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Abstract: Employing first-principle calculations, we investigated the influence of the impurity,
Fe atom, on magnetism and electronic structures of Heusler compound Ti2CoSi, which is a spin
gapless semiconductor (SGS). When the impurity, Fe atom, intervened, Ti2CoSi lost its SGS property.
As TiA atoms (which locate at (0, 0, 0) site) are completely occupied by Fe, the compound converts to
half-metallic ferromagnet (HMF) TiFeCoSi. During this SGS→HMF transition, the total magnetic
moment linearly decreases as Fe concentration increases, following the Slate–Pauling rule well. When
all Co atoms are substituted by Fe, the compound converts to nonmagnetic semiconductor Fe2TiSi.
During this HMF→nonmagnetic semiconductor transition, when Fe concentration y ranges from
y = 0.125 to y = 0.625, the magnetic moment of Fe atom is positive and linearly decreases, while those
of impurity Fe and TiB (which locate at (0.25, 0.25, 0.25) site) are negative and linearly increase. When
the impurity Fe concentration reaches up to y = 1, the magnetic moments of Ti, Fe, and Si return to
zero, and the compound is a nonmagnetic semiconductor.

Keywords: Heusler alloy; electronic structure; magnetism; doping

1. Introduction

As one of the most outstanding material classes, Heusler compounds with a chemical formula
of X2YZ are a large family containing more than 1500 members [1,2]. When the number of valence
electrons (VEs) of X atom is more than that of Y atom, Heusler compounds are known to be of a
conventional type, i.e., Cu2MnAl type with a space group of FM-3M, see Figure 1a [3]. While, when
the number of VEs of X atom is less than that of Y atom, Heusler compounds crystallize in an inverse
type, i.e., Hg2CuTi type with space group of F-43M, see Figure 1b [4]. In addition, when two X atoms
are different, the chemical formula of Heusler compounds converts to XX’YZ, and it is a quaternary
type, i.e., LiMgPbSn type with space group of F-43M, see Figure 1c [5,6]. Owing to the fact that
there is huge number of Heusler compounds that could be comprised by a combination of different
elements, Heusler compounds exhibit diverse properties. Several Heusler compounds, such as
Co2MnSi, Ti2CoAl, CoFeMnAl, and others, have been theoretically predicted and experimentally
confirmed to be half-metallic ferromagnets [7–13]. Due to the special band structure, that the majority
of the band shows metallicity, while an energy gap exists in the minority band, half-metallic Heusler
compounds could offer theoretically 100% spin-polarized current. Besides, most of the half-metallic
Heusler compounds possess high Curie temperature, and their lattice constants are very close to many
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semiconductors, such as MgO and GaAs. They are, therefore, regarded as one of the most excellent
candidates for electrode materials of spintronics devices, such as magnetic tunnel junctions (MTJ)
and current-perpendicular-to-plane spin valves (CPP-SV), and have a great application potential in
magnetic random access memory (MRAM), ultra-high-speed reading in magnetic read heads of hard
disk drivers (HDD) and spin transfer torque (STT) devices in spin random access memory [14–21].
In addition, a lot of Heusler compounds, especially half-Heusler compounds with chemical formula of
XYZ, exhibit semiconductor character. Owing to high Seebeck coefficient, large electrical conductivity,
good thermal stability, and environmentally friendly constituents, semiconducting Heusler compounds,
such as n-type MNiSn (M = Ti, Zr, Hf) and p-type ErNiSn, HfPtSn, became promising thermoelectric
materials which could recycle waste heat into electricity [22–25]. Hence, they are great useful for
wearable devices like smart watches, and for sensors in industrial process monitoring. More recently,
much attention has been paid to a new subfamily of Heusler compounds which were characterized
with a novel band structure, that there is an energy gap that lies in minority bands, while the valence
and conduction band edges of the majority of electrons touch at Fermi level, resulting in a zero-width
gap. They are, therefore, classified to be spin gapless semiconductors (SGSs) [26]. Heusler compound
Mn2CoAl with SGS properties has been successfully fabricated, and high Curie temperature (TC) of
720 K as well as magnetism of 2 µB were detected [27–29]. Others, like Ti2CoSi and CoFeCrGa, also
received intense research interest [30–34]. Owing to the extraordinary band structure, both electrons
and holes of SGS Heusler compounds can be spin-polarized, and almost no threshold energy is
required to move electrons from the valence band to the conduction band, as the mobility of carriers is
stronger than that in regular semiconductors. Hence, they are considered to be possible candidates to
substitute for diluted magnetic semiconductors (DMS) [35]. Due to the reason that diverse valence
electrons configurations of Heusler compounds result in varied magnetic properties and electronic
structures, in this paper, we studied the influence of impurity Fe atom on magnetism and electronic
structures of Heusler compound Ti2CoSi.
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the Brillouin zone is applied. In the self-consistent calculation, we select the refined 1 × 10−6 eV/atom 
as the SCF convergence criterion, and 360 eV as energy cutoff, respectively. When the positions of 
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Figure 1. Schematic representation of (a) Cu2MnAl-type Heusler compound; (b) Hg2CuTi-type Heusler
compound; (c) LiMnPbSn-type Heusler compound.

2. Structures and Calculation Methods

All calculations are performed by employing the VASP Package based on the density functional
theory (DFT) [36]. Plane-wave basis sets, together with the projector-augmental wave (PAW) [37]
method, are chosen to deal with electron–ion interaction. The valence-electron configurations of Ti
(3d24s2), Fe (3d64s2), Co (3d74s2), and Si (3s23p2) are selected. The 7 × 7 × 7 mesh of special k-points in
the Brillouin zone is applied. In the self-consistent calculation, we select the refined 1 × 10−6 eV/atom
as the SCF convergence criterion, and 360 eV as energy cutoff, respectively. When the positions of
atoms are relaxed, we set a convergence criterion of 0.02 eV/Å. All structures are built with 2 × 1 × 1
supercell. For the doped compound calculations, we geometrically optimize all supercells by using the
same parameters employed in the bulk calculation. All technical parameters have been tested carefully
to ensure the accuracy of the results.
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3. Results and Discussion

Interface Structures

The electronic structure of Ti2CoSi is firstly calculated. In Figure 2, there is a large energy gap of
0.671 eV exists in spin down band, and the Fermi level locates at the top of the gap. Such an energy
gap is a result of exchange splitting between spin down unoccupied antibonding bands (which are
localized at Co, TiA and TiB atoms) and spin down occupied bands (which are predominantly of Co
character). As for spin up band, it exhibits an obvious zero-width gap around the Fermi level. It also
can be seen from Figure 3 that the maximum of the valence band sits at Γ point, while the minimum of
the conduction bands locates at X point; such a closed spin up gap, therefore, is an indirect gap.
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Figure 2. The electronic structure of Ti2CoSi.

When Fe atom is introduced into Ti2CoSi, it could lead to four doping structures, thus, X(Fe)
doping structure where X atom (X = TiA, TiB, Co, Si) is substituted by an Fe atom. In order to determine
which doping structure is more favorable, the formation energy is calculated by the following equation
E f = E′ − E − ∑

i
niµi, where Ef is formation energy, and E′ and E are total energy of the doping

structure and undoping structure, respectively. The integer ni is the number of atoms that has been
removed from (ni is negative value) or added to (ni is positive value) to form the disorders, and µi is
the corresponding chemical potential which represents the energy of the reservoirs. According to our
calculation, the highest Ef of 1.028 eV belongs to TiB(Fe) doping structure, and that of Co(Fe) and Si(Fe)
are also as high as −0.023 eV and −0.018 eV, respectively, while the minimal Ef of −0.927 eV occurs
in TiA(Fe) doping structure. It reveals that TiB, Co, and Si atoms are hard to be replace by Fe atom,
however, TiA atom could be easily replaced with Fe atom. Therefore, we focus on the TiA1−xFexTiBCoSi
doping structure, where the doping concentration x = 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, and 1.
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In Figure 4, when the Fe atom intervenes in Ti2CoSi and the doping concentration increases, the
zero-width gap in spin up states is destroyed, and the spin up band strides over the Fermi level and
shows metallic behavior. On the other hand, doping Fe atom produces a negative impact on the spin
down energy gap, causing the width of the gap to vanish, and the Fermi level drops into a spin down
conduction band. As a result, the SGS character of Ti2CoSi is completely destroyed by the impurity
Fe atom. When the doping concentration x = 0.875, the top of the spin down valence band and the
bottom of spin down conduction band touch at Fermi level, and form an indirect closed spin down
gap. The doping structure, TiA0.125Fe0.875TiBCoSi, is a gapless half-metal. As the doping concentration
increases up to x = 1, the closed spin down gap is opened, while the spin up states still cross the
Fermi level. Therefore, when x = 1, the structure converts to a quaternary Heusler alloy TiFeCoSi with
half-metallic character.

It can be seen from Figure 5 that TiFeCoSi possesses a wide half-metallic energy gap of about
0.56 eV, and the Fermi level is located slightly above the middle of the gap and, hence, it is predicted
to have stable half-metallicity. Both spin down occupied bonding bands and spin down unoccupied
antibonding bands are mainly localized by Co and Fe atoms. Figure 6 shows the half-metallicity of
TiFeCoSi as a function of the lattice constant, and it holds the half-metallic energy gap when its lattice
constant increases from 5.4 Å to 6.1 Å. When the lattice constant is 5.4 Å, the Fermi level lies at the top
of spin down valence band, and when TiFeCoSi is further compressed, the Fermi level would drop
into the valence band and lose its half-metallicity. With the lattice constant increases, the Fermi level
gradually moves from a low energy zone to a high energy zone. As the lattice constant increases up
to 6.1 Å, the Fermi level locates at the bottom of spin down conduction band, and when TiFeCoSi
is further stretched, the Fermi level would move into the conduction band, and half-metallicity is
also destroyed.
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The atom-resolved spin magnetic moment (AMM) and total magnetic moment (TMM) of Fe
doped Ti2CoSi as a function of Fe concentration is shown in Figure 7. As for pure Ti2CoSi, TiA and
TiB contribute the main part of TMM, while Co offers a small part, due to the reason that low valence
transition metal Ti atom has larger spin splitting than the high valence transition metal Co. When Fe
atom doping in Ti2CoSi forms TiA1−xFexTiBCoSi, the contribution of Fe atom to the TMM is lower
than TiA atom. As the Fe doping concentration increases, the AMM of TiA, TiB, and Fe atoms lineally
decline, while AMM of the Co atom is enhanced, and it is almost as high as Fe atom when the doping
concentration increases to x = 1. It also can be seen that when x ranges from 0 to 0.625, the AMMs
of TiA, TiB, Fe, and Co are positive values, indicating the ferromagnetic arrangement among these
transition metal elements. While, when x > 0.625, the AMM of TiB atom reverses to a negative value,
leading to the fact that the doped structure changes into a ferrimagnet. Overall, the TMM lineally
decreases with Fe concentration increases, and it is in good agreement with the Slater–Pauling rule,
which can be written as TMM = Z − 24, where Z is the total number of valence electrons.
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Based on the half-metallic TiFeCoSi, we continue to introduce the impurity, Fe atom, and impurity
Fe may occupy Ti, Co, or Si atoms, forming a Ti(Fe), Co(Fe), or Si(Fe) doping structure, respectively.
The formation energy of these three possible doping structures are also calculated by Equation (1).
Si(Fe) and Ti(Fe) doping structures respectively exhibit high formation energies of 1.895 eV and 1.437 eV,
revealing that Si and Ti are hard to be replaced by Fe atom. While Co(Fe) doping structure possesses
the minimal formation energy of −0.153 eV, indicating that the Co atom is easily occupied by Fe atom
and forms the TiFeCo1−yFeySi doping structure, where y is the concentration of the impurity Fe atom,
and y = 0.125, 0.25, . . . , 0.875, 1. Figure 8 shows the band structures of TiFeCo1−yFeySi. When impurity
Fe concentration y ranges from 0.125 to 0.625, spin up bands stride over the Fermi level, while there
is an obvious energy gap that exists in the spin down bands. Therefore, TiFeCo1−yFeySi maintains
its half-metallicity when the impurity Fe concentration increases from 0.125 to 0.625. As y increases
to 0.75, the Fermi level drops into the spin down conduction band, and the doping structure loses its
half-metallicity, and the spin polarization decreases to about 74%. In addition, with an increase of the
impurity Fe concentration, the overlap degree between spin up valence band and spin down valence
band increases. When y reaches up to 0.875, the Fermi level still exists in the spin down conduction
band, and there is much overlap between the spin up and spin down bands, and the energies of the
spin up and spin down bands are almost the same, making the spin polarization seriously drop to only
3%. Hence, the doping structure TiFeCo0.125Fe0.875Si can be regarded as pseudo-semiconductor. As the
impurity Fe concentration further increases up to y = 1, the spin up and spin down bands completely
overlap, and there is an energy gap of 0.418 eV that exists in both spin up and spin down band, and
the structure Fe2TiSi therefore converts to a semiconductor.
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The AMM and TMM of Fe doped TiFeCoSi as a function of impurity Fe concentration is exhibited
in Figure 9. When impurity Fe concentration increases from 0.125 to 0.75, AMM of Co atom has a
slight increase, while that of the Fe atom descends obviously. In addition, the absolute value of AMMs
of TiB and impurity Fe are weakened. It should be noted that when the impurity Fe concentration y
increases to 0.875, the AMM of Co atom suffers a sharp decline, and AMMs of all atoms are extremely
close to zero, owing to the fact that TiFeCo0.125Fe0.875Si shows a pseudo-semiconductor property.
Furthermore, AMMs of Co and Fe are positive values, while that of TiB and impurity Fe are negative
values, indicating that doping structure TiFeCo1−yFeySi is a ferrimagnet when y ranges from 0.125 to
0.75. As the impurity Fe concentration further increases up to y = 1, AMMs of all atoms are zero. As a
result, Fe2TiSi is a nonmagnetic semiconductor.
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4. Conclusions

We investigated the influence of impurity Fe atom on magnetism and electronic structures of
Heusler compound Ti2CoSi by using the first-principle calculations within density functional theory
(DFT). Ti2CoSi is a spin gapless semiconductor (SGS) with an indirect closed spin down energy
gap. It lost its SGS property when the impurity Fe atom intervened, and when the concentration
of impurity Fe atom increases to x = 0.875, the compound shows gapless metal character. At the
doping concentration of x = 1, TiA atoms are completely occupied by impurity Fe atoms, and the
compound converts to TiFeCoSi, which is a half-metallic ferromagnet (HMF). During this SGS→HMF
transition, the total magnetic moment linearly decreases with the concentration of impurity Fe atom
increasing, which follows the Slate–Pauling rule well. When the impurity Fe further increases from y
= 0.125 to y = 0.625, the doping compounds maintain their half-metallicity. While, when the doping
concentration increases up to y = 1, the compound converts to semiconductor Fe2TiSi. During this
HMF→nonmagnetic semiconductor transition, when the concentration of impurity Fe atom ranges
from y = 0.125 to y = 0.625, the magnetic moment of Fe atom is positive and linearly decreases, while
that of impurity Fe and TiB are negative and linearly increase. When all Co atoms are substituted by
Fe atoms, the magnetic moments of Ti, Fe, and Si return to zero, and the compound, therefore, is a
nonmagnetic semiconductor.
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