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Featured Application: An innovative non-intrusive and self-organizing neuro-fuzzy classification
in an Internet of Things-oriented energy management system for smart homes was developed.

Abstract: Smart cities are built to help people address issues like air pollution, traffic optimization,
and energy efficiency. Electrical energy efficiency has become a central research issue in the energy field.
Smart houses and buildings, which lower electricity costs, form an integral part of a smart city in a
smart grid. This article presents an Internet of Things (IoT)-oriented smart Home Energy Management
System (HEMS) that identifies electrical home appliances based on a novel hybrid Unsupervised
Automatic Clustering-Integrated Neural-Fuzzy Classification (UAC-NFC) model. The smart HEMS
designed and implemented in this article is composed of (1) a set of IoT-empowered smart e-meters,
called smart sockets, installed as a benchmark in a realistic domestic environment with uncertainties
and deployed against non-intrusive load monitoring; (2) a central Advanced Reduced Instruction
Set Computing machine-based home gateway configured with a ZigBee wireless communication
network; and (3) a cloud-centered analytical platform constructed to the hybrid UAC-NFC model for
Demand-Side Management (DSM)/home energy management as a load classification task. The novel
hybrid UAC-NFC model proposed in DSM and presented in this article is used to overcome the
difficulties in distinguishing electrical appliances operated under similar electrical features and
classified as unsupervised and self-organized. The smart HEMS developed with the proposed novel
hybrid UAC-NFC model for DSM was able to identify electrical household appliances with an
acceptable average and generalized classification rate of 95.73%.

Keywords: IoT; load disaggregation; neuro-fuzzy classification; non-intrusive load monitoring;
unsupervised learning; smart homes

1. Introduction

Owing to global warming and climate change, monitoring and managing residential, commercial,
and industrial major electrical appliances is of vital importance. Major appliances are controlled and
used to respond to Demand Response (DR) schemes from power utilities, so that electrical energy
efficiency related to energy demand from downstream sectors in a smart grid can be improved
and greenhouse gases produced from carbon pollution can be reduced. DR schemes offer financial
incentives to take actions to reduce or shift loads in correspondence to market price behavior.
DR plays a crucial role in efficiently capturing the benefits of Demand-Side Management (DSM)
to ensure demand flexibility including peak load reduction [1]. To track electrical energy efficiency of
individual electrical appliances that are monitored and managed in fields of interest, one way is to
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use Internet-of-Things (IoT)-oriented Energy Management Systems (EMS), where energy Information
and Communication Technology (ICT) is applied for DSM. In an IoT-oriented EMS deployed in
a field of interest, plug-load smart e-meters, called smart sockets, are installed for individual
electrical appliances and are wirelessly networked with a centralized gateway. In a smart home
connected to a smart grid via Advanced Metering Infrastructure (AMI), the IoT-oriented Home
EMS (HEMS), which identifies power consumption on individual major household appliances by
many smart e-meters, monitors each individual major household appliance intrusively. However,
conducting HEMS burdens consumers with a large construction investment and annual maintenance
costs [2].

In contrast with HEMS conducted for DSM/home energy management, Non-Intrusive Load
Monitoring (NILM) analyzes composite electrical signals acquired from only one minimal set of
plug-panel voltage and current sensors and then provides appliance-level energy usage information
and monitors each individual major household appliance non-intrusively. NILM conducted in a
smart home with an IoT-oriented HEMS, considered part of DSM in a smart grid, is a cost-effective
technique [3] for extracting appliance-level energy consumption information by monitoring and
analyzing aggregated signals acquired at the entrance of electric power from a utility. NILM has been
examined and applied in many previous studies [3–19]. In Ayub et al. [3], NILM was treated as a
linear integer-programming problem, and was solved by an iterative clustering algorithm. Du et al. [4]
presented a novel hybrid classification technique that combines the supervised self-organizing feature
map with Bayesian classification for NILM. The diversity and similarity of different types of electrical
household appliances operated and classified under similar steady-state electrical features were
considered in Du et al. [4]. However, the novel hybrid classification technique in Du et al. [4] cannot
classify household appliances with multi-state transitions. The classification of electrical household
appliances addressed in Du et al. [4] requires an in-depth investigation on operation principles of
household appliances [5].

To classify electrical household appliances with multi-state transitions under similar electrical
features, Lin et al. [6] proposed an NILM as load classification using fuzzy logic theory considering
uncertainties. A mechanism that can automatically and systematically construct fuzzy classifiers
in a nearest neighborhood manner was not developed for NILM in Lin et al. [6]. In Azaza et al. [7],
the k-nearest neighbors (k-NNR) method, producing an error rate that ranged from 20% to 29% was
used to recognize residential appliances. In other prior studies [8–10], a Discrete Wavelet Transform
(DWT)-based transient feature extraction method for NILM was proposed. DWT allows simultaneous
time and frequency localization, whereas time localization by Fast Fourier Transform (FFT) is
not possible. In these three studies [8–10], DWT, instead of FFT, was conducted and used to detect and
analyze transient response of electrical appliances as feature extraction for NILM. Chang et al. [11,12]
proposed a hybrid classification strategy that combines the conventional Particle Swarm Optimization
(PSO) with Back-Propagation-Artificial Neural Networks (BP-ANNs) for NILM. The conventional PSO
optimizes the weight coefficients of the BP-ANNs, with the purpose of improving the classification
accuracy of load classification. The strategy proposed in Tabatabaei and Chang et al. [10,11] was verified
by Electromagnetic Transients Program simulations and field measurements. The results reported
indicate the proposed strategy significantly improves the recognition accuracy and computational
efficiency of the BP-ANNs under multiple load operation conditions. The k-NN and BP-ANNs were
used as load classifiers to classify electrical appliances monitored [7–9,11,12]. However, k-NN and
BP-ANNs cannot handle uncertainties in electrical appliances or operational combinations of electrical
appliances monitored and classified with similar electrical characteristics, resulting in ambiguities on
feature data.

Advanced machine learning has been applied in NILM. In Zeifman et al. [13], a new Markov-style
probabilistic framework for NILM was proposed, wherein a modified Viterbi algorithm that uses
approximate semi-Markov models to retain a robust computationally-efficient solution to pristinely
infer draws of real power (P) of monitored electrical household appliances, was applied and evaluated
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in a residence. The main advantage of the modified Viterbi algorithm proposed in Zeifman et al. [13]
is that the complexity of the NILM is linearly proportional to the number of household appliances
monitored. However, the complexity of the NILM by other Markov-style probabilistic algorithms,
which model household appliances by a factorial Hidden Markov Model [14–16], exponentially
grows with the number of household appliances monitored [17]. The Markov-style probabilistic
algorithms [13–16] experience the same problem in which they are not capable of addressing household
appliances with similar P [17].

Ambiguities from similar P exist in feature data. The Graph Shift Quadratic Form constrained
Active Power Disaggregation algorithm [18] is also unable to address household appliances that
are identical in P. In addition to P, where there may be multiple electrical appliances with a
similar power level, power patterns, such as characteristics retrieved from household appliances,
were considered for NILM and identified by dynamic time warping in Wang et al. [19]. The NILM
techniques developed in the past and surveyed above have improved feature extraction with
developed classification algorithms; however, difficulties still remain in distinguishing electrical
appliances operated under similar electrical features and classified as unsupervised and self-organized.
Electrical appliances with similar electrical features are difficult to discern.

This article focuses on designing and implementing an IoT-oriented smart HEMS based on a novel
hybrid Unsupervised Automatic Clustering-integrated Neuro-Fuzzy Classification (UAC-NFC) model
in NILM, in order to overcome the difficulties in distinguishing electrical appliances operated under
similar electrical features showing ambiguities and classified as unsupervised and self-organized.
Fuzziness [6] in fuzzy theory is introduced in the hybrid UAC-NFC model proposed in this article.
This work is a revision of the original work by Lin et al. [6]. NILM identifies individual electrical
appliances by analyzing composite electrical signals acquired by only one single set of plug-panel
voltage and current sensors in a field. The hybrid UAC-NFC model proposed in this article is able to
handle uncertainties in which electrical appliances monitored in a realistic experimental household
environment are used and classified under similar electrical features. The NFC used is piloted
and constructed in an unsupervised and self-organized manner. The diversity and similarity of
different types of electrical appliances operated and classified under similar electrical features are
also considered. The proposed hybrid UAC-NFC model is implemented and evaluated in a realistic
house environment with uncertainties.

The remainder of this article is organized as follows. The IoT-oriented smart HEMS with the
proposed hybrid UAC-NFC model is presented in Section 2. Section 3 demonstrates the work
completed in this article. The smart IoT-oriented HEMS with the proposed hybrid UAC-NFC model
was deployed and evaluated in a realistic house environment with uncertainties, which was used to
classify household appliances monitored. Section 4 concludes this article with its future work.

2. Design and Implementation of IoT-Oriented Smart HEMS Having the Proposed Novel Hybrid
UAC-NFC Model Applied for NILM

The IoT-oriented smart HEMS utilizing the novel hybrid UAC-NFC model proposed in this
article for NILM is presented in this section. Section 2.1. introduces the IoT-oriented smart HEMS
conducted for DSM/home energy management and deployed in a house environment for smart homes;
Section 2.2 introduces the novel hybrid UAC-NFC model developed for IoT analytics of the HEMS
to DSM.

2.1. IoT-Oriented Smart HEMS

Figure 1 shows a block diagram of the centralized IoT-oriented smart HEMS [6] with the proposed
novel hybrid UAC-NFC model applied for NILM. The HEMS conducted in a house environment is
an ARM® (Advanced RISC Machine) CortexTM-A9-based embedded system (Texas Instruments Inc.,
Dallas, USA), which is configured with an LAMP (LinuxTM Operating Systems (Linus Torvalds,
Helsinki, Suomi) + Apache HTTP server (Apache Software Foundation, Forest Hill, MD, USA) +



Appl. Sci. 2018, 8, 2337 4 of 17

MySQLTM relational database (Oracle Corporation, Redwood City, CA, USA) + server-side PHP
(PHP: Hypertext Preprocessor) scripting language (Rasmus Lerdorf, Qeqertarsuaq/Disko Island,
Greenland)) development stack [6]. The HEMS—Home Gateway (HG)—serves as a central home
controller connecting the house with a utility for DSM/home energy management via AMI in a
smart grid. The centralized HEMS is able to continually determine the power consumption for each
major household appliance monitored and networked together through a ZigBee (Zigbee Alliance,
Davis, USA)-based wireless communication network. I chose to use the ZigBee-based plug-load smart
e-meters in this article to evaluate the recognition rate of the proposed novel hybrid UAC-NFC model
applied for NILM.
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Figure 1. Block diagram of the centralized Internet of Things (IoT)-oriented smart Home
Energy Management System (HEMS) with the proposed novel hybrid Unsupervised Automatic
Clustering-integrated Neuro-Fuzzy Classification (UAC-NFC) model applied for Non-Intrusive Load
Monitoring (NILM).

The model applied for NILM was implemented on a laptop computer in the LabVIEWTM (National
Instruments, Austin, TX, USA) environment with MATLAB® (The MathWorks, Inc., Natick, MA, USA).
As shown in Figure 1, the ZigBee wireless communication technology, an ICT, was conducted in
the HEMS. A standardized MySQLTM (Oracle Corporation, Redwood City, USA) Connector/Open
Database Connectivity (ODBC) driver, LabSQL (Jeffrey Travis Studios LLC, Austin, TX, USA) Virtual
Instruments using the ActiveX (Microsoft, Redmond, USA) Data Objects (ADO) for object collection,
and Structured Query Language (SQL) in LabVIEWTM were installed, conducted, and used. Due to
the ZigBee wireless communication network, the HG communicating with the household appliances
was able to remotely direct/distribute load control considering DSM/home energy management.
An enabled remote access MySQLTM relational database was configured on the HG. Common Gateway
Interface (CGI) programs were coded. The HyperText Transfer Protocol (HTTP) server can interact
dynamically with homeowners. An HTTP server-based user interface, showing detailed electrical
energy information identified by the HEMS utilizing the novel hybrid UAC-NFC model, was designed.

Figure 2 shows the workflow of a typical NILM [6], applied in this article and deployed on
the centralized HEMS and studied against the centralized HEMS as a benchmark. In an NILM
using the novel hybrid UAC-NFC model proposed in this article, both the raw composite analog
current and voltage signals are simultaneously and continuously acquired by a National Instruments
(NI)TM Data Acquisition (DAQ) device (National Instruments, Austin, TX, USA) with low-pass
filters and Analog-to-Digital Converters (ADC). The DAQ device was installed at the main electrical
panel of a realistic house field. The raw composite analog voltage and current signals sensed
by one single minimal set of voltage and current sensors are filtered through low-pass filtering.
Then, the signals without high-frequency noisy signals removed are digitalized via analog-to-digital
conversion. Once the digitized composite signals are analyzable, the NILM executes (1) feature
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extraction by steady-state analysis and (2) load classification using the novel hybrid UAC-NFC model
applied to extracted and normalized electrical feature data.
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The NILM in Figure 2 was implemented on a laptop computer wired with the NITM DAQ device
(National Instruments, Austin, TX, USA) via a USB interface. In the NILM, event detection aims
to detect abrupt power changes that reflect energizing or de-energizing events of one household
appliance operated for use and monitored for DSM. Minor power changes in P are not treated
for load classification, as minor power consumption of electrical appliances is viewed as base load.
The proposed NILM takes signature readings, analyzes it, and then deduces which electrical household
appliance(s) is being energized or de-energized. The proposed novel hybrid UAC-NFC model can be
used to classify electrical features extracted with ambiguities.

In the NILM, the proposed novel hybrid UAC-NFC model and developed as a revision of the
previously-implemented algorithm in Lin et al. [6] implements load classification, used to classify
electrical features representing operations of electrical household appliances monitored and operated
under similar electrical features as uncertainties in a realistic house environment.

The proposed novel hybrid UAC-NFC model learns from a training dataset collected on-site
and off-line. On-line load monitoring is executed once the training process of the hybrid UAC-NFC
has finished. The hybrid UAC-NFC proposed in this article is introduced in Section 2.2. As the main
focus of this article is the design and implementation of a novel load classifier that identifies different
types of electrical appliances modeled in an unsupervised and self-organized manner and identified
with similar electrical features, on-line training is not discussed in this article. In the NILM developed in
this article for DSM/home energy management, measured physical meanings—power profiles—from
monitored electrical household appliances for long-term load classification vary. Ambiguities exist
in feature data extracted from monitored electrical household appliances for load classification.
As a result, fuzzy theory is used in this article. This article proposes a novel hybrid UAC-NFC model
considering uncertainties to classify electrical household appliances modeled in an unsupervised
and self-organized manner and identified with similar electrical features. Compared with the table
look-up scheme where membership functions of a fuzzy classifier are fixed, or the method that
establishes fuzzy rules based on the basic experience [20], the proposed novel hybrid UAC-NFC
model is capable of automatically organizing the structure of its fuzzy membership functions in an
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unsupervised manner. Also, structure parameters of the self-organized model are free to be trained
according to collected input-output data pairs. Fuzziness [6] in fuzzy theory is introduced in the
proposed hybrid UAC-NFC model. In this article, a cross-validation strategy [21] is used to manage
sampled data with systematic errors where electrical household appliances monitored operate with
similar electrical features resulting in ambiguities on data.

2.2. Novel Hybrid UAC-NFC Model

NFC [6] is presented first. Suppose that a rule base has the form of fuzzy IF-THEN rules as shown
in Equation (1) [22]:

Ru(l) : IF x1 is Al
1 and . . . and xn is Al

n, THEN y is Bl , (1)

where Ai
l and Bl are fuzzy sets in Ui ⊂ R and V ⊂ R, respectively; Ai

l is characterized by normalized
Gaussian membership functions; Bl is characterized by fuzzy singleton yl ; x = (x1, x2, . . . , xn)T ∈ U ⊂
Rn and y ∈ V ⊂ R are input and output linguistic variables, respectively; and M is the total number of
fuzzy rules; l = 1, 2, . . . , M.

By adopting a singleton fuzzifier, product inference engine, and center average de-fuzzifier,
a fuzzy classifier with the form of fuzzy rules in Equation (1) has the form [22]:

f (x) =
∑M

l=1 yl [∏n
i=1 exp(−( xi−xl

i
σl

i
)

2
)]

∑M
l=1 [∏

n
i=1 exp(−( xi−xl

i
σl

i
)

2
)]

(2)

where f (x) = y ∈ V ⊂ R is the computed de-fuzzified output with respect to input x; the symmetric
Gaussian membership functions depend on the two factors: σl

i ∈ (0, ∞) and xl
i ∈ R; and yl ∈ R are the

real-valued adjustable parameters of the fuzzy classifier.
The NFC of Equation (2) becomes an optimal NFC, where the one fuzzy rule in Equation (1) is

used to match one input-output pair in a collected dataset, if each input-output pair in the dataset
is viewed as a fuzzy IF-THEN rule. The zero-order Sugeno model, a crisply defined constant in the
following, is used in the NFC of Equations (1) and (2) in this article.

For a classification problem, the decision making of the NFC constructed and trained is based on:

Class label = argmin
c=1,2,...,w

(| f (x)− Classc|) (3)

where Classc, an integer, stands for class label c and w is the total number of load classes.
The fuzzy classifier in Equation (2) can be viewed as a feed-forward ANN-architecture

NFC [6,22], as shown in Figure 3. In this article, the NFC of Equation (2) is integrated with the UAC,
nearest-neighbor clustering, to construct an NFC in an unsupervised and self-organized manner.
The hybrid UAC-NFC model proposed in this article was implemented and used to construct the
NFC in Equation (2). Also, The Gradient-Descent (GD) algorithm [22–26], a first-order iterative
optimization algorithm for finding the minimum of a given cost function in ANN, is used to train
the NFC. In this article, the UAC pilots the NFC to automatically initialize the adjustable network
parameters of the constructed NFC. As a result, there is no need to pre-specify the number of clusters
to discover data.

The flowchart of the proposed hybrid UAC-NFC model is illustrated in Figure 4. In this novel
hybrid UAC-NFC model, two stages are involved.

In stage 1, a UAC process (nearest-neighbor clustering) is used to automatically cluster
input-output data pairs from a given dataset collected prior. With the use of UAC instead of the
FCM conducted in Lin et al. [6], there is no need to know the number of clusters to be discovered
beforehand. The adjustable parameters of Equation (2) are then heuristically allocated. After the UAC
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is applied to a collected dataset, discovered data are automatically clustered. Following the UAC
process mentioned above, the training process, GD, starts in stage 2. In stage 2, the GD process is
used to train the constructed NFC of Equation (2), forming from the adjustable parameters allocated
in an unsupervised and self-organized manner and trained from a collected set of data pairs. Finally,
the trained UAC-NFC model is applied for load classification in NILM.

The constructed hybrid UAC-NFC model was applied on collected input-output data pairs.
The cluster centers found through the UAC process and specified as data points in the same clusters
were used to heuristically allocate the adjustable parameters of the Gaussian membership functions of
Equation (2):

(1) The center parameter xi,j of Gaussian membership function j on universe of discourse i is
initialized by component i of cluster center j, where i = 1, 2, . . . , n; n is the total number of
universes of discourse (input variables); j = 1, 2, . . . , NMF; and NMF, which equals k in the
UAC process, is the total number of Gaussian membership functions (cluster centers) on each
of universes of discourse. There are k clusters resulting in k × k fuzzy partitions in a feature
space as the partition space in fuzzy logic. The partition space containing k × k fuzzy partitions
is square to the UAC used in this article. The value of k is identified through the UAC process,
nearest-neighbor clustering.

(2) The spread/width parameter σi,j of Gaussian membership function j on universe of discourse i is
initialized by:

σi,j = α · (x′i − xi,j) (4)

where x′i is component i of a data point that belongs to cluster j with the computed maximum
distance between it and one data point in the same cluster and α, a real number, is a
non-zero constant.

(3) Based on the results by the UAC process, heuristically allocate the singleton parameters
{

yl
}M

l=1
of Equation (3) with the desired output of collected input-output data pairs. The output of
the NFC used in this article is defined as the class {0, 1, 2, . . . } of load combinations classified.
Each single parameter is assigned a unique class label: class label 0, class label 1, class label 2, . . . ,
or class label w.
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After the UAC process shown above is complete, the GD process works as follows. Assume that
the following input-output data pairs are collected: {(xp, yp)}N

p=1, where xp ∈ U ⊂ Rn and yp ∈ V ⊂ R.
The goal of the NFC constructed for load classification in NILM is to fine tune the free parameters of the
fuzzy membership functions based on these N input-output data pairs. In Equation (2), σl

i , xl
i , and yl

are automatically constructed through the UAC process. Once these parameters are pre-specified
by the UAC, the quasi-optimal structure of the NFC trained by the GD process can be obtained.
The GD process is used to update the adjustable parameters of the initialized NFC, according to
Equations (5)–(7) at the qth iteration of the training process with a present input-output data pair (xp, yp).
The training process is performed with q = q + 1, until the UAC-NFC is trained and terminates when
total error ∑|f (xp) − yp| with p = p + 1 is less than or equal to a pre-specified tolerance is satisfactory.
Usually, the training process terminates when the maximum training iteration pre-specified is met.

yl(q + 1) = yl(q)− η[
f (xp)− yp

∑M
l=1 ∏n

i=1 exp(−( xi−xl
i

σl
i

)
2
)

][
n

∏
i=1

exp(−(
xi − xl

i

σl
i

)

2

)] (5)

where η is a real number pre-specified within (0, 1], which is the training rate.
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xl
i(q + 1) = xl

i(q)− η[ f (xp)−yp

∑M
l=1 ∏n

i=1 exp(−(
xi−xl

i
σl

i
)

2

)

][yl(q)− f (xp)][∏n
i=1 exp(−( xi−xl

i
σl

i
)

2
)][

2(xp
0i−xl

i(q))
σl2

i (q)
] (6)

σl
i (q + 1) = σl

i (q)− η[ f (xp)−yp

∑M
l=1 ∏n

i=1 exp(−(
xi−xl

i
σl

i
)

2

)

][yl(q)− f (xp)][∏n
i=1 exp(−( xi−xl

i
σl

i
)

2
)][

2(xp
0i−xl

i(q))
2

σl3
i (q)

] (7)

The procedure of the novel hybrid UAC-NFC model proposed in this article is summarized in
Table 1.

Table 1. The hybrid Unsupervised Automatic Clustering-integrated Neuro-Fuzzy Classification
(UAC-NFC) model proposed in this article.

Stage 1. Automatically construct the UAC-NFC model proposed in this article

Inputs:
D = {x1, x2, x3, . . . , xp, . . . , xN} // N input-output data pairs to be clustered automatically
r // radius

Output:
K // Set of k clusters

Run the UAC process:
K1 = {x1}. // the first cluster initialized by x1

Add K1 to K.

k = 1.

for i = 2 to N Do // for x2, x3, . . . , xp, . . . , xN

Find data point xm in cluster Km ⊂ K, where dist(xm, xi), the Euclidean distance between xm and xi, is the
smallest.
if dist(xm, xi) < r, then
Km = Km ∪ {xi}. // the same cluster updated
else
k = k + 1.
Kk = {xi}. // a new cluster created
Add Kk to K.
End for

Initialize the adjustable parameters, yl(0), xl
i(0), and σl

i (0), of the NFC of Equation (2) based on the clustering
results obtained through the UAC process above and described in Section 2.2.

Stage 2. Execute the GD process [22–26] to train the UAC-NFC model constructed in Stage 1

Do
for q = 0 to qmax Do
for p = 1 to N Do
Present the pth input-output data pair (xp, yp), and compute the output of the NFC associated with the present
data pair at the qth iteration of the training process in the forward propagation of the training process.
Update the adjustable parameters of the NFC according to Equations (5)–(7), in the backward propagation of
the training process.
End for
Obtain total error Σ|f (xp) − yp| with p = p + 1.
End for
While The NFC is not satisfactory with a high total error

The intelligent-particle swarm optimization technique in Lin et al. [6] can be conducted in
the second stage of the proposed hybrid UAC-NFC model and be used to fine tune the adjustable
parameters of the constructed NFC. Sampling is biased if it systematically favors some observations
over others. Sampling bias is sometimes called systematic bias. For load classification as predictive
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modeling in DSM/home energy management, data being sampled through data acquisition, and then
analyzed via feature extraction, evolve over time with a systematic bias between separate training and
test datasets. Thus, a cross-validation procedure [21] was conducted to deal with data sampled with
systematic errors.

3. Experiment

The IoT-oriented smart HEMS with the developed novel hybrid UAC-NFC model was
experimentally validated by being deployed in a realistic residential field with uncertainties.
The experimental set-up of the deployed smart HEMS, as a benchmark against the NILM in a realistic
house environment with uncertainties in Taiwan, is illustrated in Figure 5 [6,22]. Major electrical
household appliances classified by the novel hybrid UAC-NFC model operated with similar
electrical features. In this experiment, features extracted, normalized, and classified in the NILM
were P and reactive power (Q). As there may be multiple electrical appliances with a similar
power level, P does not represent a particular appliance. So, the proposed model identifies
electrical appliances based on P and Q as the distinctive characteristics. In the HEMS, ZigBee
wireless communication technology was used. A standardized MySQLTM Connector/ODBC driver,
LabSQL Virtual Instruments, using the ADO (ActiveX Data Objects) object collection, and SQL in
LabVIEWTM, were installed and used. For DSM/home energy management addressed, the flow of
data stores, signal requests, and remote controls of electrical appliances monitored by the HEMS
with the proposed novel hybrid UAC-NFC model are shown in Figure 6. DSM was mainly realized
through a heterogeneous network involving ZigBee, Radio Frequency (RF), and Infrared Radiation
(IR). Universal Asynchronous Receiver/Transmitter (UART), an RS232 RTU-format protocol, was used
in the HEMS.

The deployed smart HEMS with the proposed novel hybrid UAC-NFC model was used to
identify major electrical household appliances. In the HEMS, MATLAB® and NITM LabVIEW software
suites installed on an ASUS ZENBOOKTM Prime CoreTM i7 UX31A laptop (ASUSTeK Computer Inc.,
Taipei, Taiwan) were used to implement the novel hybrid UAC-NFC model. Using MATLAB®

software script server, MATLAB script in LabVIEWTM calls the MATLAB® software to execute scripts.
In this experiment, major household appliances identified in Line Branch 1 (L1) of the residential field
included an electric rice cooker (~ 1.10 kW), a multi-mode electric water boiler (~ 0.90 kW), a steamer
(~ 0.80 kW), and a television (~ 0.22 kW). The base load in L1 in the household environment was
~ 0.55 kW, which includes permanent loads. The power source of the electrical wiring of the house
environment in Taiwan is AC110 V/60 Hz. The composite current and voltage signals acquired from
the main electrical panel of the house environment were simultaneously and continuously sampled
by an NITM 9225 DAQ device. The incoming analog signals on each channel of the DAQ device
were conditioned, buffered, and then sampled by a 24-bit Delta-Sigma ADC (Texas Instruments Inc.,
Dallas, USA). With the purpose of providing an accurate representation of in-band signals while
rejecting out-of-band signals, the DAQ device uses a combination of analog and digital filtering.
An active current transformer that generates output voltage that is proportional to input current was
hooked in L1. Its output voltage was wired to one of the channels of the DAQ device. The AC power
source of 110 V/60 Hz was directly wired to one of the channels of the DAQ device. The data rate of the
DAQ device was set to 2000 samples/s. The DAQ device passed the digitized signals to the laptop via
a USB interface every second for the novel hybrid UAC-NFC model in NILM. The laptop ran the NILM
to identify if the household appliance(s) was (were) being operated for not. The centralized HEMS,
as a benchmark, continually collected data from each of the individual major household appliances
every 20 s by talking to the installed ZigBee-based plug-load smart e-meters.

ZigBee is an efficient short-range wireless technology in terms of power consumption and
deployment scalability [27]. ZigBee Alliance [28] was formed in 1998 by Honeywell Corporation
(Honeywell International Inc., Morris Plains, USA), whose aimed to use IEEE 802.15.4 low-power
wireless network protocols as the basis for the development of the specification of IoT applications.
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The ZigBee protocol is a low-power wireless transmission protocol, providing a suitable data rate for
control and monitoring purposes of smart houses as a use case [27]. So, the ZigBee-based wireless
communication network was used in the residential environment for the HEMS presented in this article.
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In this experiment, the total number Napp of electrical household appliances powered by
L1 of the electrical wiring in the residential environment and monitored by the smart HEMS,
having the proposed novel hybrid UAC-NFC model, was four. In total, 16 (2Napp) operational
combinations/classes had to be classified. The household appliances monitored in the residential
environment included inductive and resistive loads. The load operation scenarios classified included
the scenarios where household appliances are simultaneously energized or de-energized. In this
experiment, 4 load operation scenarios were excluded, since, in reality, the power-intensive household
appliances should not be used at the same time as the conductor would overload. The centralized
HEMS communicating with the plug-load smart e-meters via a ZigBee-based wireless communication
network identified the monitored household appliances intrusively. The NILM using the novel
hybrid UAC-NFC model to analyze the composite voltage and current signals, acquired at the main
electrical panel in the residential environment, classified the household appliances non-intrusively.
In Lin et al. [22], only one electrical feature, P, was considered for load classification. In Lin et al. [6],
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a mechanism that systematically constructs an NFC by grouping input-output data pairs into clusters
to represent fuzzy if-then rules in an unsupervised and self-organized manner was not developed.

In this article, a novel hybrid UAC-NFC model is developed and evaluated using this experiment.
In this experiment, on-site 80 voltage and current measurements were recorded off-line for each load
operation scenario: 40 randomly-chosen voltage and current measurements were used for training,
while the remaining 40 voltage and current measurements were used for tests. A total of 960 data pairs
were collected. Figure 7 illustrates the feature space of P (Watts) and Q (Var) in this experiment. P and
Q stand for real power and reactive power measured, respectively, which were extracted from the
electrical household appliances and used as the electrical features/input feature variables for the NILM
as a load classification task for the NFC. There are 12 classes in Figure 7, which are addressed and
listed in Table 2. Observation of feature data in Figure 7 shows that high ambiguity existed in the data.
The ambiguity was caused by uncertainties where household appliances were identified under similar
P and Q. Thus, NFC was conducted. As illustrated in Figure 7, the 12-class load classification problem
can be de-composed into 3 classification problems following a divide-and-conquer process.
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The proposed hybrid UAC-NFC model proposed was applied to cases 1 and 2. In this experiment,
the UAC process, the nearest-neighborhood clustering in Section 2.2., was first applied to feature data in
Figure 7. Following the UAC process used to automatically construct the NFC of Equation (2) without
supervision, the GD process fine tunes the free parameters of the constructed NFC of Equation (2).

The GD process trains the constructed NFC. The NFC, shown in Figure 3 and trained through
the GD process, included three network layers, and its training rule was based on Equations (5)–(7).
In the NFC, the Gaussian-type membership function, rather than other types of membership function,
was chosen for the following three reasons. First, the total number of free parameters to be trained was
minimized because the Gaussian-type membership function only requires two factors to be formulated.
Second, the Gaussian-type membership function ensures that the firing strength of each fuzzy
rule computed is always non-zero. Third, the Gaussian-type membership function is continuously
differentiable, and its derivative is always non-zero.
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Table 2. Twelve classes addressed in this experiment.

Load Class !,* Electric Rice Cooker Electric Water Boiler Steamer Television

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 - - - -
7 - - - -
8 1 0 0 0
9 1 0 0 1

10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 - - - -
15 - - - -

! The four load operation scenarios were excluded, since, in reality, the power-intensive household appliances
monitored should not be used (0/1: Off/On) at the same time, so the conductor will not be overloaded. * The NILM
performed by the UAC-NFC model for DSM was used to identify which individual major electrical appliance(s) is
being turned on or off when each electrical feature reading extracted from aggregated signals is taken apart with
chronological time information and is classified, which can be viewed as an energy audit.

The inputs of the NFC in Figure 3 directly convey the extracted and normalized electrical features.
During the experiment, feature data were normalized within [0, 1]. The output of the NFC in Figure 3
is an identified class label. Two-fold cross validation was conducted. In the novel hybrid UAC-NFC in
case 1, during the UAC process, r, the radius in Table 1, was set to 0.3. α in Equation (4) is 1. During the
GD process, the training rate, η, was 0.023; a value for the maximum training iteration of 500 was used.
A trained Mean Squared Error (MSE) of 0.004 was achieved, which produced an overall classification
rate of 92.92% in training. The overall classification rate in tests was 95.83%, which was obtained with
a value of MSE of 0.003 in case 1.

In the novel hybrid UAC-NFC in case 2, during the UAC process, r was set to 0.3. α in Equation (4)
was 1. During the GD process, the training rate η was 0.01; the maximum training iteration value of
500 was used. The trained MSE of 0.006 was achieved, which produced an overall classification rate
of 95.00% in training. The overall classification rate in tests was 95.63%, which was obtained with a
value of MSE of 0.005 in case 2. Table 3 shows the clustering results obtained using the UAC process
conducted in cases 1 and 2. Figure 8 shows the training results obtained in cases 1 and 2. Table 4
summarizes the load classification results obtained by the novel hybrid UAC-NFC model proposed in
this article and evaluated in this experiment.

A cross-validation procedure [21] was applied to the feature data, where the entire feature dataset
was split into a training dataset and a test dataset in this experiment. The proposed and evaluated novel
hybrid UAC-NFC model for load classification in DSM produced an average and generalized overall
classification rate [29] of 95.73%. Different types of electrical household appliances were identified by
the novel hybrid UAC-NFC model for DSM/home energy management. This work is a revision of the
original work that was proposed in Lin et al. [6]. A comparison of the optimization methods used to
optimize the NFC was presented in the same article [6]. Mainly, this article focused on designing and
implementing an IoT-oriented smart HEMS based on a novel hybrid UAC-NFC model in NILM for
load classification in order to overcome the difficulties in distinguishing electrical appliances operated
under similar electrical features and classified in an unsupervised and self-organized sense.
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Table 3. Clustering results by the UAC process conducted in cases 1 and 2.

NFC Used in Case 1 NFC Used in Case 2

Centers (0.0299, 0.7167) (0.0256, 0.3450)

(0.1854, 0.7172) (0.3653, 0.1191)
(0.4023, 0.7175) (0.4237, 0.1122)
(0.4394, 0.7467) (0.6574, 0.2661)
(0.5587, 0.7604) -
(0.6956, 0.6266) -

Spreads 0.3173 0.1973

0.1804 0.2255
0.1398 0.2327
0.4329 0.9554
0.9756 -
0.1384 -
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Table 4. Load classification results obtained by the novel hybrid UAC-NFC model.

Classification Results Novel Hybrid UAC-NFC
Model Used in Case 1

Novel Hybrid UAC-NFC
Model Used in Case 2

Overall classification rate !

in training (%)
92.92 95.00

Overall Classification rate
in tests (%) 95.83 95.63

The averaged and generalized overall classification rate obtained in this experiment:
95.73%.

! If the class label of a test/query inputted and identified by the proposed hybrid UAC-NFC model matched the
actual class label of the inputted test/query, the test/query was classified correctly; otherwise, it was not classified
correctly. The overall classification rate [4] was computed as: The total number of tests/queries correctly identified

The total number of tests/queries inputted × 100%.

4. Conclusions and Future Work

Electricity is one of the most vital and important commodities we use every day. HEMS is used to
efficiently capture the benefits of DR for DSM to ensure demand flexibility and peak load reduction
while diminishing carbon emissions. Conversely, NILM, which is a low-cost load disaggregation
approach [3] that allows the identification of appliance-level energy consumption information
through an analysis on acquired aggregated electrical signals, is an economic technique beneficial
to power utilities and end-consumers for efficiently improving electrical energy efficiency through
load disaggregation.

In this article, an IoT-oriented smart HEMS was created and examined in a real residential house.
The smart HEMS employs a novel hybrid UAC-NFC model with NILM to identify individual major
electrical appliances for DSM/home energy management in the field of household energy. As the
difficulties in distinguishing electrical appliances operated under similar electrical features showing
ambiguities and classified in an unsupervised and self-organized manner exist in NILM, the novel
hybrid UAC-NFC model was developed to overcome these difficulties. The NFC is integrated
with the UAC that eliminates human involvement. As shown by the experiment, the designed
and implemented IoT-oriented smart HEMS with novel hybrid UAC-NFC model, deployed and
evaluated in a realistic residential house environment, produced an average and generalized overall
classification rate of 95.73%, which is workable and feasible. The NILM completed for DSM was used
to identify which individual major electrical appliance(s) is being turned on or off when each electrical
feature reading extracted from aggregated signals was taken apart with chronological time information
and classified, which can be viewed as an energy audit.

On-line training of the UAC-NFC model used in the HEMS was not covered in this article.
This will be included with active learning for NILM in DSM in the future. The future goal of the
UAC-NFC model that has been introduced in this article is combining its methodology with
query-based learning for NILM in DSM.
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