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Abstract: The triple helix structure of collagen can be degraded by collagenase. In this study, we
explored how the intrinsic fluorescence of type I collagen was influenced by collagenase I. We found
that tyrosine was the main factor that could successfully excite the collagen fluorescence. Initially,
self-assembly behavior of collagen resulted in a large amount of tyrosine wrapped with collagen,
which decreased the fluorescence intensity of type I collagen. After collagenase cleavage, some
wrapped-tyrosine could be exposed and thereby the intrinsic fluorescence intensity of collagen
increased. By observation and analysis, the influence of collagenase to intrinsic fluorescence of
collagen was investigated and elaborated. Furthermore, collagenase cleavage to the special triple
helix structure of collagen would result in a slight improvement of collagen thermostability, which
was explained by the increasing amount of terminal peptides. These results are helpful and effective
for reaction mechanism research related to collagen, which can be observed by fluorescent technology.
Meantime, the reaction behaviors of both collagenase and collagenolytic proteases can also be
analyzed by fluorescent technology. In conclusion, this research provides a foundation for the further
investigation of collagen reactions in different areas, such as medicine, nutrition, food and agriculture.
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1. Introduction

Fluorescence spectroscopy is considered an effective method of studying the reactions of
biomolecules. Owing to its simple operation, cheap instrumentation, high sensitivity and selection, it
has been widely used in medicine, food, nutrition and many other fields [1]. Yu-Hua [2] investigated
the interaction between type I collagen and Hypocrellin B using fluorescence spectroscopy. The
bioelectric property of collagen was explored, which resulted from the ideal molecular arrangement
and potential intramolecular and intermolecular interactions. Furthermore, it was found the intrinsic
fluorescence of type I collagen could be excited through hydrogen bonding and electrostatic forces [3].
Sun proposed an alternative fluorescence method to measure the thermal stability of collagen mimic
peptides [4]. Additionally, acid-soluble collagen, which was extracted from walleye pollock skin, was
analyzed by the external fluorescence probe of pyrene, and the aggregation behavior of collagen was
studied [5]. The aggregation concentration of collagen was revealed through the transient fluorescence
decay study. There is potential for developing fluorescence spectroscopy technology for collagen
mechanism research in different areas, including medicine, nutrition, food and agriculture.

It is well known that the intrinsic fluorescence of proteins comes from aromatic amino acids, such
as phenylalanine, tyrosine and tryptophan residues; this is a valuable probe to explore protein-protein
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interactions apart from other external influences [6]. Due to a lack of tryptophan [7] and phenylalanine
residues [8] in type I collagen, its intrinsic fluorescence may be a result of tyrosine. Up to now,
type I collagen plays an essential role in embryonic development, tissue repair, wound healing
and organ formation, owing to its unique biochemical characteristics [9,10]. In recent years, the
anomaly of type I collagen in connective tissue results in arterial stiffness, joint damage, reduced
osteogenesis, decreased lung expansion and even neuropathy [11,12]. Therefore, investigating collagen
reaction mechanisms is significant and important. As is known, collagen structure can be changed
by collagenase cleavage, which may influence the intrinsic fluorescence of collagen, especially in
degradation pathways, observed by fluorescence spectroscopy. Toyoshima presented that collagenase
I could hydrolyze type I collagen by reacting with diverse sites in type I collagen [13]. Thus, how
the reaction between type I collagen and collagenase influences the intrinsic fluorescence of collagen
deserves to be studied. It is significant and essential to characterize the behavior of not only collagenase
but also other collagenolytic proteases.

This paper studied the influence of collagenase I on collagen intrinsic fluorescence, and the
mechanism is explained. Type I collagen was reacted with collagenase I; the intrinsic fluorescence
intensity was evaluated and the interaction mechanism was further analyzed. The changes of collagen
intrinsic fluorescence, which was influenced by the aggregation status of collagen molecules, was
observed and analyzed. This method would provide the basis of researching the collagen reaction
mechanism using fluorescence spectroscopy, and it is expected to guide the application of collagenase
I in artificial skin, bone repair, collagen casing, animal food and cosmetic products.

2. Materials and Methods

2.1. Reagents

Type I collagen (Preparation from cow Achilles tendon, MW~300,000) and other chemical
reagents were purchased from Source leaf organism (Shanghai, China). Collagenase I (Preparation
from Clostridium histolyticum) was purchased from Life Technologies (Shanghai, China). Sodium
dihydrogen phosphate, disodium hydrogen phosphate, chloramine T, perchloric acid and acetic acid
were all analytical grades and obtained from Sigma-Aldrich (Shanghai, China). Doubly distilled water
was used in all experiments.

2.2. Analysis of Fluorescence Spectroscopy

Type I collagen sample was dissolved in 0.5 M acetic acid into 0.4 mg/mL at 4 ◦C. Collagenase I
was dissolved in 0.2 mol/L PB (pH = 7.4) buffer covering a range of 0–0.12 mg/mL (0, 0.02, 0.04, 0.08,
0.12 mg/mL). The above solutions were homogenized. Type I collagen was mixed with 0.12 mg/mL
collagenase I (1:1, v/v) at room temperature and the fluorescence intensities of the solution were
measured by a Cary Eclipse Fluorescence Spectrophotometer (Agilent Technologies, Waldbronn,
Germany) every 10 min. A variety of concentrations of collagenase (0, 0.02, 0.04, 0.08, 0.12 mg/mL)
were added in type I collagen solution in a 10 mL volumetric flask (1:1, v/v) at 25 ◦C and their
fluorescence intensities were tested after 30 min. The fluorescence spectroscopy measurements were
performed to observe the changes of tyrosine and tryptophan of Type I collagen with the excitation
wavelength (λex) of 280 nm [14]. The emission spectrum was in the range of 300–500 nm with a
scanning rate of 300 nm/min, and the voltage was 800 V. Furthermore, the synchronous fluorescence
spectroscopy of samples was carried out for in-depth analysis of tyrosine, where the D-value (∆λ) was
set at 15 nm.

2.3. High-Performance Liquid Chromatography (HPLC) Analysis

Collagenase I (0 and 0.12 mg/mL) was added into the collagen solution (1:1, v/v) for 30 min,
then the mixed solution was dialyzed in dialysis bags (mv ≤ 3000) for 24 h at 4 ◦C and the liquid
outside the dialysis bags was collected. Then, 20 µL samples were filtered by a membrane (0.45 µm)
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and injected into the HPLC system for analysis. The HPLC system included a Shimadzu LC-20AT
pump, an SPD-20A ultraviolet detector, an InertSustain C18 column (4.6 × 150 mm, 5 µm) and a
CTO-20A injection valve with a 20 µL sample fixed loop (Shimadzu, Tokyo, Japan). The mobile phase
consisted of 40% acetonitrile and 60% NH4Ac (30 mmol, pH 7.8), and the flow rate was 1 mL/min.
The chromatography of samples was monitored by an ultraviolet detector at 280 nm wavelength at
30 ◦C [15].

2.4. Analysis of Particle Size

The nanoparticle granulometry determined the percentage of different particle sizes in a range of
size classes and indicated the average particle size. The type I collagen sample was dissolved in 0.5 M
acetic acid at 0.4 mg/mL concentration at 4 ◦C, and the particle sizes were measured. The samples of
collagenase I were prepared to different concentrations of solution (0, 0.02, 0.04, 0.08, 0.12 mg/mL), and
2 mL of these liquids was transferred into 10 mL beakers, while 2 mL of 0.4 mg/mL collagen liquids
was added into these beakers. After 30 min reacting, the particle sizes of these samples were measured
and analyzed using a Nano-ZS90 Nanoparticles granulometry (Malvern, England). Moreover, a change
in particle size of 0.4 mg/mL type I collagen was observed over 0–48 h.

2.5. Analysis of Hydroxyproline Concentration

The preparation of samples was similar to Section 2.4. The hydroxyproline concentration
of samples was measured by using a modified method of Yu Ignat’eva [16]. The oxidation of
hydroxyproline was performed with 2 mL of Chloramine-T every test tube; the mixture was placed
at room temperature for 20 min. After the addition of P-dimethylaminobenzaldehyde solution, the
test tubes were placed in the water bath and heated to 60 ◦C for 20 min. After cooling down to room
temperature by cold water for 5 min, the absorbance was measured at λ = 558 nm in order to calculate
the hydroxyproline concentration of the samples.

2.6. SEM Analysis

Collagenase I (0, 0.02 and 0.12 mg/mL) was added into the collagen solution (1:1, v/v) for
30 mins, then the mixed solution was frozen and dried at −40 ◦C for 24 h. The aggregation of collagen
fibers was analyzed by Gemini 500 Environmental Scanning Electron Microscope (Hitachi, America,
Tarrytown, NY, USA) [17] at the magnification of ×2000 and ×300,000. All measurements were carried
out at 25 ◦C.

2.7. Differential Scanning Calorimetry (DSC) Analysis

Collagenase I (0, 0.02, 0.06 and 0.12 mg/mL) was added into the collagen solution (1:1, v/v), after
freezing and drying. The thermal stability of these samples was measured using a Differential Scanning
Calorimeter (TA instrument, New Castle, DE, USA) at a uniform heating rate of 5 ◦C/min [18].

3. Results and Discussions

3.1. Fluorescence Spectroscopy Analysis

Due to a lack of phenylalanine and tryptophan [19,20], the intrinsic fluorescence of type I
collagen is presumed to be dominated by tyrosine. Compared to traditional fluorescence
technology, synchronous fluorescence technology can scan monochromators of excitation and emission
simultaneously. Therefore, synchronous spectroscopy has the more obvious advantages of simplifying
spectroscopy, increasing sensitivity and reducing interference [21]. Figure 1 shows the changes of
intrinsic florescence intensity of type I collagen influenced by collagenase concentration and time.
It reveals that the fluorescence intensity and the synchronous fluorescence intensity increased with
increasing collagenase usage. As presented in Figure 1a,c, the peaks at 310 nm and 370 nm represent
the existence of tyrosine and tryptophan, respectively [22]. After adding collagenase I, the intensity
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of the tyrosine peak increased with rising time and concentration. It illustrates that type I collagen
aggregation was cleaved by collagenase I, which resulted in exposure of tyrosines wrapped in collagen,
and thus the intrinsic fluorescence of type I collagen increased with stronger binding to tyrosine. From
Figure 1b,d, it is seen that the intensity of the peak at 280 nm increased with the addition of collagenase
I, which represented an increase in the number of tyrosine residues.
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Figure 1. The fluorescence and synchronous fluorescence spectroscopy of type I collagen. (a) Changes of
tyrosine residues influenced by time with fluorescence spectroscopy. (b) Changes of tyrosine residues
influenced by time with synchronous fluorescence spectroscopy. (c) Changes of tyrosine residues
influenced by collagenase I concentration with fluorescence spectroscopy. (d) Changes of tyrosine
residues influenced by collagenase I concentration with synchronous fluorescence spectroscopy.

The reaction mechanism can be further illustrated by Figure 2. When type I collagen was dissolved
in acetic acid solution, it would form aggregates by self-assembly [23]. A large number of tyrosine
residues of type I collagen were wrapped in polypeptide chains, which reduced intrinsic fluorescence
intensity. Owing to the cleavage specificity of collagenase I [24] in the sequence of Gly-Pro-X of
collagen [25], the aggregated collagen could be degraded into small fragments and the tyrosine
residues were exposed for further binding. This enhanced the intrinsic fluorescence intensity of type
I collagen.



Appl. Sci. 2018, 8, 1947 5 of 10
Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 10 

 

Figure 2. The interaction mechanism of type I collagen and collagenase I. 

3.2. Self-Assembly of Type I Collagen 

As known, the particle sizes were determined by the shape and size of the nanoparticle [26]. In 

order to observe the self-assembly of collagen, the particle sizes of type I collagen were measured 

constantly to evaluate the self-assembly pathway. Figure 3a shows the particle sizes of type I 

collagen solution, over 48 h, by nanoparticle granulometry. It was found that particle sizes 

consistently increased as time increased. Normally, the length of a collagen molecule is 

approximately 280 nm [27]. However, from Figure 3a, it is seen that the particle sizes of type I 

collagen reached 3000 nm at 48 h, which represents the self-assembly of type I collagen appearing in 

the solution [28]. In addition, the morphology of collagen fibers was further viewed by SEM. In Fig 

3b, a collagen mesh structure is displayed where the collagen fibers are entangled with each other to 

form a fibrous aggregation [29,30]. These results indicate the self-assembly of type I collagen 

promoted aggregation and tyrosine would be wrapped in the collagen. 

 

Figure 3. (a) The changes in particle size of type I collagen from 6 h to 48 h. (b) SEM analysis at 48 h 

(×1000). 

3.3. HPLC Analysis 

The peak appearing at 16 min represents tyrosine (Figure 4), while the peak area correlated with 

the tyrosine concentration [31]. It was obvious that dialysate type I collagen with collagenase I 

contained more tyrosine than without collagenase, which could further demonstrate the theory in 

Figure 2. Owing to the cleavage of collagenase to the self-assembly aggregated collagen, the tyrosine 

residues wrapped in collagen would be exposed. Based on the results mentioned, it proved that 

collagenase I could improve the exposed tyrosine concentration in type I collagen, which resulted in 

an increased intrinsic fluorescence intensity of type I collagen finally. 

Figure 2. The interaction mechanism of type I collagen and collagenase I.

3.2. Self-Assembly of Type I Collagen

As known, the particle sizes were determined by the shape and size of the nanoparticle [26]. In
order to observe the self-assembly of collagen, the particle sizes of type I collagen were measured
constantly to evaluate the self-assembly pathway. Figure 3a shows the particle sizes of type I collagen
solution, over 48 h, by nanoparticle granulometry. It was found that particle sizes consistently
increased as time increased. Normally, the length of a collagen molecule is approximately 280 nm [27].
However, from Figure 3a, it is seen that the particle sizes of type I collagen reached 3000 nm at 48 h,
which represents the self-assembly of type I collagen appearing in the solution [28]. In addition, the
morphology of collagen fibers was further viewed by SEM. In Fig 3b, a collagen mesh structure is
displayed where the collagen fibers are entangled with each other to form a fibrous aggregation [29,30].
These results indicate the self-assembly of type I collagen promoted aggregation and tyrosine would
be wrapped in the collagen.
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Figure 3. (a) The changes in particle size of type I collagen from 6 h to 48 h. (b) SEM analysis at
48 h (×1000).

3.3. HPLC Analysis

The peak appearing at 16 min represents tyrosine (Figure 4), while the peak area correlated
with the tyrosine concentration [31]. It was obvious that dialysate type I collagen with collagenase
I contained more tyrosine than without collagenase, which could further demonstrate the theory in
Figure 2. Owing to the cleavage of collagenase to the self-assembly aggregated collagen, the tyrosine
residues wrapped in collagen would be exposed. Based on the results mentioned, it proved that
collagenase I could improve the exposed tyrosine concentration in type I collagen, which resulted in
an increased intrinsic fluorescence intensity of type I collagen finally.
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Figure 4. High-Performance Liquid Chromatography (HPLC) chromatogram of dialysate of collagen
before and after reaction.

3.4. Particle Sizes and Hydroxyproline Contents of Reaction Solution

Hydroxyproline is the signature amino acid of collagen, thereby its content in the solution directly
related to the hydrolysis degree of type I collagen. The changes in particle sizes and hydroxyproline
concentration in solution could be analyzed to investigate the dissociation of collagen aggregates.
Figure 5a displays the changes in collagen particle sizes and hydroxyproline concentration during
40 min of reacting with 0.12 mg/mL collagenase I. Owing to self-aggregation mentioned above, the
collagen particle size was around 3500 nm and there was no hydroxyproline in the solution. Then with
increasing time, the triple-helix structure of type I collagen was degraded by collagenase which resulted
in the hydroxyproline concentration rising in the solution. Therefore, the tyrosine residues which were
wrapped in the aggregation could be exposed, and it caused the fluorescence intensity of type I collagen
to increase. Figure 5b shows the dissociation of type I collagen, which was degraded by different
concentrations of collagenase I. Higher dosage of collagenase I contributed to a stronger dissociation
of collagen aggregation. Meantime, the particle sizes decreased and hydroxyproline concentration
increased. Therefore, the addition of collagenase I changed the self-assembly of type I collagen, which
directly complemented the fact that the disappearance of a huge amount of aggregation exposed more
tyrosine residues in the solution, which was related to increasing the intrinsic fluorescence intensity as
mentioned before.
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Figure 5. The changes in particle sizes and hydroxyproline in the solution. (a) Dissociation influenced
by different reaction time (0, 5, 10, 20, 30, 40 min). (b) Dissociation influenced by different concentration
of collagenase I (0, 0.02, 0.04, 0.08, 0.12 mg/mL).

3.5. Electron Microscope Observation of the Solution

After analyzing the aggregation and dissociation processes, the microstructure changes of type
I collagen could be directly observed by SEM. As shown in Figure 6, three representative states in
the degradation process were selected to display the micro changes of collagen structure reacted



Appl. Sci. 2018, 8, 1947 7 of 10

with collagenase. Figure 6a1–2 reveals the normal structure of collagen fibers without cleavage [32].
Figure 6b1 shows the surface of slightly-treated collagen fibers was rougher than untreated collagen
fibers. In addition, after observing under high magnification (Figure 6b2), it was seen obviously that
collagen fiber was split lightly by cleavage of collagenase I. When referring to Figure 6c1–2, it was
apparent that horizontal and vertical cutting appeared in collagen fibers, and these obvious cracks
indicated the collagen had been degraded. Figure 6 demonstrates the micro structure changes of
collagen fibers with collagenase I. It provides the supplementary information involving the interaction
mechanism of type I collagen and collagenase I. Moreover, it could be predicted that these liner cracks
expanded into holes with further collagen degradation. Thus it was expected that tyrosine residues
were exposed by collagenase cleavage.
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(b) Type I collagen with 0.02 mg/mL collagenase I (b1 ×2000, b2 ×300,000) (c) Type I collagen with
0.12 mg/mL collagenase I (c1 ×2,000, c2 ×300,000).

3.6. Thermal Stability of the Solution

The thermostability of type I collagen with different concentrations of collagenase I were measured
by DSC. The endothermic peak related to the transformation of collagen structure, which varied from
triple helical to random coil [33], while the peak value was generally considered as the denaturation
temperature (Td) [34]. The improvement in Td resulted from changes in type I collagen structure,
where the fiber surface was cleaved and some functional groups were exposed. Figure 7 shows that
the denaturation temperature of type I collagen increased with increasing concentration of collagenase
I, which resulted from aggregation status changes of collagen molecules. The Td of collagen with
0.12 mg/mL collagenase I was highest because the short fragments, cleaved by collagenase [35], were
hard to thermally decompose. In other words, the proper degradation degree could improve the
exposure of more tyrosine residues and result in better thermal stability.
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Figure 7. Differential Scanning Calorimetry (DSC) analysis of type I collagen with different
concentrations of collagenase I (0, 0.02, 0.06, 0.12 mg/mL).

4. Conclusions

This study reported that the intrinsic fluorescence of collagen type I is influenced by collagenase
cleavage. The interaction mechanism between collagen type I and collagenase I was explained. The
increasing intrinsic fluorescence of collagen resulted from collagenase cleavage through exposing more
tyrosine residues. The analysis of particle sizes confirmed the self-assembly of collagen, which resulted
in aggregation of collagen peptide chains. The self-assembly behavior could make tyrosine wrapped
in collagen, thereby the intrinsic fluorescence of collagen decreased. The collagenase was capable of
exposing the tyrosine residues of collagen and therefore improving intrinsic fluorescence. Besides
increasing intrinsic fluorescence, the thermostability of collagen was also slightly improved, which
was explained by slight triple helix structure changes of collagen. This research provides a foundation
for an in-depth understanding of collagen intrinsic florescence change, and is fundamental to collagen
mechanism research, influenced by not only collagenase, but also other collagenolytic proteases in
artificial skin, bone repair, collagen casing, animal food and cosmetic products.
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