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Abstract: Fault diagnosis of rolling bearings is important for ensuring the safe operation of industrial
machinery. How to effectively extract the fault features and select a classifier with high precision is the
key to realizing the fault recognition of bearings. Accordingly, a new fault diagnosis method of rolling
bearings based on improved fast spectral correlation and optimized random forest (i.e., particle
swarm optimization-random forest (PSO-RF)) is proposed in this paper. The main contributions of
this study are made from two aspects. One is that an improved fast spectral correlation approach
was developed to extract the fault features of bearings and form the feature vector more effectively.
The other is that an optimized random forest classifier was developed to achieve highly accurate
identification by exploiting particle swarm optimization to select the best parameters of random forest
(RF). In the presented method, improved fast spectral correlation was first utilized to analyze the
raw vibration signal caused by a faulty bearing to obtain the enhanced envelope spectrum. Then, the
amplitudes of the four characteristic cyclic frequencies (i.e., the rotating frequency, the characteristic
frequency of outer-race fault, the characteristic frequency of inner-race fault, and the characteristic
frequency of rolling element fault) exhibited in the enhanced envelope spectrum were selected to
form the feature vector. Finally, the PSO-RF method was introduced for identifying and classifying
bearing faults. The experimental investigations demonstrate the proposed method can accurately
identify bearing faults and outperform other state-of-art techniques considered.

Keywords: improved fast spectral correlation; particle swarm optimization-random forest; rolling
element bearings; fault diagnosis

1. Introduction

As an important supporting element, rolling bearings are widely used in various rotating
machinery systems, such as wind turbines, aero engines and internal combustion engines. A minor
bearing fault may affect the operation of the whole rotating machinery. Moreover, bearing faults can
cause huge economic losses or even casualties [1–3]. With the rapid emerging and popularization of
the Internet and the Internet of things, big data have brought revolutionary challenges and disruptive
innovation to traditional information technology. Fault diagnosis has also entered the era of “big data”
and fault recognition is an important part of it.

The factors that cause bearing failure are numerous. The main causes of bearing failure include
manufacturing and assembly faults which lead to vibrations dominated by out-of-balance shaft
response and cage related frequencies [4]. Other modes of failure of bearings are initiated by contact
conditions. Some are due to loss of the preload or interference fitting, which are known as the variable
compliance effect [5]. Another major mode of failure in bearings is lubrication issues, lack of which
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can lead to wear, excessive friction and heat generation and scuffing. Finally, the worn rolling and
sliding surfaces cause vibration, by which time any solution to the problem would be too late [6–9].

Fault feature extraction and fault classification are two important aspects of bearing fault diagnosis.
Using an effective fault feature extraction method to establish the fault feature vectors that fully reflect
the fault information and selecting an advanced classifier to train and recognize the feature vectors are
important to ensure the high precision of fault diagnosis. Many researches have been carried out on
fault feature extraction of bearings. Wavelet packet decomposition was used to eliminate the noise of
the signal and the fault features were extracted by ensemble empirical mode decomposition (EEMD)
in Reference [10]. Successive wavelet decomposition techniques have also been used to focus on
particular band of frequencies by obtaining the run-out wave attributed to particular features caused
by the indicated sources, such as cage slipping, out-of-balance rotor rotation, etc. [11]. Gao et al. [12]
combined the time frequency distribution and the non-negative matrix factorization to enhance the
bearing fault characterization. Jiang et al. [13] used the singular value and ratios of neighboring
singular values to extract the fault features. In Reference [14], bearing fault features were extracted via
singular spectrum analysis. Li et al. [15] utilized the hierarchical fuzzy entropy and Laplacian score to
extract the fault signatures of bearings. Zhou et al. [16] proposed a neighborhood component analysis
based feature extraction approach. Liu et al. [17] proposed a method that combines Hilbert Huang
transform (HHT) and singular value decomposition (SVD) to obtain the fault features of bearings.
Cheng et al. [18] proposed an effective fault feature extraction approach by combining empirical mode
decomposition (EMD) and SVD. In Reference [19], multi-scale permutation entropy (MPE) was used
to extract fault features. In Reference [20] a fault feature extraction method based on EEMD, and
multi-scale fuzzy entropy was proposed. These developed approaches are of great significance to fault
diagnosis. However, some of them are proposed based on the signal decomposition methods, such as
EMD, EEMD and wavelet decomposition. The EMD- and EEMD-based methods have modal aliasing
problems which may affect the final identification results. A major limitation for the wavelet-based
methods is that the analysis results are affected by the selection of wavelet basis functions. How to
select wavelet basis functions adaptively is a difficult problem. Some other approaches belong to
SVD and entropy based methods, whose effectiveness is easily affected by the parameter setting.
In recent years, the cyclostationary theory plays an important role in the fault feature extraction of
rotating machinery and it is conducive to improve the diagnosis results of rolling bearings and gears.
In Reference [21], the minimum entropy deconvolution-spectral kurtosis (MED-SK) approach and
cyclostationary (CS)-based approaches were investigated and compared. The results show that the
CS-based approaches are more superior in detecting the early weak faults. Spectral correlation (SC)
is one of the most effective CS-based approaches. Contrary to classical spectral analysis methods,
spectral correlation can reveal the non-stationary characteristics of the analyzed signals. Therefore,
it shows advantages for detecting bearing faults [22–24]. The averaged cyclic periodogram (ACP)
has been the most popular and widely used estimator of SC for bearing fault failure detection [25].
In Reference [26], the averaged cyclic periodogram was combined with hidden markov model to
diagnose the fault of rolling bearings. Antoni investigated the spectral correlation analysis of bearing
signals thoroughly and pointed out the spectral correlation method is very suitable for detecting
bearing fault signatures in Reference [27]. However, traditional SC techniques have low computational
efficiency. Accordingly, Antoni proposed the fast spectral correlation (Fast-SC) method [28], which
is a novel spectral correlation estimation method. The Fast-SC method not only has the advantages
of spectral correlation, but also overcomes the shortcomings of high computational cost. However,
the original signals of rolling bearings often contain many noise components and the fault features
may be submerged in noise components. In the presence of noise and interference signals, the
fast spectral correlation and enhanced envelope spectrums obtained by using Fast-SC always have
interference frequencies.

Similarly, fault classification plays a key role in fault diagnosis of rolling bearings. Traditional
fault classification methods including: back propagation (BP) neural network, artificial neural network
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(ANN), deep belief network (DBN), continuous hidden Markov model (CHMM), support vector
machine (SVM), genetic algorithm (GA), adaptive fuzzy neural network (ANFIS), and extreme learning
machine (ELM). BP neural network is a multilayer feed forward neural network. The prediction results
are derived through forward deduction [29]. However, BP neural networks have the disadvantages
of slow learning speed and low accuracy. ANN relies on the complexity of the system to achieve the
purpose of processing information by adjusting the interconnected relationships among a large number
of internal nodes and has the ability to learn and adapt itself. However, ANN has the possibility of
overfitting data [30]. DBN is a continuous learning process which is layer by layer. In Reference [31],
the accuracy and robustness of DBN is proved, but DBN has the shortcomings of computational
complexity. CHMM is a double stochastic process, which has a hidden Markov chain of certain state
numbers and a set of random functions. In Reference [32], CHMM was utilized to classify the faults
and the results show that unreasonable parameter settings may affect the accuracy rate of CHMM.
The learning strategy of SVM is to maximize the interval, which can eventually be transformed into a
solution of a convex quadratic programming problem eventually. In Reference [33], EMD was used
to decompose the signal into intrinsic mode functions (IMFs) and the fault feature was extracted by
HHT. Finally, the fault features were input into SVM for recognition. SVM has good generalization
ability, but it needs strict adjustment of kernel parameters and cannot solve multi-level problems
effectively. In Reference [34], GA and SVM were combined to recognize the pattern of rolling bearing.
In Reference [35], the time-frequency matrix of rolling bearing signal was calculated to extract fault
feature and ANFIS was utilized to classify the pattern of rolling bearing fault. ELM uses random
weights between the hidden layer and the input layer in the forward neural network. A method
of destructive or adding regular terms is used to solve the output weights in the final output layer
to achieve regression or classification [36–38]. In Reference [39], ELM was used for identification of
bearing faults. Although ELM is fast and has strong generalization ability, it is limited by a hidden
danger of fitting. Random forest (RF) is an advanced classifier. Training of RF is fast and easy to
parallelize and it can handle data with high dimensions [40]. Therefore, RF is an effective and frequently
used classifier for classifying bearing faults. In Reference [41], ReliefF ranking was used to rank the
fault features obtained by calculating the statistical characteristics of the signal in the time domain and
random forest was further used to identify bearing faults. In Reference [42], Wang extracted the fault
features of bearings by using the wavelet packet decomposition and the classification was completed
by RF. In Reference [43], an intelligent fault diagnosis approach was presented with the combination of
ensemble empirical mode decomposition and RF. In Reference [44], variational mode decomposition
was combined with autoregressive model parameters to extract the fault features and RF was used
for pattern recognition. The analysis results show that RF has a higher accuracy compared to SVM,
genetic algorithm-SVM (GA-SVM) and particle swarm optimization-SVM (PSO-SVM). However, RF is
a parameterized classifier and the selection of the parameters of random forest will affect the accuracy
of classification.

Considering that the fast spectral correlation is an advanced fault feature extraction technique
and the RF is an excellent classifier. The main work of this paper was conducted on the basis of the fast
spectral correlation and RF. To complete the accurate fault diagnosis of rolling bearings, an improved
fast spectral correlation approach was proposed in this paper by introducing the kurtosis weighting to
effectively decrease the effect of noise and highlight the fault characteristics. Moreover, a particle swarm
optimization-random forest (PSO-RF) classification algorithm was proposed, which can adaptively
optimize the parameters and improve the classification accuracy of RF. On the basis of the advantages
of the improved fast spectral correlation and PSO-RF, a fault diagnosis method for rolling bearings
was proposed with the combination of improved fast spectral correlation and PSO-RF in this work.
The improved fast spectral correlation was firstly employed to extract the fault feature vectors of the
faulty bearings. Then, the state classification of rolling bearings can be accomplished by training and
testing the obtained fault feature vectors using the PSO-RF classifier.
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This paper is structured as follows. In Section 2, an approach of fault feature extraction based on
the improved fast spectral correlation method is given briefly. Section 3 describes the details of random
forest based on particle swarm optimization. Section 4 introduces the framework of the proposed
method. In Section 5, the experiments are presented to investigate and validate the proposed method
for state recognition of rolling bearing. Finally, conclusions are drawn in Section 6.

2. Fault Feature Extraction Based on Improved Fast Spectral Correlation

2.1. Brief Introduction of Fast Spectral Correlation

Let x(tn) be a cyclostationary signal, its spectral correlation is defined as:

SCx(α, f ) =
1

Fs2

∞

∑
n=−∞

∞

∑
τ=−∞

Rx(tn, τ)e−j2παn 1
Fs e−j2π f τ 1

Fs , (1)

where Fs is the sampling frequency, tn denotes the time instants which can be calculated as tn = n/Fs,
Rx(tn, τ) represents the cyclic autocorrelation function of x(tn), τ indicates the time delay, α denotes the
cyclic frequency and f represents the frequency.

The spectral correlation is a two-dimensional Fourier transform of two frequency variables, which
reflects the power distribution of the signal relative to the frequency and the cyclic frequency. The
power corresponding to the cyclic frequency α distributed along the line of the parallel frequency f.

In order to reduce the computational cost and improve the efficiency of spectral correlation, a fast
spectral correlation method based on short time Fourier transform was proposed in Reference [28].

The short time Fourier transform (STFT) of the signal x(tn) is described as follows:

XSTFT(i, fk) =
Nw−1

∑
n=0

x[iR + n]w[n]e−j2πn fk
Fs , (2)

where Nw represents the window length of STFT, R represents the block shift in STFT; w[n] is the
function of time index n; x[n] is the abbreviated form of x(tn), fk denotes the k-th discrete frequency
and fk = k∆f, ∆f represents the frequency resolution, which has the expression of ∆f = Fs/Nw.

Equation (3) shows the phase-corrected STFT [28]:

Xw(i, fk) =
L−1
∑

n=0
x[n]w[n− iR]e−j2πn fk

Fs

= XSTFT(i, fk)e
−j2πiR fk

Fs

, (3)

where Xw (i, fk) denotes the complex envelope of signal x(tn) at iR/Fs, whose center is fk and bandwidth
is ∆f. |Xw(i, fk)|2 represents the energy flow in the frequency band.

Then the cyclic spectrum based on STFT is defined as [28]:

Sx( f , α) =
Fs

L
Xw( f )Xw( f − α)∗, (4)

where L is the length of signal x(tn).
Assume that f = fk = k∆f and α = p∆f + δ, it can be deduced that f − α = fk − α ≈ fk−p and α ≈ p∆f.
Applying these results to Equation (3), it comes that [28]:

Xw(i, fk − α) ≈ Xw(i, fk−p)e
j2π( α

Fs −p ∆ f
Fs )(iR+N0). (5)

where p is index of STFT frequency closest to a given cyclic frequency α, δ is residue.
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Insert Equations (5) and (3) into Equation (4), the following Equation is obtained [28]:

Sx(α, fk; p) = 1
K‖w‖2Fs

K−1
∑

i=0
Xw(i, fk)Xw(i, fk−p)

∗e−j2π( α
Fs −

p
Nw )(iR+N0)

= 1
K‖w‖2Fs

DFT
i→α

{
XSTFT(i, fk)XSTFT(i, fk−p)

∗
}

e−j2πN0(
α
Fs −

p
Nw )

, (6)

When p = 0, the period of x(tn) is T and its frequency α is 1/T. The energy flow will flow
periodically in the band [fk − ∆f /2, fk + ∆f /2]. When p 6= 0, Xw(i, fk)Xw(i, fk−p)* represents the energy
flow between band [fk − ∆f /2, fk + ∆f /2] and band [fk−p − ∆f /2, fk−p + ∆f /2].

The definition of fast spectral correlation is given as follows [28]:

SFast
x (α, f ) =

p
∑

p=0
Sx(α, f ; p)

p
∑

p=0
Rw(α− p∆ f )

Rw(0), (7)

where Rw(α) =
Nw−1

∑
n=0
|w[n]|

2

e−j2π(n−N0)
α
Fs denotes the kernel function and Rw(0) = ‖w‖2.

The function of fast spectral correlation can be derived as follows [28]:

γx(α, f ) =
Sx(α, f )√

Sx( f )Sx( f − α)
. (8)

The enhanced envelope spectrum is defined as [28]:

SEES
x (α) =

∫ f2

f1

|γx(α, f )|d f . (9)

2.2. Improved Fast Spectral Correlation

The signal of a faulty bearing is characterized by periodic impacts, which contains multiple
harmonics in the spectrum and has a wide frequency characteristic. When the raw vibration signal
is directly analyzed by fast spectral correlation, there may be many interference components in the
obtained enhanced envelope spectrum around the characteristic cyclic frequencies. In order to extract
the modulation information effectively, the kurtosis weighting was introduced to the fast spectral
correlation analysis. Kurtosis is the fourth order of amplitude. It is sensitive to signals with larger
amplitude and can play a role of energy amplification. The kurtosis was calculated for each column of
the fast spectral correlation matrix and a greater weight was given for a bigger kurtosis. The modulation
capacity of the cyclic frequency corresponding to the column can be effectively estimated. Therefore, a
fast spectral correlation method based on kurtosis weight was proposed to enhance the fault features
of bearings.

The specific steps of the improved fast spectral correlation method are as follows.
(1) Calculate the fast spectral correlation SFast

x (α, f ) of the original signal and calculate the kurtosis
values of each column of SFast

x (α, f ) [45]:

KA(α) = mean
{
[SFast

x (α, f )]
4}

. (10)

(2) Calculate the weighting factor KA’(α) based on Equation (11). The weighting factor reflects
modulation ability of the modulation frequency. If the factor is greater, the modulation effect
corresponding to this frequency in the original signal is stronger. Conversely, the modulation effect
is weaker.

KA′(α) =
KA(α)−min[KA(α)]

max[KA(α)]−min[KA(α)]
. (11)
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(3) By weighting the above factors, the improved fast spectral correlation SFast
x

′
(α, f ) is obtained

as shown in Equation (11). The improved fast spectral correlation can eliminate or weaken the high
frequency doubling of the cyclic frequency with weak modulation capability.

SFast
x

′
(α, f ) = KA′(α)× SFast

x (α, f ). (12)

In order to verify the performance of the improved fast spectral correlation in extracting
bearing fault information, the multi-component superposition signal x(t) shown in Equation (13)
was investigated [46].

x(t) = x1(t) + x2(t) + x3(t)

x1(t) =
[

M−1
∑

i=0
Dh(t− iTo)

]
∗ [Ae−ξ2π fnt cos(2π fdt)]

x2(t) = 6 sin(2π f1t)
x3(t) = 3rand(1, N)


, (13)

where x1(t) is the outer-race impact signal designed based on the rolling bearing outer-race fault model
in Reference [47], the natural frequency fd = fn

√
1− ξ2, M = 30, D = 1, A = 2, ξ = 0.05, fn = 3000 Hz

and the outer race fault frequency f o = 120 Hz. x2(t) is the fundamental frequency interference signal
of the frequency f 1 = 20 Hz. x3(t) represents random noise signal. The sampling frequency of the
simulated signal is 8192 Hz.

Figure 1 shows the time domain waveforms of x1(t), x2(t), x3(t), x(t) and the envelope spectrum of
x(t) respectively. Figures 2 and 3 show the analysis results obtained by using fast spectral correlation
and improved fast spectral correlation, respectively. Figure 2a shows the fast spectral correlation
spectrum of x(t) obtained via the fast spectral correlation method, from which it is hard to identify
the fault characteristics. The corresponding enhanced envelope spectrum shown in Figure 2b has
peaks at f o, 2f o, 3f o and 4f o, but many noise components can also be noticed. As shown in Figure 3a,
the spectral lines can be identified at f o, 2f o, 3f o and 4f o, which are more obvious than that reflected in
Figure 2a. From the enhanced envelope spectrum obtained via improved fast spectral correlation as
shown in Figure 3b, only the spectral lines at f o, 2f o, 3f o and 4f o are left and the interference amplitudes
are inhibited. It is proved that improved fast spectral correlation is more robust to noise and can extract
the fault information better than fast spectral correlation.
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2.3. Establishment of Fault Feature Vector

When different types of faults occur on the bearings, the corresponding enhanced envelope
spectrums obtained using the improved fast spectral correlation will also show differences.
The characteristic cyclic frequencies will be among the rotating frequency fr, the characteristic frequency
of outer-race fault f o, the characteristic frequency of inner-race fault fi and the characteristic frequency
of rolling element fault fb. So, the amplitudes of the four mentioned cyclic frequencies of the enhanced
envelope spectrum were selected to form the fault feature vector. The establishment of the fault feature
vector using the improved fast spectral correlation approach mainly includes two steps:
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(1) The improved fast spectral correlation was utilized for dealing with the fault signal of
rolling bearing to obtain the corresponding fast spectral correlation spectrum and enhance
envelope spectrum.

(2) Select the amplitudes (i.e., ar, ao, ai and ab) of the four cyclic frequencies (i.e., fr, fo, fi and fb) in the
enhanced envelope spectrum to constitute the fault feature vector A = [ar ao ai ab].

3. Random Forest Based on Particle Swarm Optimization

3.1. Random Forest

The basic idea of random forest is to generate multiple irrelevant decision trees randomly and
each decision tree can use training samples for training independently [40]. When the decision tree is
generated, each decision tree classifies the new sample when it enters and each decision tree has its
own voting rights. Random forest takes the largest number of votes as the final classification result of
the sample [48].

The principle of the random forest algorithm can be described as Figure 4 shows. The detailed
steps of the random forest algorithm are described as follows:

(1) Determine the parameters for training random forest: training sample set, the number of decision
tree nTree and the number of random attribute m.

(2) Employ the bootstrap sample method until the sample set is the same as the number of the
training samples, which is used as the training sample of a decision tree.

(3) Sample the attribute sets without reusing and extract m attributes, only retaining the data
corresponding to the m attributes as training samples.

(4) Train a decision tree using the training samples generated in steps (2) and (3).
(5) Pruning threshold is used to prune the trained decision trees.
(6) If the number of trained decision trees is less than nTree, it will return to step (2) to continue

execution. Otherwise, all nTree decision trees will be cascaded through the voting strategy to
form random forest.
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3.2. Particle Swarm Optimization

Particle swarm optimization (PSO) is an effective global optimization algorithm, which was
originally a study of bird predation [49]. Its principle is that the particles change their state in
multi-dimensional search space until they reach equilibrium or an optimal state.

The formula for the velocity and position of particle update is as follows [49]:

Vid(t + 1) = ωVid(t) + a1r1[Pid(t)− Xid(t)] + a2r2[Pgd(t)− Xid(t)], (14)

Xid(t + 1) = Xid(t) + Vid(t + 1), (15)

where Vid(t) is the particle velocity in the t-th iteration; Pid(t) denotes the optimal position of individual
particle in the t-th iteration; Pgd(t) is the global optimal position in the t-th iteration; Xid(t) is the particle
position in the t-th iteration; ω represents the inertia weight; d is the population dimension; a1 and
a2 are nonnegative constants, they denote the acceleration coefficient; r1 and r2 are random numbers
uniformly distributed in the range of [0,1].

3.3. Optimized Random Forest Based on PSO

In this paper, PSO was applied to RF for parameter optimization in order to achieve a more
accuracy classification result. The purpose of the algorithm is to explore the relationship between
algorithm performance and the number of decision tree nTree in order to find the difference between
the best parameter combination and traditional value selection.

The objective function is as follows:

f (nTree∗, {Attributei|i = 1, 2, . . . M}) = argmin(avgOOBerror). (16)

where OOBerror means out-of-bag error.
The specific steps of PSO optimization for the RF parameter nTree are as follows:

(1) Initialize the parameters of PSO, including: group size, learning factor, maximum number of
iterations, initial location and speed of particles.

(2) The RF of each particle vector is used to predict the learning sample respectively. The prediction
error of the current position of each particle is obtained, which is used as the fitness value of each
particle. The current fitness value of each particle is compared with the optimal fitness value of
that particle. If the current fitness value is smaller, the present position of the particle will be
treated as the optimal position of the particle.

(3) Compare the optimal position fitness value of each particle with the fitness value of the optimal
position of the group. When the fitness value appears the minimum valve, the optimal position
of the particle is taken as the optimal position of the group.

(4) Check whether the end condition of the search is satisfied. If it satisfies, end the optimization and
get the best nTree. Otherwise, go back to the step (2) to again.

4. The Proposed Method

The flowchart of the diagnostic method presented in this paper is shown in Figure 5. The concrete
steps are as follows:

(1) Collect the fault sample signal of the rolling bearing.
(2) Use the improved fast spectral correlation method to analyze each fault sample to obtain the

improved fast spectral correlation spectrum and corresponding enhanced envelope spectrum.
(3) Form the feature vectors based on the enhanced envelope spectrum.
(4) Set up the training set and the test set.
(5) Put the training set and the test set into particle swarm optimization-random forest (PSO-RF) for

fault pattern recognition.
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5. Experimental Results and Analysis

Rolling bearings are mainly divided into two categories: ball bearings and cylindrical roller
bearings. Therefore, two experimental signals reflect the artificial deep groove ball bearing fault and
cylindrical roller bearing fault were used to investigate the proposed method, respectively. Both of the
two experiments were conducted on the experiment rig exhibited in Figure 6. The vibration signals of
the two experiments were collected with the sampling frequency of 12.8 kHz.
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5.1. Experiment 1: Analysis of Ball Bearing Faults

First, the presented method was studied through the analysis of ball bearing faults. The type
of the bearing in the study is LYC 6205E. Table 1 describes its main parameters. Four conditions
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(i.e., the normal, inner-race fault, outer-race fault and rolling element fault) of the bearing were
simulated, respectively. Rectangular grooves with a depth of 1.5 mm and a width of 0.2 mm were
cut on the surface of inner-race, outer-race, and rolling element by wire cutting machine to simulate
the faults of inner-race, outer-race, and rolling element. Figure 7 shows the faulty ball bearings with
inner-race fault, outer-race fault, and rolling element fault, respectively. The motor speed was kept as
1470 rpm during the whole experiment. The defect frequencies of the test bearing can be calculated
based on the expressions for the primary bearing-induced frequencies in Appendix A. It should be
noticed that the feature frequency of rolling element is twice the roller rotational spin speed. Table 2
lists the calculated defect frequencies of the test bearing. Figure 8 displays the time waveform of the
vibration signals that represent the four states of the test bearing.

Table 1. The parameters of deep groove ball bearing.

Bearing Type Roller Diameter Pitch Diameter Number of Roller Contact Angle

LYC6205E 7.94 mm 39 mm 9 0◦

Table 2. The defect frequencies of deep groove ball bearing at 1470 rpm.

Bearing Fault Rotating Frequency Inner-Race Fault Outer-Race Fault Rolling Element Fault

Characteristics frequency (Hz) 24.5 133 88 115
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rolling element fault.

Take the inner-race fault as an example to illustrate the establishment process of the fault feature
vector. Figure 9a–c plot the waveform, the improved fast spectral correlation spectrum and the
corresponding enhanced envelope spectrum of an inner-race fault sample, respectively. According
to Section 2.3, the amplitudes of the rotating frequency, outer-race fault frequency, inner-race fault
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frequency and rolling element fault frequency of the enhanced envelope spectrum were selected to
form the fault feature vector as shown in Figure 9d.Appl. Sci. 2018, 8, x FOR PEER REVIEW  13 of 23 
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Figure 9. (a) The time waveform of an inner-race fault signal; (b) the improved fast spectral correlation
spectrum; (c) the corresponding enhanced envelope spectrum; (d) the fault feature vector.

Firstly, the vibration signal of each state was divided into 40 subset signals. The signal length
of each subset signal is 6400. Subsequently, the improved fast spectral correlation was employed to
extract the fault features of all subset signals. The obtained fault feature vectors are shown in Figure 10.
It is evident that the curve of the same fault mode has the same trend and the curves of different fault
modes are easily distinguished. Each state can get 40 sets of fault feature vectors, among which 10 sets
were used for training and 30 sets were used for testing. The specific setting of the training set and
test set is shown in Table 3. The label of the normal state, inner-race fault, outer-race fault and rolling
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element fault are set as 0, 1, 2 and 3 for classification, respectively. Finally, the obtained fault feature
vectors were used for training and testing by using RF and PSO-RF. The classification results are shown
in Figure 11. As shown in Figure 11, the classification accuracy of RF and PSO-RF is 99.1667% and
100%, respectively. It demonstrates that the PSO method improves the classification accuracy of RF.
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Table 3. Description of the datasets.

Number of
Training/Test Sets Fault Type Speed of Training/Test

Samples (rpm) Label of Class

10/30 Normal 1470/1470 0
10/30 Inner-race fault 1470/1470 1
10/30 Outer-race fault 1470/1470 2
10/30 Rolling element fault 1470/1470 3
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Figure 11. Identification results of: (a) random forest (RF); (b) particle swarm optimization-random
forest (PSO-RF).

To further validate the effectiveness of the improved fast spectral correlation, it was compared
with the EMD-SVD [18] and MPE [19] methods. For an equitable comparision, the classifier of PSO-RF
was used to identify the fault feature vectors obtained using EMD-SVD and MPE. Figure 12 shows
the state classification results of EMD-SVD and MPE. In Figure 12a, there are two samples of normal
state that are mistakenly classifed as the inner-race fault. A sample of inner-race fault is mistakenly
classified as normal state in Figure 12b. It can be seen that the classification accuracy of EMD-SVD
and MPE are 98.3333% and 99.1667%, respectively. It indicates that the fault feature vectors extracted
using the improved fast spectral correlation can express the fault chatacteristics better than EMD-SVD
and MPE.
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Figure 12. The recognition results of: (a) EMD-SVD; (b) MPE.

In order to illustrate the superiority of the selected classifier used in this paper, it was compared
with two classifiers, ELM and SVM. Figure 13a,b show the classification results obtained by respectively
conducting ELM and SVM on the fault feature vectors. The classification accuracy of ELM is 97.5% and
the classification accuracy of SVM is 93.33%. The contrast results show that PSO-RF is more accurate
compared to ELM and SVM. It should be noticed that the actual output value of ELM is based on
the eigenvector and may not be an integer. To accomplish the classification, the output value of ELM
needs to be rounded. So the final classification result of ELM may not necessarily be 0, 1, 2 and 3. Some
other integer values may be obtained as shown in Figure 13a.



Appl. Sci. 2018, 8, 1859 15 of 22
Appl. Sci. 2018, 8, x FOR PEER REVIEW  16 of 23 

  
(a) (b) 

Figure 13. The classification results of (a) ELM; (b) SVM. 

5.2. Experiment 2: Analysis of Cylindrical Roller Bearing Faults 

To further verify the proposed method, the vibration signals collected from a cylindrical roller 

bearing under the motor speed of 1440 rpm were taken for analysis. The inner-race, outer-race and 

rolling element defects were introduced to the test bearings using electric spark machining. Defect 

size of the inner-race and outer-race is 0.2 mm in width and 0.1 mm in depth. The defect size of 

rolling element is 0.8 mm in diameter and 1 mm in depth. Figure 14 shows the three fault 

conditions of the faulty bearings. The parameters of the faulty bearings were shown in Table 4. The 

theoretical defect frequencies of the test bearing were given in Table 5. Figure 15 depicts the time 

waveform of four states of the test bearing. Figure 15a shows the time waveform of normal state. 

From Figure 15b,d, it can be seen that the vibration signals of inner-fault, outer-fault and rolling 

element fault have obvious impacts. 

  
(a) (b) 

 
 

(c) 

Figure 14. Three fault conditions of the faulty bearings: (a) Inner-race fault; (b) outer-race fault; (c) 

rolling element fault. 

  

Figure 13. The classification results of (a) ELM; (b) SVM.

5.2. Experiment 2: Analysis of Cylindrical Roller Bearing Faults

To further verify the proposed method, the vibration signals collected from a cylindrical roller
bearing under the motor speed of 1440 rpm were taken for analysis. The inner-race, outer-race and
rolling element defects were introduced to the test bearings using electric spark machining. Defect size
of the inner-race and outer-race is 0.2 mm in width and 0.1 mm in depth. The defect size of rolling
element is 0.8 mm in diameter and 1 mm in depth. Figure 14 shows the three fault conditions of the
faulty bearings. The parameters of the faulty bearings were shown in Table 4. The theoretical defect
frequencies of the test bearing were given in Table 5. Figure 15 depicts the time waveform of four states
of the test bearing. Figure 15a shows the time waveform of normal state. From Figure 15b,d, it can be
seen that the vibration signals of inner-fault, outer-fault and rolling element fault have obvious impacts.
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Table 4. The parameters of cylindrical bearing.

Bearing Type Roller Diameter Pitch Diameter Number of Roller Contact Angle

N205 7.5 mm 39 mm 12 0◦

Table 5. The defect frequencies of cylindrical roller bearing at 1440 rpm.

Bearing Fault Rotating Frequency Inner-Race Fault Outer-Race Fault Rolling Element Fault

Characteristics frequency (Hz) 24 172 116 118
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The vibration signal of each state was divided into 40 subset signals. The improved fast spectral
correlation was adopted to acquire the fault feature vectors of each subset as shown in Figure 16. It can
be observed that the curve of the same fault pattern has the same trend and the curves of different
fault patterns are quite different. It indicates that the feature vectors obtained using the improved fast
spectral correlation can effectively express the fault characteristics, which is very useful for pattern
recognition. Table 6 gives the specific setting of the fault feature vectors. As shown in Table 6, each
state has 40 sets of fault feature vectors, which include 10 sets of training samples and 30 sets of
test samples. Both RF and PSO-RF were used for testing and classifying the fault feature vectors.
Figure 17a,b show the classification results of RF and PSO-RF, respectively. The accuracy of RF is 97.5%
and the classification accuracy of PSO-RF is 100%. It indicates that the PSO-RF is superior to RF in
classifying bearing faults.

Table 6. The description of the datasets.

Number of
Training/Test Sets Fault Type Speed of Training/Test

Samples (rpm) Label of Class

10/30 Normal 1440/1440 0
10/30 Inner-race fault 1440/1440 1
10/30 Outer-race fault 1440/1440 2
10/30 Rolling element fault 1440/1440 3
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To further validate the effectiveness of the improved fast spectral correlation, two fault extraction
methods, i.e., EMD-SVD and MPE were used for comparison. For an equitable comparision,
the classifier of PSO-RF was used to identify the fault feature vectors generated using EMD-SVD and
MPE. Figure 18 describes the state classification results of EMD-SVD and MPE. We can see that the
classification accuracy of EMD-SVD and MPE are 94.1667% and 97.5%, respectively. The improved fast
spectral correlation reflects a higher accuracy.
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Similar to experiment 1, the classifier PSO-RF was compared with ELM and SVM. After generating
the fault feature vectors by the improved fast spectral correlation, the ELM and SVM were used to
train and classify the fault feature vectors respectively. Figure 19 shows the results of classification
using ELM and SVM. The classification accuracy of ELM is 83.3333% and the classification accuracy of
SVM is 84.1667%. It shows that PSO-RF has a higher accuracy.
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6. Conclusions

In this work, a hybrid bearing fault diagnosis approach that combines the improved fast spectral
correlation and PSO-RF was proposed and investigated. The main innovations of this work are as
follows: (1) an improved fast spectral correlation was developed, which is more immune to noise
compared to fast spectral correlation and can accurately extract the fault features of bearings; (2) an



Appl. Sci. 2018, 8, 1859 19 of 22

effective classifier named PSO-RF was developed, which improves the precision of RF for identifying
and classifying bearing faults.

Two experimental datasets of bearing faults were studied. The analysis results demonstrate
the presented approach can accurately identify the health states of rolling bearings. Moreover,
the presented approach was compared to some state-of-art works to validate its effectiveness from
two main aspects. One focuses fault feature extraction, in which the improved fast spectral correlation
used as the fault feature method in this paper was compared with the EMD-SVD and MPE methods.
The results reflected that the improved fast spectral correlation method has higher classification
accuracies than the EMD-SVD and MPE methods. The other focuses on bearing faults classification,
in which the classifier of PSO-RF was compared with RF, ELM and SVM. The results show that
the PSO-RF method has the highest classification accuracy out of these. Therefore, this paper
provides a good method for rolling bearing fault identification, which can be applied to the actual
fault identification.
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Nomenclature

Fs sampling frequency
tn time instants
Rx(tn, τ) cyclic autocorrelation function of x(tn)
τ time delay
α cyclic frequency
f frequency
STFT Short time Fourier transform
Nw window length of STFT
N0 central time index of window
R block shift in STFT
w[n] function of time index n
x[n] abbreviated form of x(tn)
fk the k-th discrete frequency
∆f frequency resolution
Xw (i, fk) Gabor coefficient at time index i and frequency fk
L length of signal x(tn)
T period of x(tn)
p index of STFT frequency closest to a given cyclic frequency α

δ residue
Rw(α) kernel function
KA(α) kurtosis value
KA’(α) weighting factor
SFast

x (α, f ) fast spectral correlation
SFast

x
′
(α, f ) improved fast spectral correlation

fd natural frequency
M repeated times of impact
D single pulse strength
A amplitude
ξ system damping ratio
fn natural frequency
f o outer race fault frequency



Appl. Sci. 2018, 8, 1859 20 of 22

fr rotating frequency
fi inner-race fault frequency
f 1 fundamental frequency
fb rolling element fault frequency
Vid(t) particle velocity in the t-th iteration
Pid(t) optimal position of individual particle in the t-th iteration
Pgd(t) global optimal position in the t-th iteration
Xid(t) particle position in the t-th iteration
ω inertia weight
d population dimension
a1, a2 nonnegative constants
r1, r2 random numbers uniformly distributed in the range of [0,1]
OOBerror out-of-bag error

Appendix

The expressions for the primary bearing-induced frequencies are shown as follows [5]:

Cage frequency: fc =
fs
2 (1−

d cos α
D )

Ball passage frequency: fbo = N fc

Ball to inner race frequency: fbi =
fs
2 (1 +

d cos α
D )

Ball frequency: fb =
D fs
2d

where fc is cage frequency; fs is shaft frequency; d is nominal ball diameter; α is contact angle; D is pitch circle
diameter; N is number of balls in a bearing.
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