Uu sciences

Supporting Information

Facile Preparation of Graphene Oxide-MIL101(Fe) Composite for Efficient Capture of Uranium

Bing Han *, Enyao Zhang and Gong Cheng

MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; zhangenyao0516@163.com (E.Z.); cg1182229006@ncepu.edu.cn (G.C.)

* Correspondence: hanbing01@ncepu.edu.cn; Tel.: +86-10-6177-1470

Table S1. Composition of groundwater and surface water used to evaluate the adsorption of $\mathrm{U}(\mathrm{VI})$ on GO15- MIL-101(Fe).

Parameter ${ }^{*}$	pH	Ca^{2+}	Mg^{2+}	Cl^{-}	NO_{2}^{-}	$\mathrm{NO}_{3}{ }^{-}$	$\mathrm{PO}_{4}{ }^{3-}$	$\mathrm{SO}_{4}{ }^{2-}$
Groundwater	8.0	1.95	0.411	1.78	0.011	0.356	<0.021	0.802
Surface water	7.9	0.0275	0.0041	0.0394	0.024	0.0854	0.010	0.035

[^0]

Figure S1. XRD pattern of as prepared MIL-101(Fe) and GO-MIL-101(Fe) composite.

Figure S2. Nitrogen adsorption-desorption isotherm and pore size distribution of (a) and (b). MIL-101(Fe), (c) and (d) GO15-MIL-101(Fe).

Table S2. Summary of surface area and pore volume obtained from N_{2} adsorption isotherms.

Sample	$\mathrm{SBEt}^{\mathrm{a}}\left(\mathrm{m}^{2} \cdot \mathrm{~g}^{-1}\right)$	$\mathrm{V}^{\mathrm{b}}\left(\mathrm{cm}^{3} \cdot \mathrm{~g}^{-1}\right)$	Pore Size (nm)
MIL-101(Fe)	537.98	0.29	2.21
GO15-MIL-101(Fe)	246.56	0.31	4.96

${ }^{\text {a }}$ The specific surface area (SBET) was calculated by the Brunauer-Emmett-Teller (BET) method.
${ }^{\mathrm{b}}$ Total pore volume.

Figure S3. The adsorption efficiency of GO15-MIL-101(Fe) towards U(VI) at different initial $\mathrm{U}(\mathrm{VI})$ concentrations ($0.035 \mathrm{ppm}, 1.3 \mathrm{ppm}, 3 \mathrm{ppm}$ and10 ppm). The inset numbers represent the adsorbent dosage.

Figure S4. U(VI) speciation based on Visual MINTEQ program in the experimental adsorption solution $\left([\mathrm{U}(\mathrm{VI})]=10 \mathrm{mg} \mathrm{L}^{-1}, \mathrm{I}=0.01 \mathrm{~mol} \mathrm{~L}^{-1}\left(\mathrm{NaNO}_{3}\right)\right.$, and $\mathrm{T}=25^{\circ} \mathrm{C}$.

Table S3. Comparison of the adsorption efficiency of GO15-MIL-101(Fe) and MIL-101(Fe) under different coexisted ions with that in the absence of these ions.

Maintained Percentage (\%)*					
Cation	MIL-101(Fe)	GO15-MIL-101(Fe)	Anion	MIL-101(Fe)	GO15-MIL-101(Fe)
Na^{+}	87.3	89.8	$\mathrm{NO}_{3}{ }^{-}$	84.7	86.9
$\mathrm{~K}^{+}$	80.7	81.3	Cl^{-}	33.3	84.0
Mg^{2+}	87.9	98.9	$\mathrm{SO}_{4^{2-}}$	79.9	81.1
Ca^{2+}	24.3	64.0	$\mathrm{CO}_{3^{2-}}$	24.9	99.5

* The ratio of adsorption percentage under different existed ions with that in the absence of these ions.

Figure S5. The adsorption efficiency of GO15- MIL-101(Fe) towards U(VI) in deionized water $(\mathrm{pH}=5.5)$, simulated surface water $(\mathrm{pH}=7.9)$ and simulated ground water $(\mathrm{pH}=$ 8.0) at $\mathrm{T}=298 \mathrm{~K}$, and $\mathrm{C}_{0}=10 \mathrm{mg} \mathrm{L}^{-1}$, adsorbent concentration $=0.2 \mathrm{~g} \mathrm{~L}^{-1}$.

Table S4. Comparison of the adsorption capacity of GO-MIL-101(Fe) composite towards U(VI) with other adsorbents.

Adsorbents	Experimental conditions	$q_{\max }$ $\left(\mathrm{mg} \mathrm{g}^{-1}\right)$	Ref.
MIL-101(Cr)	$\mathrm{pH}=5.5, \mathrm{~T}=298 \mathrm{~K}$	20.00	$[1]$
Two-step amino functionalized			
MIL-101(Cr)	$\mathrm{pH}=5.5, \mathrm{~T}=298 \mathrm{~K}$	90.00	$[1]$
N,N-Diisobutyl-2-			
(octylphenylphosphoryl)aceta mide (CMPO) trapped MIL- 101(Cr)	$\mathrm{pH}=4.0, \mathrm{~T}=298 \mathrm{~K}$	27.99	$[2]$
Amino Functionalized Flake	$\mathrm{pH}=6.0, \mathrm{~T}=333.15 \mathrm{~K}$	140.68	$[3]$
Graphite	$\mathrm{pH}=4.5, \mathrm{~T}=298 \mathrm{~K}$	125.00	$[4]$
Carbon nanofiber	$\mathrm{pH}=5.0, \mathrm{~T}=293.15 \mathrm{~K}$	97.50	$[5]$
GO nanosheets	$\mathrm{pH}=6.0, \mathrm{~T}=298 \mathrm{~K}$	114.90	$[6]$
UiO-66-NH2	$\mathrm{pH}=5.5, \mathrm{~T}=298 \mathrm{~K}$	106.89	This work

Figure S6. The plot of $\ln \mathrm{K}^{0}$ to $1 / \mathrm{T}$ of $\mathrm{U}(\mathrm{VI})$ adsorption onto GO15-MIL-101(Fe).

Figure S7. The morphology of regenerated composite sample after 4 cycles, scale bar $=1 \mu \mathrm{~m}$.

References

1 Bai Z-Q, Yuan L-Y, Zhu L, et al. Introduction of amino groups into acid-resistant mofs for enhanced U(VI) sorption. J Mater Chem A, 2015, 3: 525-534.
2 De Decker J, Folens K, De Clercq J, et al. Ship-in-a-bottle cmpo in mil-101(cr) for selective uranium recovery from aqueous streams through adsorption. J Hazard Mater, 2017, 335: 1-9.
3 Duan S, Wang Y, Liu X, et al. Removal of U(VI) from aqueous solution by amino functionalized flake graphite prepared by plasma treatment. ACS Sustainable Chem Eng, 2017, 5: 4073-4085.
4 Sun Y, Wu Z-Y, Wang X, et al. Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on carbonaceous nanofibers. Environ Sci Technol, 2016, 50: 4459-4467.
5 Zhao G, Wen T, Yang X, et al. Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Transactions, 2012, 41: 6182-6188.
6 Luo B-C, Yuan L-Y, Chai Z-F, et al. U(VI) capture from aqueous solution by highly porous and stable mofs: UiO-66 and its amine derivative. J Radioanal Nucl Chem 2016, 307: 269-276.

[^0]: *The unit of all the involved ions were $\mathrm{mmol}_{\mathrm{L}}{ }^{-1}$. The concentration takes reference from the previous study by Van Der Voort et al. (Eur. J. Inorg. Chem., 2016, 27, 4395-4401). The experimental condition was $[\mathrm{U}(\mathrm{VI})]=10 \mathrm{mg} \mathrm{L}^{-1}, \mathrm{I}=0.01 \mathrm{M} \mathrm{NaNO}_{3}$, adsorbent dose $=0.2 \mathrm{~g} \mathrm{L-}$ and $\mathrm{T}=298 \mathrm{~K}$.

