of the tunnel response induced by earthquake is opposite to that induced by
seaquake at the tunnel’s natural frequencies, 3.12 rad/s and 4.89 rad/s. Therefore, there is cancellation
effect between the two components so that the total vertical response amplitude can be reduced
compared to the earthquake-only case. On the other hand, when earthquake frequency is greater
than 5.7 rad/s, the two components become in phase, so the tunnel vertical responses are increased
compared to the earthquake-only case although the resulting increment is small. The seaquake effects
are not generated by the horizontal seismic motions if the seabed is flat since the horizontal seabed
motions do not influence seawater fluctuating motions.
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location under regular seismic excitations of various frequencies (Eq: earthquake only considered; Eq +
Sq: both earthquake and seaquake considered).
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Figure 11. Time histories of vertical displacements of the tunnel at the middle section by respective
force components under regular seismic excitations of 3.12 rad/s (a), 4.89 rad/s (b), and 5.78 rad/s
(c) (Eq: earthquake only considered; Eq + Sq: both earthquake and seaquake considered; Sq: seaquake
only considered; time histories of seismic excitations are multiplied by 10 for better visualization).

Figures 12–14 show the time histories of horizontal/vertical responses of the tunnel and the
corresponding mooring tensions at the tunnel’s middle section under the real seismic excitations,
as given in Figure 4. The case of earthquake effect only is compared with that of earthquake plus
seaquake. Firstly, in the earthquake-only case, the tunnel responses are greater than the input seismic
motions, horizontally about 3 times and vertically about twice larger. The horizontal responses are
more amplified because its lowest natural frequency is closer to the dominant frequency range of
seismic excitations than that of vertical response. The corresponding tunnel-response spectra show
that they have the first small peak at the seismic frequency, the next highest peak at the lowest natural
frequency, and the next small peak at the third-lowest natural frequency. Mooring tensions are mostly
influenced by the SFT horizontal and vertical motions at their lowest natural frequencies, while there
is virtually little contribution near seismic frequencies. The maximum tensions for this earthquake
case are much smaller than those caused by extreme wave excitations, as previously considered.
However, the earthquake-induced tunnel dynamics can be significantly more amplified when the
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lowest natural frequencies of the tunnel’s elastic responses are closer to dominant seismic frequencies.
In the figure, the same dynamic simulation results by OrcaFlex are also given for cross-checking. The
two independent computer programs produced almost identical results.

In the spectral plots of Figures 12–14, the spectra of tunnel responses and mooring tensions
after adding seaquake effects are also given. In Figure 12, there is little change in the case of SFT
horizontal motions since the seaquake mainly influences only the vertical responses, as was pointed
out earlier. In Figure 13, there is a big reduction in the vertical-response spectrum at its lowest natural
frequency (3.12 rad/s) after including the seaquake effect. It is due to the phase-cancellation effects,
as discussed in the previous regular-earthquake case of Figure 11a,b. So, this reduction effect directly
reflects the reduction in tension i.e., in Figure 14, the tension spectral amplitude is greatly reduced near
3.12 rad/s but remains the same at the lowest natural frequency of horizontal response, 1.92 rad/s.
This trend can also be seen in the corresponding time-series comparisons (Figure 15) for the two
cases (with and without considering the seaquake effect) regarding vertical tunnel responses and
mooring tensions. The relevant statistics obtained from the time series are summarized in Table 4. It is
seen that the inclusion of seaquake effect reduces both vertical SFT responses and mooring tensions,
as discussed earlier.
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Figure 15. Time histories of vertical responses of the tunnel (a) and mooring tension #4 (b) in the
middle location under seismic excitations with and without seaquake effect.

Table 4. Statistics of the SFT motions and mooring tensions at the middle location under irregular
seismic excitations (Eq: earthquake, Sq: seaquake).

Parameter Numerical Model Maximum Minimum Standard Deviation Unit

Horizontal displacement Eq 0.070 −0.073 0.023

mEq + Sq 0.070 −0.072 0.023

Vertical displacement Eq 0.039 −0.042 0.013
Eq + Sq 0.019 −0.019 0.006

Mooring tension (line #1) Eq 9872.22 3783.56 801.58

kN

Eq + Sq 8728.01 4631.84 649.80

Mooring tension (line #2) Eq 9722.09 3291.79 829.07
Eq + Sq 8778.38 4491.79 649.33

Mooring tension (line #3) Eq 12,295.18 4918.66 958.46
Eq + Sq 11,009.40 6691.91 649.58

Mooring tension (line #4) Eq 12,512.53 5633.35 925.67
Eq + Sq 11,001.66 6772.99 652.55

5. Conclusions

Global performance analysis of the SFT was carried out for survival random wave and seismic
excitations. To solve tunnel-mooring coupled hydro-elastic responses, an in-house time-domain-
simulation computer program was developed. The hydro-elastic equation of motion for the tunnel
and mooring was based on rod-theory-based finite element formulation with Galerkin method.
The dummy-connection-mass method was devised to conveniently connect multiple segmented objects
and mooring lines with linear and rotational springs. Considering the slender shape of the structure,
hydrodynamic forces were computed by the modified Morison equation. The numerical results
produced by the developed program were in good agreement with those by the commercial program
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OrcaFlex based on lumped-mass method. The extreme wave excitations caused the maximum SFT
dynamic motions of 24 cm and 6 cm in the horizontal and vertical directions and the corresponding
mooring tensions below allowable level. Snap motions and loadings of mooring lines were not
observed. Under regular seismic excitations, large resonant responses of the tunnel were observed at 1st
and 3rd natural frequencies. In the case of seabed earthquake, the seabed motions are transferred to SFT
through mooring lines and through seawater fluctuations called seaquake. When the latter is further
considered, horizontal responses were not affected but vertical responses become significantly reduced
especially at its lowest natural frequency. After analyzing the behaviors of the two contributions,
it was found that the reduction was caused by the phase-cancellation effect. However, in other
cases, the phases could enhance each other to increase the total responses of the SFT. Under extreme
irregular seismic excitations, the maximum SFT dynamic motions of 7 cm and 2 cm were generated
and the corresponding mooring tensions were about 30% smaller compared to the extreme wave case.
However, when the frequencies of seismic excitations are closer to SFT natural frequencies, larger
dynamic amplifications are expected.
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