

Facile Preparation of Graphene Oxide-MIL-101(Fe) Composite for Efficient Capture of Uranium

Bing Han *, Enyao Zhang and Gong Cheng

MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; zhangenyao0516@163.com (E.Z.); cg1182229006@ncepu.edu.cn (G.C.)

* Correspondence: hanbing01@ncepu.edu.cn; Tel.: +86-10-6177-1470

Table S1. Composition of groundwater and surface water used to evaluate the adsorption

of U(VI) on GO15- MIL-101(Fe).

Parameter *	pН	Ca ²⁺	Mg^{2+}	Cl-	NO ₂ -	NO3 ⁻	PO4 ³⁻	SO42-
Groundwater	8.0	1.95	0.411	1.78	0.011	0.356	< 0.021	0.802
Surface water	7.9	0.0275	0.0041	0.0394	0.024	0.0854	0.010	0.035

^{*} The unit of all the involved ions were mmol L⁻¹. The concentration takes reference from the previous study by Van Der Voort et al. (*Eur. J. Inorg. Chem.*, 2016, 27, 4395-4401). The experimental condition was [U(VI)] =10 mg L⁻¹, I = 0.01 M NaNO₃, adsorbent dose = 0.2 g L⁻¹ and T =298 K.

Figure S1. XRD pattern of as prepared MIL-101(Fe) and GO-MIL-101(Fe) composite.

Figure S2. Nitrogen adsorption-desorption isotherm and pore size distribution of (a) and (b). MIL-101(Fe), (c) and (d) GO15-MIL-101(Fe).

Table S2. Summary of surface area and pore volume obtained from N₂ adsorption isotherms.

Sample	Sвет ^а (m ² ·g ⁻¹)	V ^b (cm ³ ·g ⁻¹)	Pore Size (nm)
MIL-101(Fe)	537.98	0.29	2.21
GO15-MIL-101(Fe)	246.56	0.31	4.96

^a The specific surface area (SBET) was calculated by the Brunauer-Emmett-Teller (BET) method. ^b Total pore volume.

Figure S3. The adsorption efficiency of GO15-MIL-101(Fe) towards U(VI) at different initial U(VI) concentrations (0.035 ppm, 1.3 ppm, 3 ppm and10 ppm). The inset numbers represent the adsorbent dosage.

Figure S4. U(VI) speciation based on Visual MINTEQ program in the experimental adsorption solution ($[U(VI)] = 10 \text{ mg } \text{L}^{-1}$, I = 0.01 mol L⁻¹ (NaNO₃), and T =25 °C.

Table S3. Comparison of the adsorption efficiency of GO15-MIL-101(Fe) and MIL-101(Fe) under different coexisted ions with that in the absence of these ions.

Maintained Percentage (%)*					
Cation	MIL-101(Fe)	GO15-MIL-101(Fe)	Anion	MIL-101(Fe)	GO15-MIL-101(Fe)
Na+	87.3	89.8	NO3-	84.7	86.9
K+	80.7	81.3	Cl-	33.3	84.0
Mg ²⁺	87.9	98.9	SO4 ²⁻	79.9	81.1
Ca ²⁺	24.3	64.0	CO32-	24.9	99.5

* The ratio of adsorption percentage under different existed ions with that in the absence of these ions.

Figure S5. The adsorption efficiency of GO15- MIL-101(Fe) towards U(VI) in deionized water (pH = 5.5), simulated surface water (pH = 7.9) and simulated ground water (pH = 8.0) at T = 298 K, and $C_0 = 10$ mg L⁻¹, adsorbent concentration = 0.2 g L⁻¹.

Adsorbents	Experimental conditions	<i>q</i> _{max} (mg g ⁻¹)	Ref.
MIL-101(Cr)	pH = 5.5, T = 298 K	20.00	[1]
Two-step amino functionalized MIL-101(Cr)	pH = 5.5, T = 298 K	90.00	[1]
N,N-Diisobutyl-2-			
(octylphenylphosphoryl)aceta mide (CMPO) trapped MIL-	pH = 4.0, T = 298 K	27.99	[2]
101(Cr)			
Amino Functionalized Flake Graphite	pH = 6.0, T = 333.15 K	140.68	[3]
Carbon nanofiber	pH = 4.5, T = 298 K	125.00	[4]
GO nanosheets	pH=5.0, T= 293.15K	97.50	[5]
UiO-66–NH ₂	рН =6.0, Т = 298 К	114.90	[6]
GO15- MIL-101(Fe) composite	pH = 5.5, T = 298 K	106.89	This work

Table S4. Comparison of the adsorption capacity of GO-MIL-101(Fe) composite towards U(VI) with other adsorbents.

Figure S6. The plot of lnK⁰ to 1/T of U(VI) adsorption onto GO15-MIL-101(Fe).

Figure S7. The morphology of regenerated composite sample after 4 cycles, scale bar = $1 \mu m$.

References

- 1 Bai Z-Q, Yuan L-Y, Zhu L, *et al.* Introduction of amino groups into acid-resistant mofs for enhanced U(VI) sorption. J Mater Chem A, 2015, 3: 525-534.
- 2 De Decker J, Folens K, De Clercq J, *et al.* Ship-in-a-bottle cmpo in mil-101(cr) for selective uranium recovery from aqueous streams through adsorption. J Hazard Mater, 2017, 335: 1-9.
- 3 Duan S, Wang Y, Liu X, *et al.* Removal of U(VI) from aqueous solution by amino functionalized flake graphite prepared by plasma treatment. ACS Sustainable Chem Eng, 2017, 5: 4073-4085.
- 4 Sun Y, Wu Z-Y, Wang X, *et al.* Macroscopic and microscopic investigation of U(VI) and Eu(III) adsorption on carbonaceous nanofibers. Environ Sci Technol, 2016, 50: 4459-4467.
- 5 Zhao G, Wen T, Yang X, *et al.* Preconcentration of U(VI) ions on few-layered graphene oxide nanosheets from aqueous solutions. Dalton Transactions, 2012, 41: 6182-6188.
- 6 Luo B-C, Yuan L-Y, Chai Z-F, *et al.* U(VI) capture from aqueous solution by highly porous and stable mofs: UiO-66 and its amine derivative. J Radioanal Nucl Chem 2016, 307: 269-276.