
applied
sciences

Article

Information-Bottleneck Decoding of High-Rate
Irregular LDPC Codes for Optical Communication
Using Message Alignment

Maximilian Stark * , Jan Lewandowsky and Gerhard Bauch

Institute of Communications, Hamburg University of Technology, 21073 Hamburg, Germany;
jan.lewandowsky@tuhh.de (J.L.); bauch@tuhh.de (G.B.)
* Correspondence: maximilian.stark@tuhh.de; Tel.: +49-(0)-40-42878-2829

Received: 28 August 2018; Accepted: 4 October 2018; Published: 11 October 2018
����������
�������

Abstract: In high-throughput applications, low-complexity and low-latency channel decoders
are inevitable. Hence, for low-density parity-check (LDPC) codes, message passing decoding
has to be implemented with coarse quantization—that is, the exchanged beliefs are quantized
with a small number of bits. This can result in a significant performance degradation with
respect to decoding with high-precision messages. Recently, so-called information-bottleneck
decoders were proposed which leverage a machine learning framework (i.e., the information
bottleneck method) to design coarse-precision decoders with error-correction performance close
to high-precision belief-propagation decoding. In these decoders, all conventional arithmetic
operations are replaced by look-up operations. Irregular LDPC codes for next-generation fiber
optical communication systems are characterized by high code rates and large maximum node
degrees. Consequently, the implementation complexity is mainly influenced by the memory required
to store the look-up tables. In this paper, we show that the complexity of information-bottleneck
decoders remains manageable for irregular LDPC codes if our proposed construction approach
is deployed. Furthermore, we reveal that in order to design information bottleneck decoders for
arbitrary degree distributions, an intermediate construction step which we call message alignment has
to be included. Exemplary numerical simulations show that incorporating message alignment in the
construction yields a 4-bit information bottleneck decoder which performs only 0.15 dB worse than a
double-precision belief propagation decoder and outperforms a min-sum decoder.

Keywords: channel coding; low-density parity-check codes; iterative decoding; information-bottleneck
signal processing; clustering; machine learning

1. Introduction

It is well-known that the decoding of channel codes is one of the major bottlenecks in baseband
signal processing. To realize next-generation fiber-optical systems with bit rates of 400 Gbit/s and
above, high-speed decoding algorithms are inevitable. A very powerful and well-known class of
error-correcting codes are the so-called low-density parity-check (LDPC) codes [1]. The design of
LDPC codes for optical communications has been discussed in recent works [2–7]. In contrast to
wireless communication, the coding schemes in optical communication use comparably high code
rates R > 0.8 to keep the redundancy at a minimum. Furthermore, bit error rates of 10−15 are required
in optical communication systems, which is often challenging to achieve with LDPC codes due to their
characteristic error floor. Nevertheless, recent works [2–7] underlined the potential of LDPC codes as
promising candidates in future optical communication systems. For a detailed summary of coding
schemes for optical systems, we refer the interested reader to [7,8].

Appl. Sci. 2018, 8, 1884; doi:10.3390/app8101884 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-1750-5895
https://orcid.org/0000-0001-7945-3528
http://dx.doi.org/10.3390/app8101884
http://www.mdpi.com/journal/applsci
http://www.mdpi.com/2076-3417/8/10/1884?type=check_update&version=2

Appl. Sci. 2018, 8, 1884 2 of 17

LDPC codes fully unfold their capacity-approaching error-correction capabilities under message
passing decoding only if precise and computationally complex belief propagation decoding is
performed. The high computational complexity is mainly induced by two properties of message
passing decoding: On the one hand, to reliably exchange soft information and thus ensure optimum
performance, the exchanged messages have to be represented precisely. On the other hand, elaborate
arithmetic operations which combine incoming beliefs (e.g., at a check node) form a major performance
bottleneck. The computational burden of high-precision message passing decoding diminishes the
achievable throughput and latency and requires impractically complex implementations. Instead,
practical hardware implementations use finite-precision message passing algorithms where the
messages are quantized and the node operations are simplified by smart approximations. However,
the error-rate performance of such finite-precision decoders deteriorates significantly with decreasing
precision [9].

Recently, a fundamentally different approach was proposed: the so-called information bottleneck
or look-up table decoder [9–14]. This decoder leverages ideas from information theory and machine
learning and differs from conventional finite-precision decoders mainly in the following two points:

1. Instead of executing the conventional arithmetic exactly or approximated in the nodes with
discrete values, the node operations are replaced by relevant-information-maximizing look-up
tables which map discrete input messages onto discrete output messages. The required message
mappings are designed using a relevant-information-preserving clustering technique, such as the
information bottleneck method as shown in [10,11] or using similar algorithms [12,14].

2. The relevant-information-maximizing look-up tables let messages that are log-likelihood ratios
(LLRs) become obsolete. Instead, integer-valued pointers to look-up table entries, sometimes
called cluster indices, are exchanged, which do not represent LLRs.

In our previous works, we have already shown that four bits are sufficient to represent the
exchanged messages [10,11,15]: our proposed 4-bit information bottleneck decoder for regular LDPC
codes approaches the performance of double precision belief-propagation decoding up to 0.1 dB over
Eb/N0 with a vastly reduced implementation complexity [11]. Recently published investigations
of FPGA implementations of similarly designed look-up table-based decoders in [16] showed that
look-up table decoders for regular codes can achieve a throughput of 588 Gbit/s and are superior to
conventional decoding techniques in terms of energy efficiency and area efficiency.

However, the existing work is mainly limited to regular LDPC codes. A first step towards
information bottleneck decoders for irregular LDPC codes was described in [9], where the authors
advocate that existing LDPC codes are often ill-suited to information-bottleneck decoding and thus
proposed a joint optimization of the node-degree distribution and the look-up tables. That is, they
proposed to adapt the code to the specific shortcomings of the available information bottleneck
decoding method instead of fundamentally changing the decoder design.

In contrast, in [17] we devised a generalized design approach suitable for arbitrary irregular
LDPC codes as defined in many standards (e.g., IEEE 802.11 or DVB-S2) without any modification of
the LDPC code itself. We proposed an intermediate processing step called message alignment which we
first applied in the context of information-bottleneck channel quantizers for higher-order modulation
schemes [18] and distributed information-bottleneck sensor design [19].

Caused by the high coding rate required in optical communication systems, respective LDPC
codes incorporate very high node degrees. In this paper, we show that existing construction techniques
cause an undesirable growth in memory demand when they are applied to high rate codes, due to a
large number of look-up tables.

In detail, this paper contains the following main contributions:

• We extend the decoder construction framework from [13,19] to be applicable to arbitrary irregular
LDPC codes also with high code rates.

Appl. Sci. 2018, 8, 1884 3 of 17

• We introduce a novel tree-like look-up pattern. With this strategy, the relation between the number
of look-ups required per iteration and node degree changes from linear to logarithmic.

• We derive the underlying information-theoretic problem formulation and explain how the
intermediate optimization technique called message alignment can be incorporated.

• We construct a 4-bit information bottleneck decoder for irregular LDPC codes with a code rate
R = 0.8, where all conventional arithmetic in the nodes is replaced by simple look-up tables and
only 4-bit integer-valued messages are passed.

• Our proposed decoder achieves error-rates superior to min-sum decoding and only 0.15 dB away
from double-precision belief propagation decoding.

The paper is organized as follows. The information bottleneck method and LDPC codes are
briefly reviewed in Section 2. In Section 3, we propose message alignment, resulting in a general
information bottleneck decoder design approach for arbitrary irregular LDPC codes. In Section 4
we provide detailed insights concerning the internal structure of the look-up tables replacing the
arithmetic operations. Based on these considerations, a more efficient design strategy is proposed. In
Section 5, numerical simulations comparing the performance of our proposed decoder with several
reference systems are provided. Section 6 concludes the paper.

2. Prerequisites

This section briefly reviews LDPC codes and the information bottleneck method. Throughout
the paper, we use the following notation: the elements y ∈ Y from the event space of a discrete
random variable Y occur with probability Pr(Y = y), and p(y) defines the corresponding probability
distribution. The cardinality or alphabet size of the random variable Y is denoted by |Y|. The joint
distribution of X and Y is denoted p(x, y).

2.1. Low-Density Parity-Check (LDPC) Codes

An LDPC code is defined by a sparse Nc × Nv parity check matrix H. To analyze the structure
of H, an LDPC code can be visualized using a Tanner graph. A Tanner graph is a bipartite graph
consisting of one set for the Nv variable nodes and the other set for the Nc check nodes. This is
schematically illustrated in Figure 1. Irregular LDPC codes are typically described using their ensemble
characteristics, and therefore, the connections between the two sets are characterized probabilistically
by the edge-degree distributions for the variable nodes and the check nodes [20]:

λ(z) =
λmax

∑
d=2

λdzd−1, ρ(z) =
ρmax

∑
d=2

ρdzd−1, (1)

where λd denotes the fraction of edges connected to variable nodes with degree d and ρd denotes
the fraction of edges connected to check nodes with degree d. The LDPC code is called regular if all
variable nodes have the same degree dv and all check nodes have the same degree dc, and otherwise
the LDPC code is called irregular. The general derivations in the next sections hold for both node types
(i.e., variable nodes and check nodes). Thus, we formally introduce a general edge-degree distribution

ω(z) =
ωmax

∑
d=2

ωdzd−1 (2)

to indicate when the derived equations are applicable for any node type.

Appl. Sci. 2018, 8, 1884 4 of 17

b1 b2 bdc−1 x. . .

. . .

.

. . .

y1

y2
ydc−1

t

Figure 1. Illustration of a Tanner graph and message passing between variable nodes (circles) and
check nodes (squares).

2.2. The Information Bottleneck Method

The information bottleneck method is a generic unsupervised clustering framework from the
field of machine learning [21,22]. The so-called information bottleneck setup is visualized in Figure 2.
Having defined a random variable X termed the relevant random variable, the principal aim of the
information bottleneck method is to extract all relevant information contained in an observation Y,
by squeezing Y through a compact bottleneck represented by the compression variable T. More precisely,
the information bottleneck method attempts to design a compression mapping p(t|y) which maps an
observation Y onto a compact compression variable T.

observed random
variable Y

relevant random
variable X

compressed random
variable T

I(X; Y)

I(Y; T)
p(t|y)

I(X; T)
p(x|t)

Figure 2. Information bottleneck setup, where I(X; T) is the relevant information, I(X; Y) is the original
mutual information, and I(Y; T) is the compression information.

Typically, |Y| � |T |. The key idea is to design p(t|y) such that the maximum possible amount
of mutual information I(T; X) ≤ I(X; Y) is preserved under a constraint for the cardinality |T |.
Several information bottleneck algorithms exist, intended to find a locally-optimum compression
mapping p(t|y) [22]. All information bottleneck algorithms input a joint distribution p(x, y) and
yield the compression mapping p(t|y) and a joint distribution p(x, t) = p(x|t)p(t). Typically, in the
context of signal processing, one assumes a deterministic input–output mapping (e.g., at a quantizer).
Hence, it is often sufficient to consider only deterministic mappings p(t|y) (i.e., p(t|y) ∈ {0, 1} ∀(t, y)).
Such mappings can be interpreted as look-up tables mapping y onto t. More details related to the
information bottleneck method can be found in [21,22]. Throughout the paper, we use the terms
mapping and clustering synonymously. A more detailed overview and comparison of information
bottleneck algorithms can be found in [22,23]. Please note that when performing a mapping p(t|y),
any physical meaning contained in Y is lost (i.e., the compression variable T on its own has no distinct
meaning and the event space T can be chosen arbitrarily). Hence, a coupling between the relevant
variable X and T is needed, given by p(x|t). We sometimes refer to this distribution as the meaning of
a cluster index t with respect to x.

2.3. Information-Bottleneck Signal Processing and Information Bottleneck Graphs

Despite having its origin in machine learning and numerous classification problems, the
information bottleneck has recently been used to design various communication systems. Application
fields pairing the information bottleneck and signal processing include LDPC decoding, channel
estimation, relaying, C-RAN, polar code construction, sensor networks, etc. [10,18,19,24–26].

Appl. Sci. 2018, 8, 1884 5 of 17

Leveraging information theoretical concepts to design practical systems is termed information-bottleneck
signal processing [15]. Information-bottleneck signal processing using the information bottleneck
method differs from conventional approaches in mainly three points. The first fundamental difference is
the focus on the preservation of the so-called relevant information as a distortion measure in contrast to
conventional measures like the Euclidean distance or the mean-squared error. As a result, it is possible
to obtain compact but very informative representations of the processed samples. In a second step,
these compression mappings or clusterings replace the actual arithmetic operations. Thus, in addition
to a reduction of memory due to the compression, the computational complexity is also reduced
by replacing arithmetic operations with look-up operations. Finally, information-bottleneck signal
processing is a system-oriented design technique rather than a function-oriented technique. That is,
instead of finding local approximations of certain functions, the overall aim of information-bottleneck
signal processing is to optimize the flow of relevant information in the system from the data aggregation
to the decision unit. For a more detailed review of information-bottleneck signal processing, we refer
the reader to [15].

Due to the system-oriented design, finding the most efficient structure which optimizes the flow
of relevant information can be quite cumbersome [15]. Therefore, information bottleneck graphs were
introduced in [27] which extend factor graphs [28] by a compact description of the flow of relevant
information to provide a vivid graphical representation of the system. Information bottleneck graphs
indicate where the use of information-bottleneck clusterings is beneficial, and thus help to simplify
the design [27]. For this purpose, a modified node symbol is used for all factor nodes representing
compression mappings p(t|y) that were designed using the information bottleneck method. In an
information bottleneck graph, the typical square notation of factor nodes is replaced by a trapezoid
symbol for all compression mappings. An example is shown in Figure 3. The relevant variable labels
are written in the center of the trapezoid symbol to illustrate the information bottleneck with respect
to this variable. The compression variable is connected to the shortest side of the trapezoid. All other
connected variables correspond to a (possibly multivariate) observed variable. The example in Figure 3
illustrates the flow of relevant information on x from random vector y = [y1, . . . , yM]T to t. That is,
t = f (y) compresses y while preserving relevant information on x.

t

y1

y2

yM

. . .

tx

y1

y2

yM

. . .

=⇒

Figure 3. Example for a factor graph (left) and an information bottleneck Graph (right) of p(t|y), where
y = [y1, . . . , yM]T. The information bottleneck graph compactly describes that t shall keep relevant
information on x while compressing all variables in vector y.

3. Information Bottleneck Decoders for Irregular LDPC Codes Using Message Alignment

This section contains our main contributions. After a brief review of information bottleneck
decoder design for regular LDPC codes, we generalize this concept to arbitrary irregular LDPC
codes. First, we derive the relevant-information-preserving message mappings, which replace
the conventional arithmetic operations. Then, we present two perspectives, a graphical and an
information-theoretical one, to motivate the need for an additional step in the decoder design. As a
result, we propose a technique that we call message alignment.

3.1. Information-Bottleneck Channel Quantizer for Arbitrary Discrete Memoryless Channels

In every digital communication system, the received, possibly continuous channel output y is
fed into an analog-to-digital converter to obtain discrete-valued receive samples (cf. Figure 4a). In
theoretical considerations, the effect of the quantizer is often ignored. This assumption is only valid

Appl. Sci. 2018, 8, 1884 6 of 17

if the resolution of the quantizer is very high. When transmitting at very high speed, the quantizer
marks the first bottleneck in the receiver chain: coarse quantization of only a few bits is required for
high-throughput implementations. In the context of information-bottleneck signal processing, the
quantizer is the first unit in the receiver which can be optimized using the information bottleneck
method. Figure 4b depicts the respective information bottleneck graph. As mentioned in the previous
section, the information bottleneck method requires the joint distribution p(x, y) of the relevant random
variable X and the observed random variable Y. In general, an assumed channel model implies the
transition probabilities described by p(y|x). The transition model p(y|x) multiplied by the prior
distribution p(x) of the channel input yields the joint distribution p(x, y). In the case of a channel
output quantizer, an information bottleneck algorithm which delivers a deterministic mapping p(t|y)
is a natural choice. If designed using the information bottleneck, the quantization regions of an
information-bottleneck channel quantizer are only described by a cluster index t, instead of a cluster
representative which has to be represented with high resolution. These cluster indices, which are
typically integers, are forwarded to subsequent units (e.g., for the channel decoder that is introduced
in the next subsection). Information-bottleneck channel quantizers can also be generalized to support
higher-order modulation schemes which require a de-mapper before the channel decoder [18].

x p(y|x)

DMC

y p(t|y)

Quantizer

t

(a)

txy

(b)

Figure 4. (a) Discrete memoryless channel (DMC) with subsequent quantizer; (b) Information
bottleneck graph of the respective information optimum quantizer.

3.2. Information Bottleneck Decoders for Regular LDPC Codes

As mentioned in the Introduction, the need for quasi-continuous LLRs and computationally
complex node operations makes belief propagation decoding challenging. Information bottleneck
decoders have been shown to overcome this impairment. That is, they pair low implementation
complexity and near-optimal performance [10,12,13]. The fundamental idea of these decoders is to
propagate compressed but highly informative integer-valued messages along the edges of a Tanner
graph. In a second step, node operations optimized for discrete input alphabets are designed. These
operations are look-up operations mapping a set of discrete incoming messages onto a discrete outgoing
message, thereby neglecting the original arithmetic operations. The vital task of this mapping is to
ensure that as much relevant information as possible gained by the processing of the incoming messages
is contained in the compactly represented output. A suitable information-theoretic framework for such
problems is the information bottleneck method [21].

The information bottleneck method constructs relevant-information-maximizing clusterings given
a joint probability distribution of the observed random variable Y and relevant random variable X.
In the context of LDPC decoder design, the observed random variables are the M incoming discrete
messages y = [y1, . . . , yM]T, and the relevant random variable X is a codeword bit. For a variable
node, X represents the underlying code bit bi of a particular node, whereas if the mapping is designed
for a check node, X represents the (mod 2)-sum of the connected code bits b1, . . . , bM (cf. Figure 1).
The joint distribution p(x, y) serving as input for the information bottleneck algorithms is determined
using discrete density evolution [13]. Although classical density evolution was originally intended to
find the decoding thresholds of an LDPC code ensemble, previous works have shown that the joint
distributions exchanged in discrete density evolution equal exactly the necessary input distributions for
the information bottleneck method [10–13]. The term discrete in discrete density evolution implies that
instead of processing continuous joint distributions, the event space of the observed random variable
Y (i.e., Y = {0, 1, . . . , |Y| − 1}) is also discrete, meaning that the realizations y are from a finite alphabet

Appl. Sci. 2018, 8, 1884 7 of 17

with cardinality |Y|. Hence, given an observation vector y, |Y|M possible input combinations exist. To
prevent an exponential growth in the number of input combinations while passing p(x, y) over the
Tanner graph during discrete density evolution, p(x, y) is squeezed through a compact information
bottleneck. That is, a relevant-information preserving clustering p(t|y) is introduced such that the
outgoing message t ∈ T = {0, 1, . . . , |T | − 1} is from a finite alphabet with cardinality |T | � |Y|M.
Once this clustering is found, the actual decoding simplifies to simple look-ups in offline generated
tables, which map the sequence of incoming integers y onto an outgoing integer-valued message t.
For a more mathematical analysis and a detailed description of information bottleneck decoders for
regular codes, we refer the reader to [10–13].

3.3. Relevant-Information-Preserving Clusterings for Arbitrary Irregular LDPC Codes

In contrast to regular LDPC codes, irregular LDPC codes are characterized by nodes with various
degrees (i.e., the number of incoming messages differs). Thus, the input joint distribution pd(x, y)
for the information bottleneck depends on the node degree d. Consequently, it is not sufficient to
design message mappings only for each node type, but for each node type considering the individual
node degrees. For ease of notation, we introduce subscripts for the distributions indicating the node
degree. That is, pd(t|y) is the relevant-information-preserving clustering at a node with degree d found
given the input joint distribution pd(x, y). In density evolution, a code ensemble is considered. That
is, instead of a particular irregular LDPC code with a certain parity-check matrix, the connectivity
between variable and check nodes is only known on average defined by the degree distribution. To
construct the required input joint distributions pd(x, y), discrete density evolution from [13] needs to
be extended to consider the degree distribution of the code ensemble.

Conventional density evolution is a technique to analyze the error correction performance of
the code ensemble. In the conventional density evolution scheme for irregular codes, one tracks the
average output distributions pd̄(x, y) of the variable and the check nodes. Therefore, the actual output
distribution pd(x, y) for each node degree d is weighted according to the edge-degree distributions.
That is,

pd̄(x, y) =
ωmax

∑
d=2

ωd pd(x, y), (3)

where ωd is from the edge-degree distribution [20].
In discrete density evolution, a relevant-information-preserving clustering is crucial to inhibit

the exponential growth of the possible input combinations. Thus, pd̄(x, t) instead of pd̄(x, y) has to be
tracked in discrete density evolution. We define the average distribution pd̄(x, t) as

pd̄(x, t) =
ωmax

∑
d=2

ωd pd(x, t) =
ωmax

∑
d=2

ωd ∑
y∈Yvec

d

pd(t|y)pd(x, y), (4)

where Yvec
d denotes the set of all possible combinations of y for a node with degree d.

Please note that, assuming a trivial straightforward generalization of information bottleneck
decoders to irregular LDPC codes, one would stop at this point. In this case, look-ups in
node-degree-specific tables pd(t|y) would replace the node operations, and only integer values cluster
indices would be exchanged. However, in the next subsections, we demonstrate that such a design
approach is not beneficial. Given these findings, we propose to include an additional integral step in
the construction process.

3.4. Message Alignment — A Graphical Perspective

In this subsection, some consequences of Definition (4) will be sketched, resulting in what we
call the message alignment problem. Please recall that LLRs are not needed in the entire information
bottleneck decoder during decoding, because only cluster indices t are exchanged. However, analyzing
LLRs interpretation of a particular cluster index t in density evolution allows the limiting factor of

Appl. Sci. 2018, 8, 1884 8 of 17

the considered decoding method to be graphically illustrated for irregular codes. Figure 5a visualizes
the meanings of certain cluster indices t with respect to x before and after averaging over the degree
distribution according to (4). Here, L2(x|t) = log p2(X=0|t)

p2(X=1|t) and L4(x|t) = log p4(X=0|t)
p4(X=1|t) denote the

conveyed meanings of a certain cluster t with respect to x of variable nodes with degree two and four
before, that is, without averaging according to (4).

0 1 2 3 4 5 6 7 8 9 101112131415

−5

0

5

t

L d
(x
|t)

L2(x|t)
L4(x|t)
Ld̄(x|t)

(a)

0 1 2 3 4 5 6 7 8 9 101112131415

−5

0

5

z
L d
(x
|z
)

L4(x|z)
Ld̄(x|z)
L2(x|z)

(b)

Figure 5. Averaged and original cluster meaning of variable nodes with degree two and four (a) without
and (b) with message alignment.

Both compression variables have the same event space T . However, the meaning conveyed by
a certain cluster with respect to X differs. This means that the cross and dot for the same index t
in Figure 5a do not superimpose. For instance, if t = 13 and d = 2, L2(x|t) ≈ 2.88 and if d = 4,
L4(x|t) ≈ 4.02 (cf. arrows in Figure 5a). After application of (4), the averaged meaning, that is,

Ld̄(x|t) = log pd̄(X=0|t)
pd̄(X=1|t) (cf. black triangles in Figure 5a) lies somewhere in between and neither

matches the originally intended belief of the variable node with degree two nor the one with degree
four. Nevertheless, a closer look at Figure 5a leads to another interesting observation. Although the
meanings corresponding to the same indices can differ significantly (i.e., L2(x|T = t) 6= L4(x|T = t)),
quite similar meanings are expressed by different cluster indices. That is, L2(x|T = t2) ≈ L4(x|T = t4)

for some t2 6= t4. The explanation of this phenomenon is as follows. The clusterings pd(t|y) are
determined independently for different d. Although by construction the realizations of the compression
variables td ∈ T coincide, the realizations have no natural or physical interpretation which enable a
meaningful order or relation (e.g., between t2 ∈ T2 and t4 ∈ T4). In other words, the messages are not
aligned with respect to their belief on x. We advocate that this misalignment inhibits a straightforward
application of (4). Therefore, knowing the node degrees d is extremely important to recapture Ld(x|t).
However, this node degree is not available at a receiving node in message passing decoding. At this
point, we defer further evidence to Section 5, where it is shown that information bottleneck decoders
without message alignment exhibit a notable performance degradation.

3.5. Message Alignment—An Information-Theoretic Perspective

In Figure 5a we noted by comparing the cross and dot markers that providing the node degree d
together with the respective cluster index t is required to recover the proper belief on the relevant bit
X. However, this approach would result in a very impractical decoder that is tailored to the actual
connections between variable nodes and check nodes in a particular code. We propose to solve the
underlying message alignment problem using information-theoretical concepts. Therefore, in this
subsection, we first derive an information-theoretic formulation of the message alignment problem.

Appl. Sci. 2018, 8, 1884 9 of 17

From an information theoretic point of view, I(X; T, D) upper-bounds the information on X of a
node receiving an incoming discrete message t. Rewriting I(X; T, D) using the chain rule of mutual
information yields

I(X; T, D) = I(X; D|T) + I(X; T), (5)

where I(X; T) is the information about X obtained by receiving T alone and I(X; D|T) is the additional
information gained by also providing the node degree if the cluster index is already known. In turn,
if I(X; D|T) ≈ 0, from an information-theoretic point of view, conveying the delivering node degree
d in addition to the cluster index yields no information gain about X. Thus, we propose a message
mapping construction which minimizes I(X; D|T) such that exchanging the node degree in addition to
the cluster index yields no information gain. Expanding I(X; T, D) for a variable node yields

I(X; D|T) = ∑
t∈T

ωmax

∑
d=2

ωd pd(t)DKL{pd(x|t)||pd̄(x|t)} (6)

= Et,d [DKL{pd(x|t)||pd̄(x|t)}] , (7)

where DKL{.||.} denotes the Kullback–Leibler divergence.
The result from (7) has a direct intuitive link to Figure 5a. If the cross and dot markers would

nearly superimpose for a particular cluster, the change in meaning introduced by averaging would be
negligible. Similarly, in this case the Kullback–Leibler divergence between pd(x|t) and pd̄(x|t) would
also be small. If this holds on average for all clusters and node degrees, I(X; D|T) ≈ 0. Motivated by
the observation that similar meanings are expressed by different cluster indices paired with (7), our
general idea is to map the different td onto a variable zd such that the meanings pd(x|z) are aligned.
Consequently, we define message alignment as a reordering strategy described by a deterministic
mapping pd(z|t) to obtain

min
pd(z|t)

Ez,d [DKL{pd(x|z)||pd̄(x|z)}] , ∀d. (8)

That is, message alignment assigns those indices td with meanings pd(x|t) to a new cluster index zd
which represents approximately the same meaning with respect to X. Figure 5b depicts the aligned
meanings after application of the message alignment algorithm presented in the next subsection. As a
consequence, I(X; D|Z) ≈ 0 and now z instead of t is exchanged over the edges of the Tanner graph.

3.6. Message Alignment Algorithm

To the best of our knowledge, due to the structure of (8) and the restriction to deterministic
mappings pd(z|t), deriving an optimal implicit solution for (8) is not possible. In the literature, iterative
algorithms have been proposed to minimize problems involving the Kullback–Leibler divergence [29].
Thus, we propose an iterative algorithm as depicted in Figure 6.

pd̄(x|z)
pd′(z|t)pd(z|t) ...

pd′(x|t)pd(x|t) ...

oo o

Figure 6. Flow graph of iterative message alignment.

First, only the independently generated mappings for each node degree and the corresponding
degree-specific cluster meanings pd(x|t) exist. The black squares in Figure 6 depict the actual message
alignment steps. According to (8), in each step, a particular pd(x|t) is aligned with respect to the beliefs
of the average distribution pd̄(x|z) (cf. Figure 6). To start the algorithm, pd̄(x|z) is initialized with an

Appl. Sci. 2018, 8, 1884 10 of 17

arbitrary mapping. To find a reordering pd(z|t) minimizing (8), a search over all candidates t for the
best new cluster index z is performed. That is,

z = arg min
z∗

DKL {pd(x|T = t)||pd̄(x|Z = z∗)} , ∀t, (9)

which yields pd(z|t). Afterwards, pd(x|z) is computed using the determined pd(z|t). Then, pd̄(x, z) is
updated similar to (4), but considering only the weights ωd of the already-aligned nodes. As visualized
in Figure 6, this averaged distribution pd̄(x|z) is forwarded and serves as new input in the next
alignment step, together with pd′(x|t)—that is, the not-aligned cluster meanings of a different node
with degree d′. Again, the search according to (9) is performed. Once pd′(z|t) is found, the averaged
meaning is updated and forwarded. This processes, as shown in Figure 6, is performed for all node
degrees and is repeated iteratively.

Once stable solutions for all message alignment mappings pd(z|t) are determined, the final
average joint distribution pd̄(x, z) is computed:

pd̄(x, z) =
ωmax

∑
d=2

ωd ∑
t∈T

∑
y∈Yvec

d

pd(z|t)pd(t|y)pd(x, y). (10)

This distribution is passed in discrete density evolution and leveraged to design the
relevant-information-preserving mappings.

Figure 5b visualizes the LLRs L2(x|z) and L4(x|z), that is, L2(x|t) and L4(x|t) after applying
the deterministic mapping p2(z|t) and p4(z|t) which where found using the algorithm described
above. The LLRs are now aligned (i.e., L2(x|z) ≈ L4(x|z)). Consequently, the average LLR Ld̄(x|z) is
quite similar to L2(x|z) and L4(x|z) (i.e., the original beliefs can propagate through the Tanner graph
without significant distortion). The next section investigates how this reduced distortion improves
the decoding performance compared to information bottleneck decoders designed without message
alignment. The look-up tables used while decoding are pd(z|y) = ∑t∈T pd(z|t)pd(t|y).

We advocate that message alignment does not affect the implementation complexity of an
information bottleneck decoder. The look-up tables pd(z|y) have the same size as pd(t|y), and z instead
of t is exchanged over the edges of the Tanner graph. Thus, introducing message alignment neither
increases the number of needed lookup operations, nor does it increase the number of required lookup
tables. However, when constructing the lookup tables offline, the message alignment algorithm has to
be incorporated in the construction step. This results in slightly increased computational complexity
of the construction process compared to the construction of information-bottleneck decoders without
message alignment.

4. Optimizing the Node Structure

In this section we devise an optimized structure of the information-bottleneck nodes. First, the
general internal processing of the variable nodes and check nodes described in [10] is reviewed. We
show that with this design approach the number of required look-up tables and look-up operations
depends linearly on the node degree. Especially for LDPC codes with a high code rate, where check
nodes with very high degree exist, this linear relation affects the latency tremendously. Our proposed
novel tree-like look-up strategy enables a more efficient decoding in terms of space complexity
and latency.

Figure 1 depicts message passing decoding in a Tanner graph. Depending on the node type, the M
incoming discrete messages y = [y1, . . . , yM]T are processed in different ways to generate an outgoing
message t. In general, it is possible to plug the joint distribution p(x, y) as input distribution in the
information bottleneck algorithm. However, the vector y with M entries, all taken from the discrete
alphabet Y , can take up to |Y|M distinct combinations. In turn, a huge look-up table p(t|y) with |Y|M
entries needs to stored. Even for small node degrees, this exponential growth of entries prohibits a

Appl. Sci. 2018, 8, 1884 11 of 17

direct practical implementation. This problem is tackled by partitioning the equality constraint at the
variable nodes and the (mod 2)-sum at the check nodes into a serial concatenation of simple partial
operations with only two inputs. Such a so-called opened node is illustrated in Figure 7a.

x1 t1 x2 t2 . . . tM−2 xM−1 t

y1 y2 y3 yM

(a)

y1

x1,1 t1,1

y2

x2,1 t2,1

y3

x1,2 t1,2

y4 xs t
...

...
...

(b)

Figure 7. Illustration of an opened node, where all M incoming messages y1, ... yM are clustered
(a) sequentially or (b) as proposed, in a tree-like manner.

Due to the sequential concatenation of look-up tables, M − 1 different tables are required in
each iteration and for each node degree. Since only two incoming discrete messages are used at a
time, the size of the look-up table is |Y|2. Thus, instead of one large table with |Y|M entries, in total
(M− 1) · |Y|2 entries need to be stored for a decoder designed as in [10]. While decoding using the
sequential design, M− 1 look-up operations have to be performed.

The code rate of regular LDPC codes is R = 1− dv
dc

, where dv is the variable node degree and
dc denotes the check node degree. Consequently, to achieve a high code rate, very large check node
degrees are required. In optical communications, often dc > 20. Hence, the sequential design is very
inefficient in terms of memory demand and latency due to the large number of required look-up
tables. Instead, we propose a more efficient look-up strategy that requires fewer tables. The proposed
design is sketched in Figure 7b. We denote the stage of the look-up tree with s. We note that when
using a tree-like pattern, the depth of the information bottleneck graph is reduced from O(M− 1)
to O(2 · blog2(M)c). The proposed tree-like structure makes use of the following observation: Since
the look-up table depends only on the joint distribution which is the same if the “type” of incoming
message is the same, it can be reused for the entire stage. That is, in the first stage (i.e., s = 1), always
to incoming messages y2i, y2i+1 are combined which have the same probability distribution and thus
yield the same joint distribution no matter which particular incoming messages yi are considered.
In the next stage (i.e., s = 2), the inputs to the look-up table are the result of the compression and
respectively the look-up from the previous stage (i.e., t1,i). Thus, these messages again have the same
distribution and thus have the same joint distribution. This procedure continues until the final stage
s = log2(M) is reached. In case M is not a power of two, at most 2 · blog2(M)c look-up stages are
needed. See Appendix A for a detailed derivation. The algorithm to determine the actual number of
needed stages if M is not a power of two is also given in Appendix A. Table 1 contains an overview of
the required memory depending on the chosen node structure.

Table 1. Overview of maximum required look-up tables and their sizes depending on the node structure.

Node Structure Entries per Table Look-Up Tables Total Memory Demand

direct |Y|M 1 |Y|M
sequential propagation |Y|2 M− 1 (M− 1) · |Y|2

proposed (tree-like) |Y|2 2 · blog2(M)c 2 · blog2(M)c · |Y|2

Appl. Sci. 2018, 8, 1884 12 of 17

Reusing Intermediate Results

In information-bottleneck decoders, the actual decoding simplifies to look-up operations in the
offline-generated tables. To compute an outgoing message, all incoming messages, except for the one
received over the edge connected to the node we generate the outgoing message for, are considered.
Hence, all outgoing messages are computed using a slightly different input vector y. However, parts
of the input vector do not change for several outgoing messages. Thus, the total number of look-up
operations per node can be reduced by the reuse of intermediate results.

Assuming a sequential node structure, we note that for example if only yM is changed, all ti for
i = 0, . . . , M− 2 previous results could be reused. Thus, the number of total operations for all outgoing
edges for a node with M incoming messages can be found as

(M + 1) · (M− 1)−
M−2

∑
i=1

i =
(M− 1)(M + 4)

2
.

By exploiting the proposed tree structure, the number of look-up operations per node can be
reduced even further compared to the sequential approach. The actual reuse potential depends largely
on the internal structure of the tree. However, in the worst case, O(Mblog2 Mc) operations per node
are required. In the next section, the achievable gains in terms of latency and memory efficiency
are investigated.

5. Investigation and Results

In this section, we apply message alignment and the proposed tree-like node structure during the
construction of information-bottleneck decoders for irregular LDPC codes. The investigated irregular
code is taken from [3], where several irregular LDPCs relevant for optical communications were
proposed and compared. We provide numerical simulations for our proposed information bottleneck
decoder and several reference systems assuming transmission over an additive white Gaussian noise
(AWGN) channel with BPSK modulation. We compare the decoder in terms of decoding performance,
computational complexity, and memory demand.

5.1. Code Properties

The considered code had a length of N = 8000 bits, code rate R = 0.8, and the degree
distribution [3]:

ρ(z) = 0.7z22 + 0.3z23, (11)

λ(z) = 0.150z2 + 0.314z3 + 0.536z12. (12)

5.2. Memory Demand

Given the degree distribution from [3], an information bottleneck decoder can be constructed as
proposed in Section 3. We designed the decoder to perform at most i = 50 iterations. That is, i = 50
different tables for each node degree and node type have to be generated. For the considered code,
Table 2 summarizes the memory demand. Clearly, the direct implementation with only one look-up
table per iteration and node degree is not implementable due to the huge memory requirement of
104.6 · 1024 kByte. The sequential approach proposed in [10] already yields a manageable complexity
and allows the construction of an information bottleneck decoder that only needs 384 kByte of memory
in total. Please note that due to very simple look-up operations leveraged for decoding, other than
in conventional LDPC decoders, not the computational complexity but the memory demand and the
memory access times are the only parameters affecting the space complexity and decoding throughput.
Thus, it is crucial that the number of look-ups is reduced and parallelized to simultaneously tackle
decoding speed and memory demand. Table 2 shows that the proposed tree-like node structure also

Appl. Sci. 2018, 8, 1884 13 of 17

achieved notable improvements for practically relevant codes. In total, only 134.4 kByte memory were
required to realize the entire information bottleneck decoder. This is a reduction of 65%. Furthermore,
the number of distinct look-up tables for the node with highest degree (i.e., the check node with
dc = 23) could be reduced from 21 to 6, which is a reduction by 71%. Table 2 also includes the total
number of look-ups needed to compute all outgoing messages per node and iteration. Clearly, the
tree-like structure needs significantly less operations compared to the sequential structure, which
enhances the decoding speed correspondingly.

Table 2. Overview of the number of look-up table entries and the total memory demand depending on
the node structure.

Node Degree Direct Sequential Proposed (Tree-Like)

Entries Look-Ups Entries Look-Ups Entries Look-Ups

dv = 2 4096 2 512 3 512 3
dv = 3 65, 536 3 768 7 512 6
dv = 12 450.35 · 1011 12 3072 88 1280 33

dc = 22 309.48 · 1022 22 5376 250 1536 70
dc = 23 495.48 · 1023 23 5632 273 1536 92

Total per Iteration 525.931 · 1023 62 15, 360 621 5376 204

Total for i = 50 209.2 · 1027 3100 768, 000 31,050 268, 800 10,200

Memory for i = 50 in kByte 104.6 · 1024 - 384 - 134.4 -

5.3. Bit Error Rate (BER) Performance

For performance evaluation, BER curves for three conventional decoders and two information
bottleneck decoders are shown in Figure 8. All compared systems performed at most i = 50 decoding
iterations or stopped if the syndrome check was satisfied. The properties of the decoders used are
summarized in Table 3.

Table 3. Properties of the compared decoding algorithms.

Decoder Node Messages Messages Message
Operations (Internal) (Channel) Alignment

belief propagation arithmetic 64 bit 64 bit -
belief propagation, quantized channel output arithmetic 64 bit 4 bit -

min-sum approx. arithmetic 64 bit 64 bit -
information-bottleneck decoder [10] look-up Table 4 bit 4 bit no

proposed look-up table 4 bit 4 bit yes

The first reference decoder (cf. dash-dotted blue curve in Figure 8) was a belief propagation
decoder which receives quasi-continuous LLRs from the channel and performs box-plus operations at
the check nodes and summations at the variable node. Clearly, the processing of quasi-continues LLRs
in a digital implementation also requires very fine quantization. Standard processor architectures
approximate the processing of continuous signal using floating-point or double-precision data types.

In a second step, we included a 4-bit channel output quantizer as described in [18] in our
simulation. The belief propagation decoder receives only 16 distinct LLRs from the quantizer. However,
the internal processing still uses quasi-continuous LLRs. We denote this approach “belief propagation
decoding with quantized channel output” (cf. dashed green curve in Figure 8).

The third considered decoding approach was min-sum decoding (cf. dotted red curve in Figure 8).
Just like the belief propagation decoder, the min-sum decoder receives channel LLRs which are not
quantized and need to be represented precisely. These LLRs were exchanged during message passing
decoding. However, the box-plus operation at the check node was approximated in min-sum decoding
and thus much simpler compared to box-plus.

Appl. Sci. 2018, 8, 1884 14 of 17

The aim of information bottleneck decoders is to combine both domains (i.e., simple node
operations and compressed messages) such that only a small number of bits has to be exchanged. We
restricted the cardinality of the compression variable T to 4 bits.

0 0.5 1 1.5 2 2.5 310−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

BE
R

belief propagation double LLRs

min-sum, double LLRs

belief propagation,
quantized channel output

o - information bottleneck,
proposed, 4 bit integers

x - information bottleneck,
no message alignment

0 0.5 1 1.5 2 2.5 310−5

10−4

10−3

10−2

10−1

100

Eb/N0 in dB

BE
R

belief propagation double LLRs

min-sum, double LLRs

belief propagation,
quantized channel output

o - information bottleneck,
proposed, 4 bit integers

x - information bottleneck,
no message alignment

0.15 dB

Figure 8. Bit error rate (BER) performance of our proposed decoder and reference systems with
properties summarized in Table 3. LLR: log-likelihood ratio.

The solid magenta curve with “o” markers in Figure 8 corresponds to our proposed information
bottleneck decoder, which uses message alignment during the construction. When constructed without
message alignment, the information bottleneck decoder (cf. solid light-blue curve with “x”-markers)
diverged already at a BER of 5 · 10−3. In contrast, the results obtained with our proposed information
bottleneck decoder were quite remarkable compared to the performance of a belief propagation decoder
working with double-precision data types. Although only 16 different integers were processed by the
information bottleneck decoder, the performance degradation in terms of bit error rate was only 0.15 dB
for a BER of 10−3 down to 10−5. The operations performed during information-bottleneck decoding
were only simple look-ups in the offline-generated look-up tables, whereas the belief propagation
reference simulation processed double precision channel output values and also performed double
precision box-plus operations.

The performance degradation was even smaller if the belief propagation decoder with quantized
channel LLRs was considered as reference. It suffered from the same information loss introduced by
using the channel quantizer as the information-bottleneck decoder. Finally, although the min-sum
decoder exchanges double precision LLRs, the performance was significantly worse compared to
our proposed information-bottleneck decoder. As a consequence, the performance gain achieved
by applying message alignment allows the construction of information bottleneck decoders for
irregular LDPC codes which pair coarse quantization, low complexity, simple node operations, and
close-to-optimum performance.

6. Conclusions

In this paper, we generalized the construction of an information bottleneck decoder to be also
applicable for arbitrary irregular LDPC codes with arbitrary rates. For this purpose, we first extended
discrete density evolution for irregular codes and revealed that due to the discrete and finite alphabets
of the compression variables, a straightforward application of existing methods is not possible without
an additional processing step. We derived the underlying information-theoretic optimization problem
and devised a solution, which we call message alignment. By adding this extra step, we were able
to build a 4-bit information bottleneck decoder in which all arithmetic operations were replaced by

Appl. Sci. 2018, 8, 1884 15 of 17

look-up tables mapping incoming 4-bit messages onto outgoing 4-bit messages. Our presented
decoder is characterized by a significantly lower implementation complexity than conventional
decoders. However, at the same time, the information-bottleneck decoder achieved a comparable
performance (0.15 dB gap) to double-precision belief propagation and significantly better performance
than min-sum decoders. To achieve a design with low latency and less memory demand, a tree-like
node structure was superior. With this structure, the memory to store the look-up tables depends
only logarithmically (O(2 · blog2(M)c)) on the number of processed messages M instead of linearly
(O(M − 1)). A similar improvement was achieved when considering the number of performed
look-up operations. We believe that the demonstrated applicability now also for practically relevant
irregular LDPC codes with arbitrarily high rates increases the relevance of information bottleneck
decoders as promising candidates for practically important finite-precision LDPC decoding in the
context of optical communications.

Author Contributions: Conceptualization, M.S., J.L. and G.B.; Software, M.S., J.L.; Validation, M.S., J.L., and G.B.;
Writing—Original Draft Preparation, M.S.; Writing—Review & Editing, M.S., J.L., and G.B.; Visualization, M.S.;
Supervision, G.B.

Funding: This publication was supported by the German Research Foundation (DFG)-Project 392323616 and the
Hamburg University of Technology (TUHH) in the funding programme “Open Access Publishing”.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Derivation of the Depth of the Tree-Like Information Bottleneck Graph

Appendix A.1. Number of Look-Up Stages

The tree-like information bottleneck graph exploits the fact that the look-up tables are equivalent
if the probability distributions of the inputs are equivalent. Hence, the vector y = [y1, . . . , yM]T has to
be split such that a balanced tree is obtained. This tree has the minimum depth (i.e., the minimum
number of distinct look-up tables are required). If M (i.e., the number of incoming discrete messages)
is a power of two, clearly an optimum split will result in log2 M stages (cf. Figure A1a). The number
of levels required if M is no power of two can be obtained from the binary representation of M (i.e.,
bM = [bmsb, . . . , blsb]

T). Here, bmsb denotes the most-significant bit and blsb is the least-significant
bit. Clearly, log2 bM,msb = blog2 Mc gives a lower bound on the required stages. The approach to
determine the number of stages s is similar to the decimal-to-binary conversion algorithm. In the
first step, M is divided by two, since always two inputs shall be combined. The remainder is the
least-significant bit indicating if an extra look-up table is needed (e.g., if M is odd). The quotient is
again divided by two. Its remainder becomes the next bit again indicating if an extra look-up table
is needed. This process repeats until a quotient of one is reached. The number of extra tables, which
is equivalent to the number of ones following the most significant bit, is added to blog2 Mc. Thus,
at most 2 · blog2 Mc stages are needed if M is not a power of two.

Appl. Sci. 2018, 8, 1884 16 of 17

y1

x1,1 t1,1

y2

x2,1 t
y3

x1,2 t1,2

y4

(a)

y1

x1,1 t1,1

y2

x2,1 t2,1

y3

x1,2 t1,2

y4

y5 xs t

(b)

Figure A1. Illustration of a tree-like structure if M (a) is a power of two; (b) is not a power of two.

References

1. Chung, S.Y.; Forney, G.D.; Richardson, T.J.; Urbanke, R. On the design of low-density parity-check codes
within 0.0045 dB of the Shannon limit. IEEE Commun. Lett. 2001, 5, 58–60. [CrossRef]

2. Chang, D.; Yu, F.; Xiao, Z.; Li, Y.; Stojanovic, N.; Xie, C.; Shi, X.; Xu, X.; Xiong, Q. FPGA
Verification of a Single QC-LDPC Code for 100 Gb/s Optical Systems without Error Floor down to BER
of 10−15. In Proceedings of the 2011 Optical Fiber Communication Conference/National Fiber Optic
Engineers Conference, Los Angeles, CA, USA, 6–10 March 2011; OSA: Washington, DC, USA, 2011; p.
OTuN2.10.1364/OFC.2011.OTuN2. [CrossRef]

3. Koike-Akino, T.; Millar, D.S.; Kojima, K.; Parsons, K.; Miyata, Y.; Sugihara, K.; Matsumoto, W.
Iteration-Aware LDPC Code Design for Low-Power Optical Communications. J. Lightw. Technol. 2016,
34, 573–581.10.1109/JLT.2015.2477881. [CrossRef]

4. Schmalen, L.; Suikat, D.; Rosener, D.; Aref, V.; Leven, A.; ten Brink, S. Spatially coupled codes and optical
fiber communications: An ideal match? In Proceedings of the 2015 IEEE 16th International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC), Stockholm, Sweden, 28 June–1 July
2015; IEEE: Piscataway, NJ, USA, 2015; pp. 460–464.10.1109/SPAWC.2015.7227080. [CrossRef]

5. Sugihara, K.; Miyata, Y.; Sugihara, T.; Kubo, K.; Yoshida, H.; Matsumoto, W.; Mizuochi, T.
A Spatially-coupled Type LDPC Code with an NCG of 12 dB for Optical Transmission beyond 100
Gb/s. In Proceedings of the 2013 Optical Fiber Communication Conference/National Fiber Optic
Engineers Conference, Anaheim, CA, USA, 17–21 March 2013; OSA: Washington, DC, USA, 2013; p.
OM2B.4.10.1364/OFC.2013.OM2B.4. [CrossRef]

6. Yang, M.; Ryan, W.E.; Li, Y. Design of Efficiently Encodable Moderate-Length High-Rate Irregular LDPC
Codes. IEEE Trans. Commun. 2004, 52, 564–571.10.1109/TCOMM.2004.826367. [CrossRef]

7. Zhou, X.; Xie, C. Enabling Technologies for High Spectral-Efficiency Coherent Optical Communication Networks;
John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; doi:10.1002/9781119078289.

8. Leven, A.; Schmalen, L. Status and Recent Advances on Forward Error Correction Technologies for
Lightwave Systems. J. Lightw. Technol. 2014, 32, 2735–2750.10.1109/JLT.2014.2319896. [CrossRef]

9. Meidlinger, M.; Matz, G. On irregular LDPC codes with quantized message passing decoding. In Proceedings
of the 2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC’17), Sapporo, Japan, 3–6 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5.

10. Lewandowsky, J.; Bauch, G. Information-Optimum LDPC Decoders Based on the Information Bottleneck
Method. IEEE Access 2018, 6, 4054–4071.10.1109/ACCESS.2018.2797694. [CrossRef]

11. Lewandowsky, J.; Stark, M.; Bauch, G. Optimum message mapping LDPC decoders derived from the
sum-product algorithm. In Proceedings of the 2016 IEEE International Conference on Communications
(ICC’16), Kuala Lumpur, Malaysia, 22–27 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–6.

12. Romero, F.J.C.; Kurkoski, B.M. LDPC decoding mappings that maximize mutual information. IEEE J. Sel.
Areas Commun. 2016, 34, 2391–2401. [CrossRef]

http://dx.doi.org/10.1109/4234.905935
https://doi.org/10.1364/OFC.2011.OTuN2
http://dx.doi.org/10.1364/OFC.2011.OTuN2
https://doi.org/10.1109/JLT.2015.2477881
http://dx.doi.org/10.1109/JLT.2015.2477881
https://doi.org/10.1109/SPAWC.2015.7227080
http://dx.doi.org/10.1109/SPAWC.2015.7227080
https://doi.org/10.1364/OFC.2013.OM2B.4
http://dx.doi.org/10.1364/OFC.2013.OM2B.4
https://doi.org/10.1109/TCOMM.2004.826367
http://dx.doi.org/10.1109/TCOMM.2004.826367
https://doi.org/10.1002/9781119078289
https://doi.org/10.1109/JLT.2014.2319896
http://dx.doi.org/10.1109/JLT.2014.2319896
https://doi.org/10.1109/ACCESS.2018.2797694
http://dx.doi.org/10.1109/ACCESS.2018.2797694
http://dx.doi.org/10.1109/JSAC.2016.2603708

Appl. Sci. 2018, 8, 1884 17 of 17

13. Kurkoski, B.M.; Yamaguchi, K.; Kobayashi, K. Noise thresholds for discrete LDPC decoding
mappings. In Proceedings of the 2008 IEEE Global Communications Conference, New Orleans, LO, USA,
30 November–4 December 2008; IEEE: Piscataway, NJ, USA, 2008; pp. 1–5.

14. Meidlinger, M.; Balatsoukas-Stimming, A.; Burg, A.; Matz, G. Quantized message passing for LDPC
codes. In Proceedings of the 2015 49th Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, CA, USA, 8–11 November 2015; pp. 1606–1610, doi:10.1109/ACSSC.2015.7421419. [CrossRef]

15. Bauch, G.; Lewandowsky, J.; Stark, M.; Oppermann, P. Information-Optimum Discrete Signal Processing for
Detection and Decoding. In Proceedings of the IEEE 87th Vehicular Technology Conference (VTC-Spring’18),
Porto, Portugal, 3–6 June 2018; IEEE: Piscataway, NJ, USA, 2018.

16. Ghanaatian, R.; Balatsoukas-Stimming, A.; Muller, T.C.; Meidlinger, M.; Matz, G.; Teman, A.; Burg, A.
A 588-Gb/s LDPC Decoder Based on Finite-Alphabet Message Passing. IEEE Trans. Very Large Scale Integr.
(VLSI) Syst. 2018, 26, 329–340.10.1109/TVLSI.2017.2766925. [CrossRef]

17. Stark, M.; Lewandowsky, J.; Bauch, G. Information-Optimum LDPC Decoders with Message Alignment for
Irregular Codes. In Proceedings of the 2018 IEEE Global Communications Conference: Signal Processing for
Communications (Globecom2018 SPC), Abu Dhabi, UAE, 9–13 December 2018; IEEE: Piscataway, NJ, USA, 2018.

18. Lewandowsky, J.; Stark, M.; Bauch, G. Message Alignment for Discrete LDPC Decoders with Quadrature
Amplitude Modulation. In Proceedings of the 2017 IEEE International Symposium on Information Theory,
Aachen, Germany, 25–30 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2925–2929.

19. Stark, M.; Lewandowsky, J.; Bauch, G. Iterative Message Alignment for Quantized Message Passing
between Distributed Sensor Nodes. In Proceedings of the IEEE 87th Vehicular Technology Conference
(VTC-Spring’18), Porto, Portugal, 3–6 June 2018; IEEE: Piscataway, NJ, USA, 2018.

20. Ryan, W.; Lin, S. Channel Codes: Classical and Modern; Cambridge University Press: Cambridge, UK, 2009.
21. Tishby, N.; Pereira, F.C.; Bialek, W. The information bottleneck method. In Proceedings of the 37th Allerton

Conference on Communication and Computation, Monticello, IL, USA, 22–24 September 1999.
22. Slonim, N. The Information Bottleneck: Theory and Applications. Ph.D. Thesis, Hebrew University of

Jerusalem, Jerusalem, Israel, 2002.
23. Hassanpour, S.; Wuebben, D.; Dekorsy, A. Overview and Investigation of Algorithms for the Information

Bottleneck Method. In Proceedings of the 11th International ITG Conference on Systems, Communications
and Coding, Hamburg, Germany, 6–9 February 2017; VDE: Frankfurt am Main, Germany, 2017; Volume 268.

24. Stark, M.; Shah, S.A.A.; Bauch, G. Polar Code Construction using the Information Bottleneck Method.
In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference Workshops
(WCNCW): Polar Coding for Future Networks: Theory and Practice (IEEE WCNCW PCFN 2018),
Barcelona, Spain, 15–18 April 2018; IEEE: Piscataway, NJ, USA, 2018.

25. Kern, D.; Kuehn, V. On Compress and Forward with Multiple Carriers in the 3-Node Relay Channel
Exploiting Information Bottleneck Graphs. In Proceedings of the 11th International ITG Conference on
Systems, Communications and Coding, Hamburg, Germany, 6–9 February 2017; VDE: Frankfurt am Main,
Germany, 2017; pp. 1–6.

26. Chen, D.; Kuehn, V. Alternating information bottleneck optimization for the compression
in the uplink of C-RAN. In Proceedings of the 2016 IEEE International Conference on
Communications (ICC), Kuala Lumpur, Malaysia, 23–27 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp.
1–7.10.1109/ICC.2016.7510694. [CrossRef]

27. Lewandowsky, J.; Stark, M.; Bauch, G. Information Bottleneck Graphs for receiver design. In Proceedings of
the 2016 IEEE International Symposium on Information Theory, Barcelona, Spain, 10–15 July 2016; IEEE:
Piscataway, NJ, USA, 2016; pp. 2888–2892.

28. Kschischang, F.R.; Frey, B.J.; Loeliger, H.A. Factor graphs and the sum-product algorithm. IEEE Trans.
Inf. Theory 2001, 47, 498–519. [CrossRef]

29. Minka, T. Divergence Measures and Message Passing; Technical Report; Microsoft Research: Cambridge, UK, 2005.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/ACSSC.2015.7421419
http://dx.doi.org/10.1109/ACSSC.2015.7421419
https://doi.org/10.1109/TVLSI.2017.2766925
http://dx.doi.org/10.1109/TVLSI.2017.2766925
https://doi.org/10.1109/ICC.2016.7510694
http://dx.doi.org/10.1109/ICC.2016.7510694
http://dx.doi.org/10.1109/18.910572
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Prerequisites
	Low-Density Parity-Check (LDPC) Codes
	The Information Bottleneck Method
	Information-Bottleneck Signal Processing and Information Bottleneck Graphs

	Information Bottleneck Decoders for Irregular LDPC Codes Using Message Alignment
	Information-Bottleneck Channel Quantizer for Arbitrary Discrete Memoryless Channels
	Information Bottleneck Decoders for Regular LDPC Codes
	Relevant-Information-Preserving Clusterings for Arbitrary Irregular LDPC Codes
	Message Alignment — A Graphical Perspective
	Message Alignment—An Information-Theoretic Perspective
	Message Alignment Algorithm

	Optimizing the Node Structure
	Investigation and Results
	Code Properties
	Memory Demand
	Bit Error Rate (BER) Performance

	Conclusions
	Derivation of the Depth of the Tree-Like Information Bottleneck Graph
	Number of Look-Up Stages

	References

