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Abstract: This work describes a novel approach to localize sub-pixel chessboard corners for camera
calibration and pose estimation. An ideally continuous chessboard corner model is established, as a
function of corner coordinates, rotation and shear angles, gain and offset of grayscale, and blurring
strength. The ideal model is evaluated by a low-cost and high-similarity approximation for sub-pixel
localization, and by performing a nonlinear fit to input image. A self-checking technique is also
proposed by investigating qualities of the model fits, for ensuring the reliability of addressing
perspective-n-point problem. The proposed method is verified by experiments, and results show that
it can share a high performance. It is also implemented and examined in a common vision system,
which demonstrates that it is suitable for on-site use.
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1. Introduction

Computer vision is an interdisciplinary field that deals with how computers can be made for
gaining high-level understanding from digital images or videos. From the perspective of engineering,
it seeks to automate assignments that the human eyes can do. As a sub-domain of computer
vision, visual measurement is employed for some applications involving dimensional survey tasks,
and it always utilizes one or more cameras with exactly known intrinsic parameters for addressing
perspective-n-point problem [1] and, therefore, camera calibration is pivotal for ensuring the system
accuracy [2].

Most camera calibration approaches require a certain number of correspondences between world
and image frames, which are also known as control points, and they usually are called “targets”
in photogrammetry [3]. These approaches are performed with planar or non-planar targets with
exactly known geometries. After the targets are photographed, their corresponding image points need
to be localized for solving intrinsic and extrinsic parameters based on bundle adjustment or other
optimization models [4]. As a result, the accuracy of camera calibration is largely dependent on the
localization of image points, and usually evaluated by re-projection errors [5].

Circular dots and chessboards are the most common target types. Without a loss of generality,
projecting the center of a circle yields an image point that is not necessary to be the center of a pattern
projected from the circle, unless the pattern is still circular. Contrarily, the corner of a chessboard is
scarcely subjected to projective transformations. For that reason, chessboards are more convenient
for achieving targets in visual measurements [6]. In addition, since Zhang [2] proposed a flexible
calibration approach employing a planar rig with chessboard patterns, this approach has been
cited more than ten thousand times, and made chessboards the most frequently used targets for
camera calibration.
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Chessboard corners can be detected at pixel level using conventional detectors, such as Harris [7]
and Kanade-Lucas-Tomasi (KLT) [8]. These detectors usually extract a set of redundant points from one
corner, due to user-defined parameters. Some modified means [9–11] are contributed to make arbitrary
points converge into nearby corners, but their operational accuracy is still at pixel level. In many
application scenarios [12–14], however, pixel resolution is not yet accurate enough and, therefore,
mathematical techniques, such as interpolations or approximations, are used to localize sub-pixel
corners. In this paper, a novel approach for sub-pixel corner localization is proposed, and experiments
are conducted to verify the new approach.

2. Related Work

During the last two decades, a quantity of sub-pixel localization approaches have been proposed
for ensuring the accuracy of camera calibration and pose estimation, which can be roughly divided
into three categories discussed in this section.

2.1. Approaches Based on Image Gradient

Sroba [15] shares a sub-pixel localization technique based on the observation that a vector from a
corner to any part of its adjacent area is perpendicular to the image gradient of the corner. Points from
the adjacent area are used to apply some mathematical treatments for solving a location iteratively;
this location is taken as the new center of the adjacent area, until the center stays within a set threshold.
Bok [16] adopts a sub-pixel finder algorithm based on Harris detector. From the given initial corner
locations, the algorithm iteratively updates the individual corner locations to the largest gradient
values using patch-based structure tensor calculation. The algorithm calculates the structure tensor
by directly interpolating the gradients, instead of first interpolating the image and second computing
the gradients for reducing computational costs. The first mentioned category has been implemented
by a toolbox [17] and a library function [18] and, therefore, frequently employed in many application
scenarios. These approaches can achieve high efficiency, but they are sensitive to image noise, and often
lead to unstable results for on-site use.

2.2. Approaches Based on Grayscale Symmetry

Chu [19] introduces a sub-pixel detector using a round template under image physical coordinates.
The round template is employed to pass through a dilated image, and corners are ultimately determined
by calculating the centroid of redundant points based on the symmetry of chessboard patterns.
Zhao [20] proposes a method based on the property that the symmetry of a square region is more
significant when the central pixel of it is closer to a corner. Symmetric factors of all pixels in a selected
area are calculated for obtaining a weighted sub-pixel corner position. These approaches can achieve
better results when detecting blurred or overexposed images. However, they need a bigger region of
interest (ROI), and come at a higher computation cost due to the determination of symmetric factors
using a sliding template or window and, therefore, they are subject to certain constraints of lens
distortions and expensive for real-time use.

2.3. Approaches Based on Polynomial Fitting

Lucchese [21] performs a least-squares fit of a quadratic polynomial to a low-pass version of the
input image. The approach obtains saddle points from the polynomial coefficients and is invariant to
affine transformations. Chen [22] computes intermediate values in the Harris-corner-like detection
phase to obtain a second-order Taylor expansion of input image, saddle points are found based on a
corner model restricted to orthogonal corners. Mallon [23] proposes an edge-based nonlinear corner
localizer. The localizer performs a least-squares fit of a parametric edge model to an edge version
of input image. Placht [24] develops a modified strategy inspired by the method mentioned in [21].
A corner is refined to sub-pixel accuracy by filtering the adjacent region around it using a 2-D cone
filter for an intensity surface amenable to fitting a quadratic polynomial. On the premise of selecting a
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reasonably small neighborhood, these approaches can yield a suitable approximation in the presence
of nonlinear distortions and projective transformations, due to the affine invariance [25]. However,
they require a filtered version of the input image for polynomial fitting, because their corner models
are not accurate enough for direct processing, which still need to be optimized for improving reliability
and efficiency of sub-pixel localization.

3. Methodology

In this section, an accurate model of chessboard images is established for localizing sub-pixel
corners; the methodology is based on polynomial fitting and without being dependent on
image filtering.

3.1. Ideally Continuous Corner Model

It is intuitive to imagine that a corner is located at a junction of two edges, and has the
smallest radius of curvature; pixels around it appear as a high change of brightness in all directions.
As represented in Figure 1, a square region C with a center o = [0, 0] and an area of (2r + 1)2 pixels is
observed to analyze a chessboard image for the following description. Geometrically, a straight line L
passing through o can be given as

L : χ(ω, u, v) = u sin ω− v cos ω = 0, with{ω, u, v} ∈ R, (1)

where ω is the angle of inclination. Using the sign function sgn(x) yields an ideal edge E related to L via

E(ω, u, v) = sgn[χ(ω, u, v)]. (2)

An ideally continuous chessboard image, with a gray value +1 in the white and−1 in the black regions,
is then defined:

Ci(u, v) = E(α, u, v)E(β, u, v), 0 ≤ α < π, α < β < π+ α, (3)

where α and β are the angles similar to ω, and determine two edges E1 and E2. It is worth mentioning
that Equation (3) is subject to a reasonably small r. Otherwise, E1 and E2 may be re-defined by two
curve functions for a suitable approximation of lens distortions.
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Figure 1. Definition of a chessboard image.

In actual imaging, however, Ci is inevitably blurred by the lens of a vision system. A point
input, represented as a single pixel in Ci, will be reproduced as a spread region in a blurred image Cf.
For practical purposes, the blurring response described by the point spread function (PSF) is always



Appl. Sci. 2018, 8, 2118 4 of 19

approximated by a radio-symmetrical Gaussian kernel [26]. Similarly, Cf is modeled by convolving Ci

with a 2-D Gaussian filter:

Cf(u, v) =
1√
2πσ

exp
(
−u2 + v2

2σ2

)
⊗ Ci(u, v), (4)

with σ effectively denoting the blurring strength.
Distinctly, the gray level of Cf is not in the same range as that of a digital image in the common

use. Under the assumption that the vision system has a linear response to the light intensity within a
reasonable range, Cf can be transformed by

Cs(u, v) = λCf(u, v) + κ, (5)

with κ and λ related to the maximum and minimum gray values gmax and gmin of Cs via

κ =
gmax + gmin

2
, λ =

gmax − gmin

2
. (6)

3.2. Sub-Pixel Corner Localization

According to the existing techniques discussed in Section 2.3, since a real region R is detected with
a known corner position cp = [up, vp] at pixel level, the ideal model, Cs, most similar to R (the highest
PSNR), can be found by determining

argmin
µ,υ,α,β,λ,κ,σ

[
+r

∑
i=−r

+r

∑
j=−r

(
εi,j
)2
]

, with εi,j = Cs(i + µ, j + υ)− R
(
i + up, j + vp

)
, (7)

where µ and υ form a vector d from the ideal corner position to the center of Cs. It is evident
that the closed expression of Cf is required to address the above optimization by common means,
e.g., the Gauss–Newton method. Despite the fact that Equation (4) cannot be directly analyzed by
anti-derivatives, it is approximately evaluated by separating the Gaussian kernel and using integration
by parts, given as

Cf(u, v) = erf
[

χ(α, u, v)√
2σ

]
erf
[

χ(β, u, v)√
2σ

]
+ ∆(u, v), (8)

∆(u, v) ≈
(

1− 4θ1
π

){
1− erf2

[√
δ1χ2(θ2,u,v)+δ2χ2(π

2 +θ2,u,v)
2σ2

]}
, with{

θ1 = β−α
2

θ2 = β+α
2

,
(

δ1 δ2

)
=


(

1 tan θ1

)
if θ1 < π

4(
cot θ1 1

)
otherwise

,
(9)

where ∆(u, v) is the integral remainder term, erf(x) denotes the Gaussian error function, and θ1 and θ2

are also known as the angles of shear and rotation in image plane. The corner model, approximated in
Equations (8) and (9), share a high similarity with the ideal one in Equation (4), due to an effective
estimation and compensation of ∆(u, v) (Figure 2).

However, there is still a lack of the closed form for the Gaussian error function; an accurate but
expensive way is replacing it by piecewise polynomials [27]. Considering that most applications utilize
8-bit gray images (256 gray-levels), this replacement should be a balance between the computational
accuracy and efficiency. Alternatively, a low-cost approximation tanh(ρx) is used, and leads to an
acceptable result by selecting a suitable value for the coefficient ρ (Figure 3).

Finally, Equation (7) can be achieved using a linear optimization in iterations. µ and υ are
initialized to 0 and σ to 1. α and β are initialized based on edge extraction [28]. κ and λ are initialized
using the gray values in the black and white areas close to cp. Generally, about 14 pixels are suitable
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for r with an overall consideration of the lens distortions, image noise, and computational efficiency.
After sufficient iterations for the system convergence, sub-pixel corner cs can be calculated from

cs = cp − d. (10)
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Figure 2. Gray images simulated by the ideal model, approximated model, and ∆(u, v), with different
values of θ1 and θ2. The image size is 41 × 41 pixels, σ = 4.
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Figure 3. Function curve plots of (a): y = erf(x) (dashed), y = tanh(ρx) (solid), and (b): y = tanh(ρx)− erf(x).
The coefficient ρ is set to 1.0 (red), 1.1 (purple), and 1.2 (green).

3.3. Self-Checking for Perspective-n-Point

Resulting from a maximum likelihood estimation of Cs, the residual εi, j can be used to evaluate
the quality of model fit. Let ’́E be similar to the root-mean-square error (RMSE), and expressed as

Io =
1

2r + 1

√√√√ +r

∑
i=−r

+r

∑
j=−r

(
εi,j
)2. (11)
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The factor ’́E is slightly and unavoidably affected by the lens distortions and image noise,
but remarkable when there is a great deal of light pollution (or imbalanced illumination) brought into
a chessboard image, which often happens in on-site applications. Thus, it can also be considered
as a metric to reflect the reliability of sub-pixel localization. In order to achieve a self-checking
technique for perspective-n-point, boxplot analysis is more appropriate than conventional means, e.g.,
3-sigma rule [29]. The boxplot distinguishes outliers using quantiles (Figure 4), rather than depending
on a prior knowledge about the distribution of actual dataset and, therefore, it has a higher flexibility.
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It is assumed that a chessboard image is detected with an array of sub-pixel corners (the array
size is M × N). Using Equation (11) gives a corresponding metric ’́Em,n for the corner cm,n = [um,n vm,n],
m ∈ {1, . . . , M}, n ∈ {1, . . . , N}. As illustrated in Figure 4, since the quantiles Q1 and Q3 are obtained
by investigating all the metrics, the factor wm,n, standing for the reliability of cm,n, is then determined:

wm,n =

{
1 if Iom,n ∈

[
2.5Q1 − 1.5Q3 2.5Q3 − 1.5Q1

]
0 otherwise

. (12)

Perspective-n-point is the problem of estimating a 3-D rotation r and a translation t of a calibrated
camera, with respect to the world frame. Since the chessboard mentioned above is defined in the world
frame accurately, 3-D points in it and their corresponding image points follow a pin-hole model for the
camera [2]:

sm,nnm,n = rqm,n + t, with nm,n =
[

um,n−u0
fx

vm,n−v0
fy

1
]T

, (13)

where qm,n is the (m, n)th 3-D point and sm,n the corresponding scale factor. f x and f y are the scaled
focal lengths, [u0 v0] is the principal point. An optimal solution of sm,n is related to the given r and t via

sm,n =
(

nm,n
Tnm,n

)−1
nm,n

T
(

rqm,n + t
)

. (14)
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Considering wm,n as the penalty factor in association with the above estimator yields

argmin
r,t

{
M

∑
m=1

N

∑
n=1

∥∥∥∥wm,n

[(
nm,n

Tnm,n

)−1
nm,nnm,n

T − I
]
(rqm,n + t)

∥∥∥∥2
}

. (15)

Rodrigues parameters, instead of Euler rotations, are recommended for simplifying the above
optimization [30]. It is worth being pointed out that sub-pixel corners obtained according to Section 3.2
cannot be directly taken as image points, which need to be corrected beforehand, due to lens
distortions [2].

4. Evaluation

In this section, experiments on synthetic and real datasets are conducted to verify the proposed
method with three references detailed in literatures [16,20,24]. In order to decrease the influence on
localization result due to different parameter settings, for both the proposed and referenced methods,
each chessboard corner is detected with the same initial pixel coordinates, and refined from the same
local neighborhood with a square size of 31 × 31 pixels.

4.1. Synthetic Data

In order to acquire synthetic chessboard image, a pin-hole camera is simulated with the properties:
[f x, f y] = [7000, 7000], [u0, v0] = [1296, 972]. The image resolution is set to 2592 × 1944. A single
chessboard pattern with 20 mm cell size in both directions is projected to the image plane. Since optical
paths are reversible, an ideal projection from the pattern center can be found and defined as ground
truth. Gaussian blur with the window parameter σf and Gaussian noise with 0 mean and standard
deviation σn are added to make the image similar in appearance to a real one (Figure 5). For each
given σf and σn, 100 independent trials are performed, with other simulation parameters varied and
limited in their ranges (Table 1), under the premise of ensuring faultless projections.
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Table 1. Range set of simulation parameters. yaw, pitch, and roll are the Euler angles related to r. tx, ty,
and tz are the dimensional elements of t.

gmax gmin yaw, pitch, roll tx (mm) ty (mm) tz (mm)

[191, 255] [0, 63] [−π/4, π/4] [−40, 40] [−30, 30] [950, 1050]

Figure 6 depicts the RMS error of sub-pixel localization as a function of σf and σn. The proposed
technique performs significantly better than the referenced ones. Although it results in a higher
error due to the increase of σf and σn, the performance drop is not as pronounced as for the others.
Concretely, for the poorest image quality (σf = 3, σn = 0.2), the result shows that the errors are about
0.154, 0.041, 0.077, and 0.024 pixels for [16,20,24], and the proposed technique, respectively. Remarkably,
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Placht et al. [24] yields a stable, but significant, error in the presence of the change of σf and σn for
taking filtered images as inputs. That is to say, it not only eliminates noise distinctly, but also leads to
an extra uncertainty of sub-pixel localization.

In addition, sub-pixel localization errors from all trials (the total number is 40,000) are gathered
for an overall evaluation represented by boxplots. As shown in Figure 7, for the proposed and
referenced methods, interquartile ranges (IQRs) are highly symmetrical about medians pretty close
to zero. In detail, the IQRs are about 0.18, 0.13, 0.32, and 0.04 pixels in both directions for [16,20,24],
and the proposed method, respectively. The smaller IQR reflects the better performance of sub-pixel
localization. Again, using filtered images as inputs lead to a particular outcome, that there are no
outliers to be distinguished with the largest IQR for [24].
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Figure 6. Localization error with respect to blur strength σf and noise level σn for (a) [16], (b) [20],
(c) [24], and (d) the proposed technique.
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Figure 7. Boxplots of the errors between localized and standard values in u (red boxes) and v
(blue boxes) directions, regarding (a) [16], (b) [24], (c) [20], and (d) the proposed method.

The above simulation relies on the assumption that edges defining a corner are completely straight
in the observation area, or region of interest, where the corner is going to be found. However, it is
well known that lenses inevitably have distortions. To obtain maximum allowable distortions for
the method, another simulation is conducted, with the fixed blur strength and noise level (σf = 1.5,
σn = 0.1), and the first order radial distortion with the degree k1 is added to the image (Figure 8). Again,
for each given k1, 100 independent trials are performed, with other simulation parameters varied and
limited in their ranges (Table 1), except for [tx, ty, tz] set to [115, 80, 1000], for ensuring the projections
farther away from the principal point.
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Figure 8. Chessboard image captured by simulation with the first order radial distortion, k1 = −5.

Figure 9 depicts the RMS error of sub-pixel localization as a function of k1. The highest errors
are 0.089 pixels for [16], 0.046 pixels for [20], 0.123 pixels for [24], and 0.037 pixels for the proposed
method. Again, the proposed method performs significantly better than the referenced ones when k1

varies from −5 to 5. Different from [20] and the proposed method, Bok et al. and Placht et al. [16,24]
show a distinct variability due to the limitation of their methodologies; the blur strength and noise
level in the simulation have greater impact on the localization result than the distortion. For practical
applications, however, cameras with the coefficient k1 larger than 5 are lesser used in photogrammetry
because the pinhole model is no longer applicable for them. Therefore, for calibrating a camera for
common use, the proposed method can be effectively performed without any pretreatment.
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Figure 9. RMS error between localized and standard values as a function of k1 for four different approaches.

4.2. Real Data

In contrast to simulations, real data experiments cannot directly evaluate the accuracy of sub-pixel
localization via the observed corner coordinates, due to their undetermined ground truth data.
An alternative and indirect way is examining it based on camera calibration technique. Figure 10 shows
that a camera (JPLY, G1GD05C) with 16 mm lens and 2592 × 1944 image resolution is employed
for conducting a camera calibration experiment based on a coordinate measuring machine (CMM)
(Brown & Sharpe, Global Image 7107) with a single chessboard pattern (20 × 20 mm cell size) mounted
on the end of its probe. 3-D control points are achieved by programmatically driving the probe to a
set of specially designed positions, and provided with a dimensional error of less than 0.003 mm in
both directions. For each position, the chessboard pattern is recorded by the camera for capturing a
corresponding corner. Since all corners are located at the sub-pixel level, the camera can be calibrated
based on bundle adjustment [4,6].
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Figure 10. Camera calibration using (a) single chessboard and CMM for achieving (b) 3-D control
points with specially designed positions.

Table 2 lists the result of intrinsic parameters calibrated from the corners based on four different
approaches. According to the definition of radial distortion coefficients detailed in [2], for [16,20,24]
and the proposed method, the maximum distortions evaluated using the image point furthest from the
principal point are 22.78, 25.92, 29.33, and 24.54 pixels in the radial direction, respectively. Among them,
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the contributions of k2 are 2.03 pixels for [16], 6.06 pixels for [20], 10.06 pixels for [24], and 4.62 pixels
for the proposed method. Therefore, k2 has a much smaller influence on the pixel offsets than k1.
Or rather, the estimator of k2 is more sensitive to noise in the corner coordinates. In spite of the fact
that the result cannot intuitively demonstrate the performance of each approach, it is pivotal for the
following investigations.

Table 2. Calibration result for four different approaches. k1 and k2 denote the 1st and 2nd order radial
distortion coefficients.

[u0, v0] [f x, f y] [k1, k2]

[16] [1344.42, 937.37] [7296.06, 7298.85] [0.2332083, 0.4313581]
[20] [1342.78, 936.71] [7298.67, 7302.12] [0.2237942, 1.2905459]
[24] [1340.02, 937.04] [7297.59, 7300.76] [0.2118124, 2.2750773]

Proposed [1343.70, 936.62] [7299.13, 7302.50] [0.2253345, 0.9926340]

Figure 11 represents four scatter plots of re-projection errors. For general examinations,
the maximum and mean re-projection errors for the proposed method are 0.22 pixels and 0.11
pixels, evidently less than 0.32 pixels and 0.15 pixels for [16], 0.29 pixels and 0.15 pixels for [20],
0.39 pixels and 0.18 pixels for [24]. From the standpoint of addressing perspective-n-point problem,
the re-projection errors, assessing the validity of calibration, are subjected to some optical indications,
e.g., image and lens resolutions, and integrated with certain methodologies, including calibration
model, target geometry, and sub-pixel localization. The mentioned experiment employs a robust
model with stereo points establishing correspondences between world and image frames accurately
and, therefore, the lower re-projection errors not only reflect the better solution of perspective-n-point,
but also testify the higher accuracy of sub-pixel localization. Therefore, the corners obtained using the
proposed technique are better suited for camera calibration.
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Figure 11. Scatter plots of re-projection errors (red dots) for (a) [16], (b) [20], (c) [24], and (d) proposed
method. In each sub-figure, green circle is rendered with a radius equal to the mean re-projection error.
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In order to alternatively examine the proposed technique, different measurements on displacement
and attitude are carried out using the CMM and camera mentioned above. Firstly, for displacement
measurement, a target (6 × 6 grid of points, 20 × 20 mm cell size) fixed on the end of the probe
is moved with the guide and imaged by the camera placed in front of the CMM, for measuring a
distance d between two different positions as an evaluation factor (Figure 12). Secondly, for attitude
measurement, two targets, T1 and T2, mounted on the base with the same grid and cell as that of the
above measurement, are imaged by the camera (Figure 13). Among the three axis vectors, only the
one in the z direction can be perfectly measured using the probe (Renishaw, SP600), by scanning the
pattern plane of each target, due to a restriction that makes it hard to capture 3-D coordinates of a
corner accurately, by means of contact measurements. Thus, the included angle θ between two normal
vectors is adopted as another evaluation factor more suitably. Fifteen independent trials are performed
to localize sub-pixel corners, employing both the proposed and referenced methods, and estimate the
camera poses from their respective intrinsic parameters listed in Table 2. The metrics d and θ are then
computed for investigating discrepant deviations with respect to the CMM data.Appl. Sci. 2018, 8, x FOR PEER REVIEW  12 of 19 
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Figure 12. Experiment for measuring displacement. (a) Determining d via CMM and camera.
(b) A merged image of two positions with located corners.
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Figure 13. Experiment for measuring attitude. (a) Determining θ via CMM and camera. (b) One shot
in 15 trials with located corners.

Figure 14 presents the results from the above measurements. Under the premise that the CMM
provides baselines with a higher accuracy, the RMS errors of d and θ are 0.032 mm and 0.010◦ for [16],
0.021 mm and 0.009◦ for [20], 0.037 mm and 0.013◦ for [24], and 0.014 mm and 0.006◦ for the proposed
approach. Although there are many estimable and inestimable influences during the experiments,
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the results are mainly dependent on the accuracies of intrinsic parameters and corner coordinates,
and essentially subject to the performance of each sub-pixel localization method because the camera is
also calibrated from the respective corner set. From a synthetical point of view, exact values of d and θ

are derived from reliable estimations of camera poses predetermined by accurate corner coordinates.
As an apparent outcome of the comparison, the proposed technique presents a higher performance
than others.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  13 of 19 

 
Figure 14. Measurement results of (a) displacement d and (b) attitude angle θ. 

As shown in Figure 15, in order to test the proposed approach in terms of its robustness to 
real-world data gathering, four images of a stationary chessboard are captured by the mentioned 
camera under underexposed, overexposed, indoor light interfered, and outdoor light interfered 
scenarios. For each corner in a 6 × 6 array, its maximin deviation between different scenarios is 
computed and gathered for an overall evaluation. 

Table 3 lists the overall evaluation result for four different approaches. The RMS deviations are 
0.419 pixels for [16], 0.287 pixels for [20], 0.396 pixels for [24], and 0.241 pixels for the proposed 
approach. Considering the fact that the relative pose between the target and camera is stationary, 
the variability of each detected corner is mainly subject to the robustness of corner localization in 
the presence of the ambient light changes. The smallest RMS deviation proves that the proposed 
approach has higher interference immunity, resulting from a more robust corner model. 

Table 3. Overall evaluation result for four different approaches. 

 [16] [20] [24] Proposed 

RMSD (pixel) 0.419 0.287 0.396 0.241 

 

-0.09 -0.06 -0.03 0 0.03 0.06 0.09

39.069

44.659

89.403

108.328

120.674

152.828

157.564

181.372

190.838

204.937

205.988

228.265

246.521

289.072

292.381

RMS

Deviation w.r.t. Ground Truth (mm)

G
ro

un
d 

Tr
ut

h 
(m

m
)

 

 
[16] [20] [24] Proposed

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

5.005

5.725

7.885

11.097

11.526

12.608

13.211

13.365

13.559

15.852

22.161

24.734

26.168

31.545

33.771

RMS

Deviation w.r.t. Ground Truth (degree)

G
ro

un
d 

Tr
ut

h 
(d

eg
re

e)

 

 

(a) (b) 

Figure 14. Measurement results of (a) displacement d and (b) attitude angle θ.

As shown in Figure 15, in order to test the proposed approach in terms of its robustness to
real-world data gathering, four images of a stationary chessboard are captured by the mentioned
camera under underexposed, overexposed, indoor light interfered, and outdoor light interfered
scenarios. For each corner in a 6 × 6 array, its maximin deviation between different scenarios is
computed and gathered for an overall evaluation.

Table 3 lists the overall evaluation result for four different approaches. The RMS deviations
are 0.419 pixels for [16], 0.287 pixels for [20], 0.396 pixels for [24], and 0.241 pixels for the proposed
approach. Considering the fact that the relative pose between the target and camera is stationary,
the variability of each detected corner is mainly subject to the robustness of corner localization in the
presence of the ambient light changes. The smallest RMS deviation proves that the proposed approach
has higher interference immunity, resulting from a more robust corner model.
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Table 3. Overall evaluation result for four different approaches.

[16] [20] [24] Proposed

RMSD (pixel) 0.419 0.287 0.396 0.241
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Figure 15. Four images of a stationary chessboard captured under (a) underexposed, (b) overexposed,
(c) indoor light interfered, and (d) outdoor light interfered scenarios.

4.3. Practical Application

The proposed approach is implemented in a visual measurement system called 3D four-wheel
aligner (3Excel, T50). The system, designed for aligning four automobile wheels, mainly consists of an
upper computer and four cameras and chessboard targets (Figure 16). Each camera is equipped with
infrared filter and illuminant, for ensuring a high immunity to the complicated imaging conditions at
customer sites. During an initial operation, the automobile under test is driven up to a certain distance
by external force. Meanwhile, the cameras C1 to C4 are triggered in synchronous mode to capture
image sequences of the targets T1 to T4 mounted on the front-left, front-right, rear-left, and rear-right
wheels, respectively. For each image sequence, sub-pixel corners are detected for estimating a wheel
attitude with respect to the corresponding camera; two alignment parameters toe-in/toe-out and camber
are then determined by decomposing angles of the wheel attitude unified in a global frame defined
by the bodywork. During a real-time alignment, the parameters are dynamically calculated from
continuous estimations of the wheel attitude changes with respect to their initial values.



Appl. Sci. 2018, 8, 2118 15 of 19

Appl. Sci. 2018, 8, x FOR PEER REVIEW  14 of 19 

  
(a) (b) 

  
(c) (d) 

Figure 15. Four images of a stationary chessboard captured under (a) underexposed, (b) 
overexposed, (c) indoor light interfered, and (d) outdoor light interfered scenarios. 

4.3. Practical Application 

The proposed approach is implemented in a visual measurement system called 3D four-wheel 
aligner (3Excel, T50). The system, designed for aligning four automobile wheels, mainly consists of 
an upper computer and four cameras and chessboard targets (Figure 16). Each camera is equipped 
with infrared filter and illuminant, for ensuring a high immunity to the complicated imaging 
conditions at customer sites. During an initial operation, the automobile under test is driven up to a 
certain distance by external force. Meanwhile, the cameras C1 to C4 are triggered in synchronous 
mode to capture image sequences of the targets T1 to T4 mounted on the front-left, front-right, 
rear-left, and rear-right wheels, respectively. For each image sequence, sub-pixel corners are 
detected for estimating a wheel attitude with respect to the corresponding camera; two alignment 
parameters toe-in/toe-out and camber are then determined by decomposing angles of the wheel 
attitude unified in a global frame defined by the bodywork. During a real-time alignment, the 
parameters are dynamically calculated from continuous estimations of the wheel attitude changes 
with respect to their initial values. 

 
Figure 16. 3D four-wheel alignment. (a) System composition. (b) Initial operation. 

C4 C2C1 C3

(a) 

Upper computer 

 

Push 

T1 T3 

T2 T4 

(b) 

Figure 16. 3D four-wheel alignment. (a) System composition. (b) Initial operation.

As demonstrated in Figure 17, an automobile (Ford Focus) in healthy condition is used for on-site
alignment. The introduced aligner can capture chessboard images with black backgrounds due to the
usage of infrared filters and illuminants. After finishing the initial operation, the alignment is carried
out and divided into two periods: one performs normally, and the other is interfered by infrared
pollution sources. During each period, the alignment parameters are incessantly computed based on
both the proposed and built-in techniques, until the number of their recorded values reaches 120.
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Figure 17. On-site aligning experiment. (a) Using infrared light as pollution source. (b) One shot in
image sequence with located corners for each wheel position.

Figure 18 shows two boxplots of total toe-in/toe-out for the front and rear wheel-sets.
This parameter, called toe-in for positive and toe-out for negative values, is defined for investigating
the symmetry of each wheel-set about the geometric centerline (or thrust line). For both normal and
interfered periods, the proposed method results in a median closer to zero and IQR of minor scope,
compared with the built-in algorithm. Considering the fact that two total values should be pretty
small because of the healthy condition of the automobile, the boxplots prove that the proposed method
shows better central tendency, due to the accurate corner localization. When comparing the medians of
the proposed method during two periods, the deviations between them are about 0.003◦ and 0.002◦ for
the front and rear wheel-sets, significantly less than that of the built-in algorithm (0.009◦ and 0.003◦),
which also shows that the proposed method has a higher interference immunity resulting from the
self-checking technique.
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Figure 18. Boxplots of (a) front and (b) rear toe-in/toe-out values for the proposed (red boxes) and
built-in (blue boxes) techniques. Regarding normal and interfered periods.

Figure 19 depicts four curve plots of camber as a function of time stamp for the front-left, front-right,
rear-left, and rear-right wheel positions, which are divided into two parts, according to two different
periods of the alignment. This parameter is defined for measuring the inclination of a wheel with
respect to vertical line of the bodywork. Different from toe-in/toe-out, it is separately investigated
using the wheel attitude, and weakly restricted to the absolute symmetry about its baseline for the
corresponding wheel-set and, therefore, a total value makes poor sense for the evaluation. However,
when observing the median change between two periods of each front wheel, there is a strong
comparison that the difference is less than 0.003◦ for the proposed method, and more than 0.008◦ for
the built-in algorithm.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  16 of 19 

Figure 19 depicts four curve plots of camber as a function of time stamp for the front-left, 
front-right, rear-left, and rear-right wheel positions, which are divided into two parts, according to 
two different periods of the alignment. This parameter is defined for measuring the inclination of a 
wheel with respect to vertical line of the bodywork. Different from toe-in/toe-out, it is separately 
investigated using the wheel attitude, and weakly restricted to the absolute symmetry about its 
baseline for the corresponding wheel-set and, therefore, a total value makes poor sense for the 
evaluation. However, when observing the median change between two periods of each front wheel, 
there is a strong comparison that the difference is less than 0.003° for the proposed method, and 
more than 0.008° for the built-in algorithm. 

 
Figure 19. Camber as a function of time stamp for each wheel position. Solid curves (dashed lines) in 
red and blue denote function values (medians) for the proposed and built-in techniques, 
respectively. Regarding normal and interfered periods. 

It should be remarked that both methods yield median changes of the rear positions smaller 
than that of the front ones. This can be found from both Figures 18 and 19, and especially for the 
built-in technique. There is a logical explanation, as follows: the distances from the front and rear 
wheels to the infrared pollution source are about 1.5 m and 3.9 m, respectively. The energy of 
interference is in a state of decay when the distances become larger and, therefore, has no pivotal 
influence on corner localization and pose estimation for the rear wheels. That is to say, when there is 

20 40 60 80 100 120 140 160 180 200 220 240
-0.59

-0.58

-0.57

-0.56

Time (s)

Fr
on

t-l
ef

t C
am

be
r (

°)

20 40 60 80 100 120 140 160 180 200 220 240
-0.52

-0.51

-0.5

-0.49

Time (s)

Fr
on

t-r
ig

ht
 C

am
be

r (
°)

20 40 60 80 100 120 140 160 180 200 220 240
-0.41

-0.4

-0.39

Time (s)

Re
ar

-le
ft 

Ca
m

be
r (

°)

20 40 60 80 100 120 140 160 180 200 220 240

-0.4

-0.39

-0.38

Time (s)

Re
ar

-r
ig

ht
 C

am
be

r (
°)

Interfered Normal  

Interfered Normal  

Interfered Normal  

Interfered Normal  

Figure 19. Camber as a function of time stamp for each wheel position. Solid curves (dashed lines) in
red and blue denote function values (medians) for the proposed and built-in techniques, respectively.
Regarding normal and interfered periods.
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It should be remarked that both methods yield median changes of the rear positions smaller than
that of the front ones. This can be found from both Figures 18 and 19, and especially for the built-in
technique. There is a logical explanation, as follows: the distances from the front and rear wheels
to the infrared pollution source are about 1.5 m and 3.9 m, respectively. The energy of interference
is in a state of decay when the distances become larger and, therefore, has no pivotal influence on
corner localization and pose estimation for the rear wheels. That is to say, when there is a lack of
robust localization technique, a direct way to improve system accuracy is enhancing image quality.
Or rather, perspective-n-point is prone to errors if there are outliers in the set of point correspondences.
Thus, the self-checking technique can be used in conjunction with existing solutions to make the final
solution for the camera pose more robust to outliers.

4.4. Computational Efficiency Test

One hundred real images are obtained using the camera and 6 × 6 chessboard mentioned
in Section 4.2, for testing computational efficiency of the proposed method. An optimized
dynamic library of it is implemented in C++ code (available online: https://pan.baidu.com/s/
1PgRl3qG8HDi49f8n8Jwe3Q), to make a more objective analysis in terms of processing time compared
with two mature functions “findChessboardcorners” and “cornerSubPix” built-in OpenCV. The test
is run in VS2010 installed on a desktop computer (CPU: Intel Core i7-6700; RAM: DDR4-2133 16GB;
HDD: 1TB). All the images are preloaded in the RAM for an undifferentiated access performance,
instead of an unstable reading speed of the HDD.

Table 4 lists the result of the processing time for three different algorithms.
Although “cornerSubPix” runs two times as fast as the proposed method due to a low-cost
computation based on image gradient, it is not essential for real-time detection, because sub-pixel
corners are refined from their pixel coordinates located by expensive pretreatments. There is a common
view that “findChessboardcorners” has high performance for rough detection. When comparing
with two sub-pixel algorithms, however, it costs 41,715 ms, almost 32 and 14 times longer than
that of “cornerSubPix” and the proposed algorithm. Therefore, the present efficiency bottleneck
is the pixel detection, not the sub-pixel refinement. What can be expected is that this bottleneck is
not unbreakable; some state-of-the-art techniques, such as CUDA and multithread computing, are
powerful for addressing this kind of problem.

Table 4. Processing time of detecting 100 chessboard images for three different algorithms.

findChessboardcorners cornerSubPix Proposed

Time (ms) 41,715 1296 3051

5. Summary

In this work, a new approach is proposed to localize chessboard corners at sub-pixel level.
The proposed approach is based on an ideal chessboard model, established as a function of corner
coordinates, rotation and shear angles, gain and offset of grayscale, and blurring strength. In order to
localize the sub-pixel corner using a nonlinear fit to input image directly, the ideal chessboard model is
approximated by a low-cost and high-similarity expression in the closed form. In order to ensuring
the reliability of perspective-n-point, a self-checking technique for pose estimation is proposed by
investigating qualities of model fits. The proposed approach has the following superiorities: (1) the
methodology is effective without being dependent on image filtering employed as the pretreatment in
the references; (2) the approximated corner model is more accurate than that in the references and has
a high performance; (3) the self-checking technique, in association with existing solutions, is powerful
for on-site use.

https://pan.baidu.com/s/1PgRl3qG8HDi49f8n8Jwe3Q
https://pan.baidu.com/s/1PgRl3qG8HDi49f8n8Jwe3Q
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