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Abstract: This research presents the usage of modern 5G C-Band sensing for health care monitoring.
The focus of this research is to monitor the respiratory symptoms for COPD (Chronic Obstructive
Pulmonary Disease). The C-Band sensing is used to detect the respiratory conditions, including
normal, abnormal breathing and coughing of a COPD patient by utilizing the simple wireless devices,
including a desktop system, network interface card, and the specified tool for the extraction of
wireless channel information with Omni directional antenna operating at 4.8 GHz frequency. The 5G
sensing technique enhances the sensing performance for the health care sector by monitoring the
amplitude information for different respiratory activities of a patient using the above-mentioned
devices. This method examines the rhythmic breathing patterns obtained from C-Band sensing and
digital respiratory sensor and compared the result.
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1. Introduction

The future of the health sector is very much influenced by the modern 5G wireless sensing
technology. The wireless sensing technology is making medical practice very convenient for medical
staff by providing remote monitoring facilities to the patients at different locations. In this way,
the patient does not need to move from location to location for the monitoring or detection of disease;
with the wireless sensing equipment, one can manage and record the blood pressure, heart rate, and
breathing pattern of the patient. The 5G sensing using C-band [1,2] is the latest technology which is
helpful for any kind of sensing need, especially for the health sector. The health sector is focusing on
the usage of Information and Communication Technology (ICT) to improve the patient experience and
to minimize the health services cost.

Dysfunction of the cardiorespiratory system can be due to Chronic Obstructive Pulmonary
Disease (COPD), arteriosclerosis and asthma. The C-band wireless technology allows the health sector
to monitor the patients with these chronic diseases, especially COPD. COPD is the most common
respiratory condition involving the airways and characterized by airflow limitation [3]. With COPD,
the airways become obstructed and the lungs do not empty properly, leading the air to be trapped
inside the lungs. So, people with COPD usually have lower Forced Vital Capacity (FVC). The change
in the respiratory system is noticeable by measuring the forced expiratory volume in 1 s (FEV1).
In COPD, the FEV1 level becomes lower as compared with FVC. The signs and symptoms of COPD
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include wheezing, caused by the opening of small airways, hypoxemia (low oxygen level in the
blood), hypercapnia (high level of carbon dioxide in the blood), Dyspnea, chronic cough and sputum
production and chest tightness. The main cause of COPD is smoking. Other causes include the
exposure to different lung irritants, including dust, air pollution etc.

The morbidity rate increases in COPD patients at the age of 40 [4,5]. Worldwide, it is the 4th
leading cause of death and it is increasing nowadays. In COPD, maintaining the breathing rate is very
important for good health. Respiratory activity is an important parameter for measuring the health of
any person [6]. COPD is a progressive disease and with the passage of time without any early detection
or diagnosis, it leads to death. Early detection of the disease by careful monitoring of the symptoms
reduces the severity of the disease. In COPD, the breathing pattern of a patient becomes worse with
the passage of time so there must be some procedure or technique to measure the breathing pattern for
diagnosis. The most common breathing monitoring system is invasive monitoring, which requires
physical contact with the patient’s body.

Non-invasive breathing monitoring is becoming more popular in the health sector by overcoming
the drawbacks of traditional invasive systems. Radio frequency techniques is the leading method
due to the effective monitoring of very sensitive and small breathing patterns. There are many other
techniques for this like Doppler radar, which is used to measure the shift in the signal reflected from
the human body [7]. Faith Erden et al. [6], detect the breathing by using IR sensors and Accelerometer
signals. In [8] Wenda Li et al. measure the breathing pattern using passive radar system, which is also
a non-contact breathing monitoring system. In [9], Abdelnaseer et al. show the usage of Ubi-Breathe
for the harnesses of the (received signal strength indicator) RSSI on WiFi devices. Another approach
which proposed the idea of using a (channel state information) CSI-based breathing monitoring system
is [10] by Liu et al. This proposes the technique for respiratory monitoring and utilizes periodogram
for spectral analysis due to this method requiring longer duration for completing the task.

In our work we propose a non-invasive technique to measure the breathing patterns and coughing
of COPD patients. This system can monitor the patient in a timely manner and can carefully detect
breathing activity and coughing. Our system leverages the usage of wireless devices operating at
4.8 GHz frequency, Omni directional antenna connected with RF signal generator and the network
interface card (NIC) for the 5G wireless technology. The breathing activity and coughing induces
different imprints for wireless channel information (WCI), which helped in the monitoring of breathing
patterns of patients. We also used an invasive sensor for monitoring breathing and compared the
results with WCI data.

The organization of the paper is as follows. Section 1 introduces COPD, Section 2 presents the
fundamentals of breathing, Section 3 explains the implementation of the proposed system with C-Band,
Section 4 mentions the monitoring of breathing and its analysis, Section 5 explains the Spearman’s
rank correlation and Section 6 explains the conclusion.

Table 1 shows the comparison of different approaches to monitor the breathing activities of the
human body. Our approach is more feasible for monitoring respiratory activities by utilizing less
equipment and C-Band 5G technology.

Table 1. Comparison between different techniques for monitoring breathing.

S/No. Techniques for
Monitoring Breathing Explanation Advantages Limitations

1 UWB Radar System

Ala Alemaryeen et al. [11]
proposed ultra-wide band

(UWB) radar based
respiratory

monitoring system.

Shows less error, more
robust to noise. Complex, Costly.
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Table 1. Cont.

S/No. Techniques for
Monitoring Breathing Explanation Advantages Limitations

2
Non-invasive

capacitive
micro Sensor

Nicolas Andre et al. [12]
proposed the concept of
using capacitive micro
sensors and negative

temperature coefficient
thermistor integrated on a

silicon chip to monitor
breathing with the help of

wireless sensor system.

Useful for larger space,
monitoring is easy.

More hardware,
time consuming.

3 RSS system

Neal Patwari et al. [13],
proposed the concept of

monitoring breathing with
the help of received signal

strength in wireless
sensors network.

Reliable detection, less
RMS error.

RSS behaves less efficiently
in the presence of fading

and scattering,
performance may
decrease due to

multipath propagation.

4 Video Monitoring

Ching We Wang et al. [14],
proposed the idea of
real-time automated

infrared video monitoring
technique for detection of

respiratory activities.

High accuracy rate, robust
to many body movements.

Less cost effective,
excessive hardware,

complex architecture.

2. Fundamentals of Breathing

Breathing sound has a complex nature, which drags it to the higher order statistical analysis
(HOSA). For this, the spectral, respiratory and phase components are involved [15]. The specific
function known as Bi-coherence is used for this analysis.

γ3(s1, s2) =
|B(s1, s2)|2

P(s1)P(s2)P(s1 + s2)
(1)

where the B(s1, s2) is represented as bi-spectrum for the process {X(n)} and is shown as,

Bn(s1, s2) = Xn(s1)Xn(s2)Xn
∗(s1 + s2) (2)

where Xn(si), i = 1, 2 is called the complex coefficient for the process {X(n)} at some frequencies
si and the X∗(si) represents the complex conjugate [15]. On the other hand, P(si), i = 1, 2 is the
representation of the power spectrum at the given frequencies si [15]

Pn(s) = |Xn(s)|2 (3)

The process phase structure is the defining point for the bi-coherence function. There is the
quadrature phase coupling in the signal due to some nonlinearities so through the magnitude of
bi-coherence function, |γ3(s1, s2)| we can measure the quadrature phase coupling.

The nonlinearities result in the quadrature phase coupling and the reason for the occurrence is the
presence of s1 and s2 with their corresponding phase ϕ1 and ϕ2 in the main signal with other frequency
component s3 = s1 ± s2 and its corresponding phase ϕ3 = ϕ1 ± ϕ2. The bi-coherence index has a
boundary between 0 and 1. According to this, if the magnitude of (Bi-coherence function) BF is equal
to 1 then there exists phase coupling between the frequency components and if the magnitude of BF is
equal to 0, then there will be 0 coupling [16].

The skewness coefficient calculation is the main process involved in the analysis for the breathing
sound. It is represented as,

c3 =
K3

σ2 (4)

σ2 Represents the variance and K3 represents the third order cumulate.
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2.1. WCI System Dynamics

WCI has a unique response without the environmental dynamics and the subcarrier a at some
given time t represents the channel information denoted as Ha (t),

Ha(t) =
M

∑
l=1

ζle
−j2π

L1
λa + ea(t) (5)

Here a represents the subcarriers and M represents the total number of multipath components,
ζl representing the complex gain for the multipath components, L represents the length for the
multipath components and λa represents [17] the wavelength for a and given by,

λa =
c

fc +
a

NDFT Ts

(6)

Here c represents the speed of light, carrier frequency is denoted by fc, Ts represents the total
sampling interval and the size of Discrete Fourier Transform is given by NDFT. The noise signal
is considered as thermal noise and can be represented as ea(t). The delays and gains of multipath
components have time invariant nature.

2.2. WCI System with Breathing

The time invariance property of multipath components also holds for breathing. Assuming only
one multipath component got affected by breathing, from [18] we can write that,

ζ1(t) = ζ1

(
1 +

∆L1

L1
sin θ sin

2πb
60

t + φ

)−ψ

(7)

In Equation (7), ζ1 gives us the gain of the multipath component (MPC) number 1 and L1 gives
the length for that MPC. The breathing causes the MPC 1 to be displaced or change its position and is
represented by ∆L1. The path loss exponent is represented by ψ and the angle between the EM wave
and the subject is represented by θ. The breathing rate is also very important and measured in breath
per minute and represented by b and the breathing initial phase is represented by φ.

Breathing shows significant effects on the MPC 1 and varies its path length L1(t), which is
represented as,

L1(t) = L1 + ∆L1 sin θ sin
(

2πb
60

t + φ

)
(8)

The channel information which we showed in Equation (5) will be represented as,

Ha(t) = ζ1e−j2π
L1(t)

λa +
M

∑
l=2

ζle
−j2π

Ll
λa + ea(t) (9)

Further explanation of Equation (9) is shown as,

Ha(t) = ζ1e−j2π
L1(t)

λa e−j2π
∆L1 sin θ sin( 2πb

60 t+φ)

λa +
M

∑
l=2

ζle
−j2π

Ll
λa + ea(t) (10)

Jacobi-anger expansion plays an important role in Equation (10) and by decomposing the first
term of Equation (10) into finite summation [19], we get,

e−j2π
∆L1 sin θ sin( 2πb

60 t+φ)

λa =
∞

∑
n=−∞

(−1)n Jn(va)ejn 2πb
60 tejnφ (11)
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The value for va = 2π sin θ∆L1/λa and the nth order Bessel function is shown as Jn (z) with
argument z.

The practice shows that if the value of |n|≥ 2 then the function Jn (va) decays in faster manner by
giving the ordinary va values. With this information our Equation (11) shows the approximation with
the values of n as ±1 and the DC component where n = 0. So, the new Ha (t) can be represented as,

Ha(t) ≈ ζ1e−j2π
L1
λa

+1

∑
n=−1

(−1)n Jn(va)ejn 2πb
60 tejnφ

︸ ︷︷ ︸
Ua

+
M

∑
l=2

ζle
−j2π

Ll
λa + ea(t)︸ ︷︷ ︸

TIa

(12)

In the above equation, the Ua represents the signal for the monitoring of breathing activity on the
subcarrier a. On the other hand, time invariant part is represented by TIa, which exists as the response
of a static environment and is considered as the interference.

3. Design Implementation and C-Band Sensing

In a communication link, the channel properties must be known in advance, which could be
analyzed with the help of wireless channel information (WCI). There exist multiple effects like
scattering, fading, and multipath propagation [20], which affect the WCI of RF signal and which
propagate between transmitter and receiver. The RF signal could be represented as follows,

H(a) =
∣∣∣∣∣∣H(a)

∣∣∣∣∣∣e(b∠H(a)) (13)

In Equation (13) H(a) represents the WCI and the phase and amplitude are represented as,
||H(a)|| and ∠H(a) respectively. This experiment was performed using C-Band operating at 4.8
GHz frequency. In our research we have used an RF signal generator (DSG 3060) connected to an
omnidirectional antenna (Rubber duck) at the transmitter side with an output power of 100 mW (20
dBm) and with typical phase noise of <−110 dBc/Hz at 20 KHz. This antenna propagates the RF signal
to 360 degrees horizontally with 1

4 dipole length of 26 mm. At the receiver side, a desktop mounted
with network interface card (MCX416A-BCAT), worked as a receiver. The experiment was performed
in different indoor environments. We used microwave absorbing material to reduce the multipath
propagation. The WCI then extracted [21] using this NIC mounted in a modified desktop PC. The
NIC card revealed only 30 subcarriers’ information represented as single WCI packet. After successful
pinging of an AP, we received 10 WCI packets per second. The received WCI was in the form of matrix
of 30 × 1 represented as channel frequency response (CFR) and shown as,

CFR(30x1)matrix =
[

h1, h2, . . . , hn
]

(14)

In the above equation the h1 represents the CFR of subcarrier number 1 and hn represents the CFR
for the 30th subcarrier as there are only 30 subcarriers.

Figure 1 shows the experimental settings for the proposed methodology. We have adjusted the
distance between the devices and patient according to system feasibility. The height of the transmitter,
receiver and patient was adjusted around 1.5 m from the ground and 4.5 m from the ceiling. The total
height to the ceiling is 6 m from the ground.
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Figure 1. Implemented design overview to monitor breathing.

We obtained the raw WCI for breathing activity of a person imitating a COPD patient. There are
30 subcarriers in total but for the correct breathing information subcarrier #19 and 21 show better
results for normal and abnormal breathing and for coughing, subcarrier number 7 gives a reasonable
result. We examined all 30 subcarriers [22] and compared their results with our digital respiratory
sensor. We performed that experiment multiple times and in all cases the mentioned subcarriers
showed better results very near to the digital respiratory sensor’s results. In our research we focused
on the efficient monitoring of breathing by exploiting the 5G technology. As C-Band is operating
on 4.8 GHz frequency, it can be easily integrated with the 5G system. The internet of things (IoTs)
operate at a similar frequency band. This way we can easily perform the efficient spectrum utilization
regarding 5G. Table 2 shows the numbers of subjects involved in the experiment.

Table 2. Subjects involved in experiment process.

Subjects Age Height (cm) Weight (Kg)

1 29 171 75
2 30 169 78
3 35 161 71
4 31 174 85
5 26 173 87
6 39 176 90
7 40 170 78
8 22 169 73

4. Monitoring Breathing and Its Analysis

This system monitors the breathing activities of a COPD patient [23] which includes normal
breathing, abnormal breathing and coughing. We used C-Band sensing technique to extract the
WCI for human breathing activities and compared the results with breathing patterns obtained from
respiratory sensor HKH-11C. We examined the amplitude information against the time history from
WCI using the mentioned subcarriers [22]. Figure 2 shows the raw WCI for coughing.
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Figure 2. Raw WCI (wireless channel information) for human coughing.

4.1. Monitoring Coughing Pattern

Monitoring coughing in COPD is very important. We used both C- Band sensing and the digital
respiratory sensor method. As shown in Figure 2, we obtained the wireless channel information for
coughing using C-Band.

Figure 2 shows the amplitude information of all 30 subcarriers. To examine the coughing activity
of a COPD patient, we obtained the CFR form C-Band sensing as shown in Figure 3.
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Figure 3. Raw CFR (channel frequency response) for coughing using C-Band.

Figure 3 shows the fluctuation in the amplitude for all the subcarriers against the number of
packets. After obtaining this information we performed the filtration process and filter CFRed the raw
CFR data by using median filters. The obvious choice for the median and wavelet filter is due to its
maximum reduction of noise and smoothing the edges for the available signal.

The above Figure 4 shows the filtered data for the coughing after applying the median
filter. The rising and falling edges are much smoother than before with minimum noise effect.
This experiment was performed on multiple persons imitating COPD patients, as mentioned in
Table 2. We took multiple readings for approximately 1 min each.
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Figure 4. Filtered CFR for coughing.

Now Figure 5 shows the HKH-11C sensor data for coughing; it shows both the raw and filtered
data. The person stays in the straight lying position for 60 s wearing the sensor on the chest and
imitates the coughing of a COPD patient. Figure 5a shows the raw CFR data for the coughing and
Figure 5b shows the filtered data for coughing.
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Figure 5. Coughing pattern obtained using HKH-11C sensor. (a). Raw coughing pattern. (b). Filtered
coughing pattern.

The RF signal is always prone to external noise, so frequency selective fading shows greater impact
on all the subcarriers. All the 30 subcarriers show different behavior for every power level w.r.t time.
As shown in Figure 6, we have selected the sub-carrier # 7 for extracting the finest information for
coughing pattern. After obtaining the data from subcarrier # 7, it then passed to the median filter to
remove the noise and sharpen the edges.

From Figure 6, we can examine the breathing cycles; the person almost completed nine breathing
cycles, as shown in Figure 5. This shows that the result from C-Band and HKH-11C is somehow similar.
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4.2. Monitoring Normal Breathing

In this section we describe the monitoring of normal breathing pattern for a COPD patient. We
used 5G C-band technology for extracting the desire WCI. Figure 7 shows the raw WCI for the normal
breathing pattern of a COPD patient.
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Figure 7. Raw WCI for normal breathing.

To examine the normal breathing activity of a COPD patient, we extract the CFR for all
30 subcarriers using C-Band. The person lying straight imitated the normal breathing for the period of
1 min for multiple times. CFR for all 30 subcarriers for normal breathing is shown in Figure 8.
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Figure 8. The CFR of all subcarriers for normal breathing.

To obtain the refined CFR we used median filter and wavelet filter to suppress the unwanted
noise and smoothen the signal edges. Figure 9 shows the filtered CFR for normal breathing.
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Figure 9. Filtered CFR for normal breathing.

As mentioned before, the experiment was performed on multiple persons lying straight on a bed.
We performed this for the period of 60 s each for multiple times to obtain the refined measurement
for normal breathing pattern. Figure 10 shows the raw breathing activity using the HKH respiratory
sensor for normal breathing. Almost 15 breathing cycles were completed during the period of 60 s.
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Figure 10. Normal breathing pattern from digital respiratory sensor.

The above Figure 10 shows the raw data; filtered normal breathing pattern is shown in Figure 11.
After proper filtration, we obtained the refined normal breathing pattern.
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Figure 11. Normal breathing pattern after filtration.

The RF signal shows the clear effects of frequency-selective fading by considering all 30 subcarriers.
On different power levels all the available subcarriers show variations w.r.t time. Considering this
entire scenario, sub-carrier #19 showed the best results. This subcarrier shows the maximum and
adequate information of normal breathing waveform. Figure 12 show the raw WCI for normal
breathing using C-Band.
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Figure 12. Raw WCI for normal breathing using C-Band.

After the filtration of the above raw WCI, we obtained the refined breathing pattern for normal
breathing using C-Band, as shown in Figure 13. Our analysis showed maximum similarity between
both the waveform from digital respiratory sensor and C-Band.
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Figure 13. Filtered WCI for normal breathing using C-Band.

From the above Figures 12 and 13, we examine the breathing pattern using 5G C-Band technology.
We also examine the fluctuation between the amplitude as a person inhales and exhales the air. The
filtration process removes the unwanted fluctuation and smoothens the breathing signal.

4.3. Monitoring Abnormal Breathing

In the last two sections we explained the coughing pattern and normal breathing pattern for
COPD patients. We used the C-Band sensing technique and compared the results with the wearable
sensor data. We performed the experiment in the same way as we performed the normal breathing
experiment; a person imitating a COPD patient was asked to breathe abnormally for a period of 60 s.
Through this we collected the raw WCI from all 30 subcarriers with 600 WCI packets. This is shown in
Figure 14.
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Figure 14. Raw WCI for abnormal breathing.

Now the CFR for all 30 subcarriers are shown in Figure 15. This shows the raw CFR for all 30
subcarriers for the period of 60 s.
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Figure 15. The CFR of all subcarriers for abnormal breathing.

After filtration we obtain the reliable signal for all 30 subcarriers, as shown in Figure 16.
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Figure 16. Filtered CFR for abnormal breathing.

We also monitored the abnormal breathing with the HKH-11C breathing sensor, like in the
previous section. Multiple people imitated the abnormal breathing, wore the respiratory sensor and
inhaled and exhaled the air for a period of 60 s. Figure 17 shows the raw abnormal breathing pattern
obtained from the digital respiratory sensor.
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Figure 17. Abnormal breathing pattern from digital respiratory sensor.

The filtered breathing pattern for abnormal breath is shown in Figure 18.
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Figure 18. Abnormal breathing pattern after filtration.

The person in the above case imitated the abnormal breathing tracked by the digital respiratory
sensor. The breathing sensor behaves as the primary indicator in the above-mentioned case without
showing any periodicity. So according to the above Figures 17 and 18 we can see the non-periodicity
in the amplitude for both raw and filtered data. This non-periodicity indicates the abnormal
breathing pattern.

We also analyzed the data using C-Band utilizing the subcarrier number 21. Figure 19 shows
the raw WCI obtained from C-Band. The advantage of using the wireless channel information is that
we can choose one or multiple frequency channels for particular applications. The applications can
be human intrusion detection, human activity recognition, gait identification and breathing pattern.
For each application, specific subcarrier(s) provide the desired information. After examining all 30
frequency channels received for monitoring the breathing pattern of a COPD patient, the subcarriers
#7, 19 and 21 gave us the coughing and breathing waveforms. The remaining frequency carriers
did not deliver adequate information when the method was implemented in different geometrical
locations/experimental settings. We have tested the system in six different locations and at five places
the subcarriers #7, 19 and 21 gave us the desired results.
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Figure 19. Raw WCI for abnormal breathing using C-Band.

We performed the filtration on the raw WCI obtained from C-Band. After careful examination we
concluded that both the waveforms obtained from C-Band and respiratory sensor are almost identical
with maximum power level of 18 dB (relative power). In our case we have mentioned the relative
power expressed in dB as, H = Y − X, where X is the transmitted signal and Y is the received signal.
The filtered WCI for abnormal breathing is shown in Figure 20.
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Figure 20. Filtered WCI for normal breathing using C-Band.

5. Spearman’s Rank Correlation

Throughout this research our focus revolved around two types of data, one received from C-band
sensing and another from the digital respiratory sensor. There exists a correlation between these
two types of data and to find that correlation we used the Spearman’s rank correlation method.
The Spearman’s correlation designs itself by utilizing the rank method in which we can obtain
the correlation between two signals by analyzing the rank difference. This method reduces the
computational time in the presence of a very limited number of observations. The formula for
Spearman’s correlation is represented as follows,

rk = 1− 6∑ D2

N3 − N
(15)

rk = Rank correlation coefficient.
N = Total number of pair observation.
D = Rank difference.

The value for rk fluctuates between +1 and −1. The direction of rank totally depends on the
positive and negative values of rk. If rk is positive then rank lies in the same direction and if rk is
negative then rank holds the opposite direction. As mentioned before, we examine two types of
signal, one from respiratory sensor and one from C-Band. The rk value we obtained for normal
breathing is 0.89. This value is close to one so accordingly we obtained the positive rank. For the
abnormal breathing we obtained the value rk = 0.86, which is also close to one and again rank shows
the positive value. This result shows that the waveforms we captured from both the methods hold
some identical features.

6. Conclusions

This paper presented the careful monitoring of breathing activities of a COPD patient using the
5G C-band sensing technique. The obtained results show the feasibility of obtaining wireless channel
information from the available setup, where WCI can be used to monitor the coughing, normal and
abnormal breathing pattern and then compare it with the data retrieved from the digital respiratory
sensor. The presented result was performed on eight different subjects for multiple times lying in a
straight position. This research aims to provide an efficient method that can detect the minute chest
movement of COPD patients. This method is also very feasible for detecting the heartbeat of a patient
to facilitate the doctors and hospital staff.
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