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Abstract: Environmental illumination information is necessary to achieve a consistent integration
of virtual objects in a given image. In this paper, we present a gradient-based shadow detection
method for estimating the environmental illumination distribution of a given scene, in which a
three-dimensional (3-D) augmented reality (AR) marker, a cubic reference object of a known size,
is employed. The geometric elements (the corners and sides) of the AR marker constitute the
candidate’s shadow boundary; they are obtained on a flat surface according to the relationship
between the camera and the candidate’s light sources. We can then extract the shadow regions by
collecting the local features that support the candidate’s shadow boundary in the image. To further
verify the shadows passed by the local features-based matching, we examine whether significant
brightness changes occurred in the intersection region between the shadows. Our proposed method
can reduce the unwanted effects caused by the threshold values during edge-based shadow detection,
as well as those caused by the sampling position during point-based illumination estimation.

Keywords: gradient-based shadow detection; environmental illumination; augmented reality marker

1. Introduction

Understanding the environmental illumination information of a scene is important when
rendering virtual objects in a way that matches the given image; it particularly helps during the
generation of convincing vertical shadows onto the real scene [1,2]. Without shadows, virtual objects
will appear like they are floating, making the rendered image appear unrealistic. The goal of our study
is to estimate the environmental illumination distribution and to improve the visual perception of an
augmented reality (AR) system by generating virtual shadows.

Many studies have described the generation of realistic images that reflect the environmental
illumination of their scene [3–7]. Some of these studies have employed additional camera equipment
(e.g., a light probe or a fish-eye camera) to estimate real-world illumination conditions [8,9]. One
previous study used mobile sensors (e.g., ambient sensors), a global positioning system (GPS), and a
weather application programming interface (API) to estimate outdoor illumination for a mobile AR
application [10].

Shadows are cast by the occluding object and the illumination source in a given scene, so they
provide an important clue about the shape and the relative position of the object, as well as the
environmental illumination. The shadow generated by a reference object with known geometry can
therefore be examined to estimate the environment illumination [1,3,4]. However, the performance of
point-based estimation methods is heavily dependent on the number of sampling points, and their
positions of those points on the shadow’s surface. In addition, it is difficult to determine accurate
threshold values with which to segment the shadow region. One study introduced an iterative voting
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scheme that compared inside-region (potential cast shadows region) pixels with outside-region pixels
using shadow features [6]. In this method, the inside-region with respect to the three-dimensional
(3-D) object was defined in an initial setup procedure, meaning that the dynamic situation in which
the position of the illumination sources were changed was not considered. For example, when
there is a wide distribution of illumination sources in the scene, the inside-region become too large.
The illumination estimation performance is therefore significantly dependent on which point is
sampled. However, the study did not present a detailed method for determining the sample points for
iterative voting [6].

A further study introduced an illumination estimation method for a mobile AR system, under
the assumption that there is a single dominant light source in the scene [3]. By jumping the shadow
boundary trace along the current estimate of the shadow vector, this method was able to extract distinct
contours from the shadowed region. As there are usually multiple light sources in real scenes, however,
the shadow boundaries often have a complex distribution. In this case, the method adopted featured
difficulties in tracing the exact shadow boundaries, even though several salient shadow edges were
present in the scene [3].

Previous studies have extracted the shadow region and its boundary on a textured shadow
surface in a static outdoor scene [5,11,12]. Also, the shadow detection is critical for accurate object
detection in video streams since shadow points are often misclassified as object points, causing errors
in segmentation and tracking [13–15]. However, these studies mainly examined shadow edges with
distinct gradient distributions, because outdoor environments feature a main light source (sunlight).
These methods were applied to a situation in which the sun was occluded, but they assumed that
most of the shadow boundaries would still have large gradient magnitude values and distinct gradient
directions. In general, it is difficult to detect precisely the shadow boundary by only using the
image features.

One study constructed 3-D shape descriptions of buildings from the fragmented linear features
in an aerial image [16]. The shadow lines cast by a roof and their shadow junctions were used to
verify two-dimensional (2-D) building roof hypotheses. Here, the shadow boundaries were searched
for among the lines and junctions extracted from the image. The method described the geometric
information of the 3-D object, assuming that the sun angles and the viewpoint angles were known,
starting with the line segments detected by a Canny edge detector. However, since shadow intensity is
not generally uniform in real scenes, more consideration is needed to determine a proper threshold
value for edge detection. The method of said study focused mainly on generating hypotheses of the
linear features and verifying these hypotheses, but did not introduce a detailed description of linear
feature detection and grouping. In addition, the sun was the only illumination source in the scene.

Our algorithm is inspired by the approach of Reference [16], in that we consider local shadow
boundary features to be useful for extracting the shadow from the image. By generating the shadow
using the candidate light source positioned on the hemisphere, we can obtain shadow-casting
information for the boundary line segments and their junctions. We assume that the scene has a
planar surface, on which the shadows are cast. The local supporting evidence (the line segments and
their junctions) is used to extract the real shadow boundary pixels that lie in the boundary between the
shadowed and un-shadowed regions of the image. To verify the falsely detected illumination sources
in this local feature-based matching, we compute the inclusion relation between the shadow regions
and examine the relative extent to which the shadow areas are darkened. Figure 1 represents the block
diagram of the proposed algorithm.
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Figure 1. Block diagram of the proposed algorithm.

2. Materials and Methods

2.1. Candidate Shadow Generation

Using the ARToolkit module, we can compute viewpoint tracking and interactions between
virtual objects. The real camera position, and its orientation relative to a square AR marker, are
calculated in real time. A square of a known size is used as a base for the coordinates of the frame in
which the virtual objects are generated [17].

In this paper, the marker is located on the top surface of a cubic reference object with a length of
8 cm. The 3-D AR marker occludes the incoming light in the scene and the shadow of the marker is
cast onto a planar surface, herein referred to as the shadow surface. The transformation matrix from
the marker coordinate to the camera coordinate is then estimated. Once the real camera position is
known, a virtual object with the same shape and size as the real 3-D AR marker can be laid exactly
over the real marker [4]. The light sources are assumed to be point lights positioned on the hemisphere.
The candidate shadow maps and their boundaries can be generated on the shadow surface, according
to the relationship between the light source and the camera. We can then obtain the positions at which
the vertices of the top plane of the 3-D AR marker are projected onto the shadow surface. The edges
of the top plane and the vertical edges of the side plane also consist of the shadow boundary lines.
The intersection point of two shadow boundary lines is referred to as a potential shadow junction.
Figure 2a shows the geometric elements of 3-D markers such as the upper/lower corners, top/side
plane, and shadow surface. Figure 2b shows the delineated shadow boundaries (blue colored) of every
candidate light source with 30◦ intervals in the elevation and azimuth angle. Figure 2c shows three
corners (cyan colored) of the top plane of the AR marker, consisting of the candidate shadow and the
cast points (yellow colored) on the shadow surface, and Figure 2d shows the shadow boundary (white
colored) that is cast by one of the candidate illumination sources.

It is difficult to establish correspondences between the image shadow features and the shadow
elements (the corners and the sides of the 3-D AR marker) cast by the candidate light source, especially
in cases where there are multiple light sources in the scene. This means that it is difficult to accurately
obtain the shadow boundary, because the gradient information of the image is non-salient and cluttered.
Figure 3a,b show the results of Figure 2 obtained using the Canny edge detector with two double
threshold intensity values of 10 and 20, and 20 and 40, respectively. Previous shadow detection
methods based on the shadow edges have generally assumed that accurate edges are detected in the
image [18]. However, it is difficult to determine the proper threshold values for detecting the shadow
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edges. Figure 3c,d show the gradient direction distribution obtained using the Sobel operator (3 by
3 mask). Here, only points with gradient magnitudes higher than two threshold values (10 and 20 for
Figure 3c,d, respectively) are represented. The gradient direction is coded to eight directions, which
are marked by eight different colors (see inset in Figure 3d).
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2.2. Gradient-Based Shadow Boundary Detection

After converting a given RGB input image to a YUV image, we apply a Sobel mask to the Y
image, and then compute the gradient information (i.e., the magnitude and direction). Our method
examines whether the gradient direction of each pixel in the image is the same as the normal direction
of the shadow boundary line of the candidate light source. Only pixels with the same direction as the
candidate shadow boundary are classified as matched points, within eight gradient direction ranges.
Since the 3-D AR marker is a cubic object, the shadow map generated by the candidate light source
consists of four or five shadow line segments. This examination is therefore repeated for every line
segment making up the candidate shadow.

At points where the gradient direction check passes, the non-maximum suppression, based on the
gradient direction, is employed to remove spurious matching pixels. The gradient magnitude value
of the anchor (center) pixel in a local mask (3 by 3) is compared with the gradient magnitudes of the
two neighbor pixels along the same gradient direction. In other words, we check whether or not three
consecutive pixels, including the center pixel of the mask, have the same gradient direction. Then, if
the center pixel has a higher gradient magnitude value than the neighboring pixels on both sides, we
determine the center pixel to have passed the non-maximum suppression.

To confirm that the candidate shadows are actually present in the image, we then perform
gradient-based matching along the candidate shadow boundary. Along the boundary line segment
of the candidate shadow, 10 pixels are sampled at regular intervals, considering the length of the
line segment.

The distance between the upper corner point of the 3-D marker and the cast point on the shadow
surface changes according to the incline angle of the candidate light source. This means that the
shadow boundary corresponding to the edge of the upper plane of the 3-D marker may be blurred in
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the image. Therefore, in our method we examine more neighboring pixels along the gradient direction
(perpendicular to the boundary line) to detect the soft-edged shadow. The distance from the corner
of the 3-D AR marker to the corresponding vertex of the shadow boundary can then be calculated.
For the soft edge connecting the two upper corners, we compute the average distance of the two upper
corners, and one tenth of this distance is used as the width of the region of interest. Here, we sample
10 points in a vertically bi-directional direction, with respect to the boundary line, for gradient-based
matching. In general, vertical shadow boundaries originate from the bottom corners of the AR cube
marker. In this case, as the bottom corner is attached to the shadow surface, and the distance from this
vertex is zero. We therefore compute the distance from the other vertex that constitutes the vertical
boundary (the upper corner), to its projection point on the shadow surface. Our algorithm divides this
distance by two, and uses this as the width of the sampling region.

2.3. Line Fitting and Matching Score Computation

Line fitting is performed using only the points that have passed the gradient direction matching,
as described in Section 2.1. We use principal component analysis (PCA) to obtain the normal (direction)
information of the fitted line [19]. If an insufficient number of points have passed the gradient
direction matching, we determine that a reliable shadow boundary is not detected (under 20 pixels,
experimentally).

When the shadow cast by the i-th candidate light source has N line segments, we compute the
matching score, Li_k, on the k-th line segment, as shown in Equation (1):

Li_k = 1− e−
ri_k
τ1 , Ci_1 =

1
N

n

∑
k=1

Li_k, (1)

where ri_k represents how many pixels in the image are matched with the i-th candidate’s shadow
boundary elements; ri_k is computed by dividing the number of the matched points by the total number
of the sample points on k-th line segment. N is the total number of shadow boundary lines cast by
the i-th candidate light source, τ_1 is used to control the relative influence of the gradient direction
matching (here it is set to 0.3, experimentally), and Ci_1 is the average score of the gradient-based
matching of the i-th candidate light source. This measure represents the number of points that support
the shadow boundary cast by the i-th candidate light source.

We compute an angular difference between the candidate shadow boundary line and the fitted
line using the matched points. Specifically, we compute a slope direction, θA_ik, of the k-th boundary
line of the i-th shadow, and a slope direction, (θB_ik), of the fitted line segment, respectively. We can
then obtain the angular difference, Di_k, using Equation (2) (τ_2 is set to 3, experimentally). Here, Ci_2

is the average score of the angular difference of the i-th candidate light source in the image.

Di_k = e−
∆Anglei_k

τ2 , Ci_2 = 1
N

n
∑

k=1
Di_k ,

∆Anglei_k = min(180◦ − |θA_ik − θB_ik|, |θA_ik − θB_ik|)
(2)

When the AR marker occludes the i-th light source, we can compute the position of the upper
corner of the AR marker on the shadow surface, which is a vertex of the shadow boundary. Our
algorithm computes a distance score, Ei_k, between the intersection point of the fitted line and the
projected corner point of the AR marker. The cubic marker is employed, meaning that the number
of intersection points is one less than the total number of the shadow boundary lines. This measure
represents how close the junction of the shadow boundary is to the projected upper corner of the 3-D
marker on the shadow surface. Ei_k is calculated as follows:

Ei_k = e−
errori_k

τ3 , Ci_3 =
1
N

n

∑
k=1

Ei_k, errori_k = ‖projPtik − fittingPtik‖, (3)
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where projPtij is the j-th projected corner position of the i-th candidate shadow, and fittingPtij is the
intersection between the (j − 1)-th shadow boundary and the j-th shadow boundary. Here, τ_3 is set to
8, experimentally.

Figure 4a shows one of the shadow boundaries of the candidate illumination source. The upper
and lower corners are represented by red and yellow, respectively. Figure 4b shows the matched (red)
points in the search region of the third shadow boundary line segment. A total of 100 points in the
search region are sampled, along 10 line segments. Each of these sections has the same slope as the
boundary line, in a vertically bi-directional direction with respect to the boundary line (Figure 4b).
Figure 4c shows the fitted boundary lines (green) with the matched points and their intersection points
(purple). The corners (cyan) are also shown, consisting of the bottom plane of the AR marker and the
cast points (yellow) of the top plane.
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Figure 4. (a) Shadow boundary of the candidate illumination source; (b) matched points in search
region of the third shadow boundary line segment; (c) shadow casting elements (corners and sides of
the AR marker) and matched elements.

For the candidate shadow cast by the i-th candidate light source, the final matching score is given
by a weighted sum of the three components shown in Equation (4). The score conveys how much of
the candidate shadow boundary is actually extracted from the image. Here ω1, ω2, and ω3 are used to
control the relative influence of three terms, which are set to 0.6, 0.2, and 0.2, respectively.

Costi = ω1 · Ci_1 + ω2 · Ci_2 + ω3 · Ci_3 (4)

As the position of the i-th candidate light source is denoted by its longitude and latitude, the final
matching score can be represented using either a geographic or a spherical coordinate system. We
assume that the environmental illumination source is a point light, but real light sources generally
have a constant volume. In order to consider light sources with some area in the real scene, such as a
light bulb, we apply Gaussian smoothing (3 by 3) to the final matching score map, which we represent
here using longitude and latitude.

2.4. Verification of Local Feature-Based Matching

We follow our local feature-based examination with a verification procedure, to more precisely
estimate the environmental illumination. In this study, we employ a low threshold value in the local
feature-based examination, to avoid missing the important illumination sources. We found that using
this low threshold means that candidate shadows passed by the local feature examination overlap
each other significantly. In this case, the shadow map created by the passed illumination source is
contained in those of the other light sources. The relative brightness of the shadow regions illuminated
by more light sources becomes darker. By using the intersection sets of the passed shadow regions
and their difference sets, we can compute the relative extent to which the shadow areas are darkened,
considering the inclusion relationships between the different illumination sources.

In Equation (5), Sn represents the n-th candidate shadow region created by the n-th illumination
source, and Snm represents the intersection region of the n-th shadow and the m-th shadow. S’n
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represents the n-th shadow region, except for the areas that overlap with other shadows. S’n is
computed by subtracting M from Sn; M is the unified region of the intersection of the candidate
shadows. S’mn represents the pure intersection region of the n-th shadow and the m-th shadow,
excluding the overlapping regions with another shadow, and N is the total number of candidate
shadows. M is calculated as follows:

M =
N−1
∪

n=1

N
∪

m=n+1
(Sn∩Sm), S

′
nm = Sn∩Sm −

N
∪

n=1, k 6=n,m
(Sn∩Sk). (5)

In Figure 5, four shadow maps (S1 to S4, denoted as (c), (d), (e), and (f), respectively) are generated
by the local feature-based matching, and the S4 region with the lowest matching score is contained
in S2. Here, the subscripts of the shadow maps are numbered in descending order of their matching
scores. Figure 5g shows the M region of the four shadow maps, and Figure 5h shows region S’4 (red)
within region S’2 (yellow). We examine whether region S’4 becomes sufficiently darker than region S’2
in the input image. Figure 5a shows that there is little difference in brightness between regions S’4 and
S’2 in Figure 5h (red and yellow, respectively). Since the fourth candidate illumination source with
the lowest matching score does not render a shadow region sufficiently dark, the fourth illumination
source is removed. Among the candidate shadows passed by the local feature examination, our
verification procedure can precisely choose the candidate shadow sets that best represent the real
shadows in the image. Previous methods have been unable to examine the case of the overlapping
casted shadows in scenarios where there are lights with the same azimuth and different elevation
angles in the hemisphere [18]. Our proposed verification procedures, however, enable the problem of
overlapping casted shadows in the scene to be solved.
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3. Results

The experimental equipment consisted of a PC with 3.4 GHz CPU. Figure 6a shows the
experimental setup used to estimate the environmental illumination distribution. We manually
measured the directions of real light sources (in the elevation angle, θ, and the azimuth angle, ϕ, in the
spherical coordinate system), using the marker’s center to ground truth. In this experiment, we used
two to three bulbs (each 5 cm in diameter) as the environmental light sources.
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(h) threshold image (by 150 intensity value); (i) rendered image created using the method reported in
Reference [4].

The candidate shadow consists of four to five boundary line segments. The image features
(gradient direction and magnitude) are examined along the shadow line segments that make up the
candidate shadow boundary. Specifically, we examined to what extent the shadows cast by the top
plane and the side walls of the 3-D marker correlate with the image features on the shadow surface.
Figure 6b,f show the input image with two and three illumination sources, respectively. Figure 6d
shows the shadow boundaries and intersection points of the detected shadow lines, and Figure 6e,g
show the final rendered image, estimated with two and three illumination sources, respectively, using
the proposed method. Figure 6h,i show the threshold image (by 150 intensity value) and the rendered
image, made using a previously published method [4]. Figure 6h shows that the threshold value
selection greatly affects the region-based shadow region detection. This indicates that the previous
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illumination estimation methods based on shadow detection are dependent on the illumination
condition. In the point-based approaches, careful sampling is necessary to produce variation in the
distribution of these light sources that is to be maximized. For example, the method of Sato et al.
sometimes fails to provide a correct estimate of the illumination distribution because it is sensitive
to the number of sampling points and their positions [1]. To compare our proposed method with
the method previously published in Reference [4], we overlaid the rendered shadows onto the input
shadow image. The previous method examines the ratio between the threshold shadow image regions
and the candidate shadow mask regions created by the illumination sources. The performance of the
previous method is therefore heavily dependent on the determination of the threshold value for the
shadow region segmentation. The real shadow region in Figure 6h is not sufficiently detected, meaning
that the illumination information for the shadow region is incorrectly estimated.

The candidate shadows are generated at 5◦ intervals in both the azimuth angle (0–360◦) and the
elevation angle (30–85◦). The total number of candidate shadows is 864 (72 × 12), and the matching
scores of the candidate shadows are represented in the 2-D domain. Figure 7 shows the illumination
source distribution for the scene depicted in Figure 6b. High-intensity illumination sources usually
generate a shadow region with distinct edges. Therefore, the highest score is obtained at the angular
position where the illumination source with the highest intensity is located. Because the order of the
matching score generally coincides with the order of the illumination intensity, we represented the
matching scores of another illumination source relative to the highest matching score, as shown in
Figure 7a. In this experiment, we used a bulb with a diameter of 5 cm, covering one sample area in
the longitude and latitude domains. Assuming that the two illumination sources are not attached to
each other, we employed Gaussian smoothing and non-maximum suppression in a 3 by 3 mask to
remove the spurious neighbor matches, as shown in Figure 7b. The final illumination positions were
determined using the weighted average of the matching costs in the 3 by 3 mask, of which the center
pixel is the local maximum position for the non-maximum suppression.
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In the experimental results, we found that illumination sources with matching scores <35%
relative to the brightest illumination source could be classified as insignificant. However, by using this
low threshold value, we may also detect false shadows, meaning that an illumination source casting
an indistinct shadow may incorrectly be classified as an important source in the scene. To verify these
potentially falsely-detected illumination sources, we calculated the intersection sets of the shadow
regions that passed the local feature-based matching. By computing the relative extent to which these
shadow areas were darkened according to the inclusion relationships of the candidate shadows, we
were able determine the important illumination sources from the passed shadow regions.

To evaluate the performance of the proposed method, we estimated the illumination information
for two cases: one with two light sources and one with three. Table 1 shows the comparison of the
results of the existing method and those of the proposed method. More specifically, the errors of the
obtained illumination sources were computed using the average absolute deviation of the measured
angles and the computed angles. Table 1 shows that the light directions estimated by the proposed
method are closer to the ground truths (measured directions) of the real light sources, as compared
to results generated by the method previously published in Reference [4]. Figure 6b shows the input
image from Case 1 of Table 1. Figure 8 shows the input images of Cases 2 to 5, and the final AR image
of the Utah teapot model in Case 4. Figure 8e,f show the comparison of the effects of the illumination
locations obtained by the previous method to those obtained by the proposed method. To generate
images that are more naturally rendered, 15 subsampling points per the obtained illumination source
were generated. In comparison the real scene (Figure 8c), we can see that the shadows obtained by the
previous method are generated falsely.

Table 1. Comparison of the measured and estimated light directions.

Light 1 Light 2 Light 3 Average Absolute Deviation

Two illumination
sources

Case 1

Measured
Elevation 46.3◦ 40.3◦ -
Azimuth 148.0◦ 349.0◦ -

Proposed
method

Elevation 49.1◦ 39.8◦ 1.65◦

Azimuth 146.5◦ 350.5◦ 1.50◦

Previous
method

Elevation 50.0◦ 40.0◦ 2.00◦

Azimuth 145.0◦ 350.0◦ 2.00◦

Case 2

Measured
Elevation 63.1◦ 57.3◦ -
Azimuth 81.0◦ 316.0◦ -

Proposed
method

Elevation 64.0◦ 58.6◦ 1.10◦

Azimuth 81.0◦ 320.7◦ 2.35◦

Previous
method

Elevation 60.0◦ 55.0◦ 2.70◦

Azimuth 75.0◦ 320.0◦ 5.00◦

Three
illumination

sources

Case 3

Measured
Elevation 39.4◦ 40.3◦ 41.2◦ -
Azimuth 206.0◦ 154.0◦ 26.0◦ -

Proposed
method

Elevation 41.2◦ 40.5◦ 41.6◦ 0.80◦

Azimuth 206.2◦ 154.3◦ 26.1◦ 0.20◦

Previous
method

Elevation 40.0◦ 35.0◦ 55.0◦ 6.57◦

Azimuth 210.0◦ 155.0◦ 35.0◦ 4.67◦

Case 4

Measured
Elevation 41.3◦ 38.4◦ 45.6◦ -
Azimuth 35.0◦ 154.0◦ 340.0◦ -

Proposed
method

Elevation 43.6◦ 40.9◦ 46.3◦ 1.83◦

Azimuth 36.4◦ 149.0◦ 341.2◦ 2.53◦

Previous
method

Elevation 40.0◦ 50.0◦ 45.0◦ 4.50◦

Azimuth 35.0◦ 140.0◦ 335.0◦ 6.33◦

Case 5

Measured
Elevation 33.9◦ 30.0◦ 37.0◦ -
Azimuth 20.0◦ 140.0◦ 200.0◦ -

Proposed
method

Elevation 35.0◦ 32.0◦ 38.6◦ 1.57◦

Azimuth 18.5◦ 143.6◦ 193.8◦ 3.77◦

Previous
method

Elevation 60.0◦ 30.0◦ 35.0◦ 9.37◦

Azimuth 30.0◦ 145.0◦ 195.0◦ 6.67◦
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Table 2 shows the modular computation performance. Initially, the AR marker was recognized
and candidate shadow maps were generated. The image gradient-based matching procedure including
color converting, Gaussian smoothing, and Sobel operations (gradient and magnitude computation)
was performed. The gradient-based matching procedure, consisting of line fitting and junction
point evaluation, took almost half the total calculation time. The local feature-based matching was
performed when the shadows overlapped. Otherwise, this final module did not need to be performed.
The proposed method generated the final rendering image in about 77.1–88.7 ms (11.3–13.0 frames/s).
In general, since the change of the environmental illumination distribution does not happen in
every frame, the proposed method can be applied to real-time applications. To further improve the
performance, we will consider a parallel implementation in Compute Unified Device Architecture
(CUDA), thus offering greater computation efficiency, in the near future.

Table 2. Computation time (ms) of modules.

AR Marker
Recognition

Candidate
Shadow

Generation

Image
Gradient

Computation

Gradient-Based
Matching

Non-Maximum
Suppression

Local
Feature-Based

Matching
Total

8.5 15.0 10.6 42.0 1.0 11.6 88.7

The proposed method assumes that the distance to the light source was constant. In this
experiment, the radius of the hemisphere with the candidate light source was set to 2 m. To estimate the
illumination information in a dynamic environment (one in which the light sources are moving), we
will consider the illumination environment of a 3-D space instead of a hemisphere in the near future.

Our proposed method can reduce the unwanted effects caused by the threshold values during
edge-based shadow detection, in addition to those caused by the sampling position during point-based
illumination estimation. Our proposed method was tested on an untextured shadow surface, but it can
also be applied for the detection of shadows on textured shadow surfaces by using the illumination
invariant conversion [2,5]. The proposed method is applicable for model-based line segment detection
in the image, with non-salient and cluttered gradient distribution. In further studies, we will consider
the case where there are area light sources of a certain size, such as incandescent lamps, in the scene.
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We will include the shading technique for more realistic images in augmented reality according to
changing environment illumination.

4. Conclusions

By using the shadow casting information of the 3-D AR marker from the candidate light source,
we can extract the shadow boundary from the image. In more detail, the proposed method measures
the edge support, which indicates that the image gradient has the same direction as the cast shadow
boundary. We computed the angular difference of the fitted line segments and the candidate shadow
boundary, and we computed the corner support that represents the distance between the intersection
point of the fitted line segments and the corner point of the 3-D marker that is casting the shadow.
To verify any falsely-detected illumination sources in the local feature-based matching, we computed
the inclusion relationships between the different shadow regions, and examined the relative extent to
which the shadow areas are darkened.

Since the proposed method involves model-based line segment detection in the image,
the unwanted effects caused by the threshold values during edge-based shadow detection can be
reduced. Also, since the proposed method employs area-based candidate shadow maps in the shadow
region verification, the problems caused by the sampling position during point-based illumination
estimation can be alleviated. In the near future, we will consider parallel implementation in CUDA with
computation efficiency to improve the performance of the proposed method. To cope with a dynamic
illumination environment (moving light sources), we will consider the illumination environment of a
3-D space instead of a hemisphere.
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