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Abstract: Brillouin-based optical fiber sensing has been regarded as a good distributed measurement
tool for the modern large geometrical structure and the industrial facilities because it can demodulate
the distributed environment information (e.g., temperature and strain) along the sensing fiber.
Brillouin optical time domain analysis (BOTDA), which is an excellent and attractive scheme, has been
widely developed thanks to its high performance in a signal-to-noise ratio, a spatial resolution,
and sensing distance. However, the sampling rate of the classical BOTDA is severely limited by
several factors (especially the serially frequency-sweeping process) so that it cannot be suitable for
the quickly distributed measurement. In this work, we summarize some promising breakthroughs
about the fast BOTDA, which can be named as an optical frequency comb technique, an optical
frequency-agile technique, a slope-assisted technique, and an optical chirp chain technique.

Keywords: fiber optics sensors; nonlinear optics, fibers; scattering; stimulated Brillouin

1. Introduction

By combining the laser and optical fiber, optical fiber sensing technology has been developed
rapidly, which is widely used in the fields of civil structure health monitoring, modern industrial
controlling, and national defense security. Compared with the traditional resistance and
capacitance-based electronic sensors, optical fiber sensing has clear advantages [1]: optical fiber
is not only the low-loss optical transmission medium but also the continuously deployed sensors.
The optical fiber is easy to access to the all-optical network in adverse working conditions thanks to
its lightweight and compact structure while maintaining high resolution, high sensitivity, and a wide
measurement range. Then, physical parameters outside of the fiber can also be obtained by measuring
the acoustic impedance along the fiber, which has been demonstrated in recent reports [2,3]. Because
of the above merits, a variety of optical fiber sensors are developed for modern industry. Among them,
the distributed ultra-fast BOTDA, which has more practical application value is urgently needed.

From the 1990s, the Brillouin-based optical fiber sensing [4–7] has drawn much interest since
it can offer an attractive solution to the societal concern for distributed dynamic measurement.
Two optical waves are launched into the fiber under test (FUT) in the opposite direction. When their
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frequency-detuning is close to the Brillouin frequency shift (BFS) of the FUT, the power will be
dramatically transferred from the high-frequency optical wave to the low-frequency optical wave
via the stimulated Brillouin scattering (SBS) effect [8,9]. By scanning the frequency-detuning,
the distributed Brillouin gain spectrum (BGS) can be obtained and its central frequency (i.e.,
BFS) computed by curve-fitting has a linear relationship [1,4,5,10,11] with an environmental strain
or temperature.

Up to now, there are several Brillouin-based sensing schemes, which are shown in Table 1.
For one end schemes, Brillouin reflectometers are achieved by only injecting an optical pump wave
into the FUT and detecting the backscattering Brillouin signal to demodulate the spontaneous
BGS. To enhance the Brillouin signal, two end schemes (i.e., analysis method) are obtained by
injecting a counter-propagating probe wave resulting in an enhanced SBS effect. Considering the
interaction domains for the optical waves, three subcategories can be classified as the time-domain,
the frequency-domain, and the correlation domain. For the time-domain approach, a high
signal-to-noise ratio (SNR), a long sensing distance [12], and a high sampling rate can be provided but
the spatial resolution is restricted in ~1 m [13]. For the frequency-domain approach, high sensitivity and
a wide dynamic range can be obtained but the sampling rate is limited. As for the correlation-domain
approach, a high spatial resolution can be achieved but it is suitable for points sensing with a high
sampling rate. In addition, some schemes based on the Brillouin dynamic grating [10,14–17] is also
restricted in the static measurement.

Table 1. Several Brillouin-based optical fiber sensing schemes.

Time-Domain Frequency-Domain Correlation-Domain

Reflectometer
Brillouin optical time
domain reflectometer

(BOTDR) [18,19]

Brillouin optical frequency
domain reflectometry

(BOFDR) [20]

Brillouin optical correlation
domain reflectometry

(BOCDR) [6,21]

Analysis
Brillouin optical time

domain analysis
(BOTDA) [22,23]

Brillouin optical frequency
domain analysis
(BOFDA) [24,25]

Brillouin optical correlation
domain analysis
(BOCDA) [6,26]

In this paper, we mainly focus on the BOTDA scheme. By analyzing the limiting factors of the
measurement speed for classical BOTDA scheme, several improved BOTDA schemes proposed in
recent years are summarized for distributed dynamic measurements.

2. Operation Principle

When a high power optical wave propagates along an ordinary standard single-mode fibers
(SMF), a moving density grating (i.e., the acoustic wave) will be excited in the core of the SMF via
an electrostriction effect through SBS effect, which will induce a Doppler shift (i.e., the BFS) for its
backscattered Stokes wave and the BFS is given by References [8,9,27].

νB =
ΩB
2π

≡ 2neffVA
λp

(1)

where neff is the effective core refractive index, VA is the acoustic velocity, and λp is the wavelength
of the pump wave in a vacuum. Generally, for a silica SMF, the BFS is ~11 GHz [1,5,9] at the
communication wavelength of 1550 nm. It is noted that the BFS has a good linear relationship [1,11]
with the strain and temperature of the fiber and is given by the equation below.

νB = Cε
B∆ε + CT

B∆T + νB0 (2)
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where νB0 is the initial BFS of the fiber, Cε
B and CT

B are the strain and temperature coefficients of the
BFS, respectively, and ∆ε and ∆T are the variations of strain and temperature. Based on Equation (2),
the distributed variations of the strain or temperature are demodulated by measuring the distributed BFS.

To measure the distributed BFS, the typical BOTDA scheme is operated by the “Pump-Probe”
method [5,11,28,29], which is shown in Figure 1. A pulsed-pump is injected into the FUT at the
position z = 0 while a CW-probe wave is injected into the FUT at the position z = L, which is shown in
Figure 1a. For a probe wave with different frequencies, their amplitudes will be amplified by obeying
the BGS curve while their phases will be modulated obeying the Brillouin phase-shifted spectrum
(BPSS), which is illustrated in Figure 1b. If the frequency of the pump pulse maintains constant,
the distributed BGS will be constructed through segment-by-segment scanning of the frequency of the
probe wave. A well-defined position distribution along the FUT corresponding to a round-trip time
of the pump pulse can be achieved by identifying the start and end points of the amplified Brillouin
signal. The spatial resolution is defined as cτ/(2neff), which corresponds to the pump pulse’s width τ.
Then, the distributed BGS can be obtained through a frequency-sweeping process for the probe wave
and is curve-fitted to get the distributed BFS.
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Figure 1. The classical BOTDA scheme. (a) The time sequence: the probe wave with the frequency
sweeping is switched segment-by-segment as the pump pulses are launched into FUT in the opposite
direction maintaining the same time interval Tround_trip +Tswitch. (b) The frequency domain relationship.
BGS: blue line. BPSS: magenta line. Pump wave: red line.

Based on the Maxwell equations representing the optical waves and the Navier-Stokes equation
describing the acoustic variation in the FUT [30,31], the BOTDA scheme can be depicted by the
formula below.

∂EP
∂z + n

c
∂EP
∂t = igoρES − α

2 EP

− ∂ES
∂z + n

c
∂ES
∂t = igoρ∗EL − α

2 ES
∂ρ
∂t + Γρ = igaEPE∗

S

(3)

where EP and ES are the electric fields of the optical pump and probe fields, respectively. ρ is the
material density along the FUT. ∗ is the complex conjugate operator. i is the imaginary symbol.
go and ga are the coupling coefficients of the optical wave and the acoustic wave, respectively.
Γ = ΓB/2 + i(ΩB − Ω) = 1/τP where τp is the phonon lifetime.

For the probe wave, it experiences not only the Brillouin amplification but the Brillouin
phase-shift [11] (i.e., the vector SBS effect), which is shown in Figure 1b. The BGS and BPSS can
be depicted by the equations below.
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gSBS(νS, z) = gp
∆ν2

B
4∆ν2 + ∆ν2

B
⊗ PP(νP, z) (4)

ϕSBS(νS, z) = gp
2∆νB∆ν

4∆ν2 + ∆ν2
B
⊗ PP(νP, z) (5)

where gp is the gain factor at the line center, ∆νB is the Brillouin linewidth, ∆ν = ∆νP − (∆νS + ∆νB) is
the frequency detuning of the probe wave from the BFS, PP(νP, z) is the power spectrum of the pump
wave, and the sign ⊗ represents the convolution operator.

3. The Speed Limitations of the Distributed Measurement for the Classical BOTDA Scheme

For the classical BOTDA scheme, the temperature or strain measurement time is usually
several seconds to several minutes long, which limits its applications to a static or a slowly-varying
measurement. Based on References [32–34], the expression of the maximum sampling rate can be
modified to become the equation below.

fs_BOTDA =
1(

Tround_trip · Ncode · Naνe + Tswitch

)
· N f

(6)

where Tround_trip = 2nL/c is the round-trip time of the pump pulse, which is an inherent limitation
related to the length of the sensing fiber and L. Ncode is the code length of the pump pulse number.
For instance, this value should be set to 2 for the differential double-pulse (DPP) BOTDA scheme [32]
while it depends on the encoding bits and rules for the coding approach [33]. Naνe is the times of
the averaging. Tswitch is the frequency-switching time of the microwave generator (MWG). N f is the
effective frequency-sweeping number for the probe wave, which is used to measure the whole BGS
and restricts the dynamic range. For the classical BOTDA, generally, Ncode = 1, Naνe is several tens for
a polarization maintaining fiber (PMF) and thousands for a standard SMF, the Tswitch is on the order of
~ms scale that is limited by the property of the MWG, and N f is usually ~100 for a frequency interval
of several MHz to obtain a wide dynamic range of several hundreds of MHz.

To increase the sampling rate of the BOTDA scheme, the recent hotspots researched are focused
on reducing the Tswitch by using the high-performance electrical devices, decreasing the N f by using
novel sensing curves instead of BGS, and BPSS and de-multiplexing N f in a frequency-domain and
a time-domain.

4. Developments of the Fast BOTDA Schemes

Recently, to improve the performance of the BOTDA scheme, several novel fast schemes
are proposed: optical frequency comb (OFC) technique, optical frequency-agile (OFA) technique,
slope-assisted (SA) technique, and the optical chirp chain (OCC) technique.

4.1. Optical Frequency Comb Based Fast BOTDA

To avoid the point-by-point frequency-sweeping process, an OFC wave, which has already been
used in precise metrology [35], is employed to quickly acquire the whole BGS in the frequency-domain.
As shown in Figure 2a, generally the probe wave with the frequency ν0 is single-sideband modulated
into an optical carrier and an OFC sideband while an optical pulse is used as a pump wave whose
central frequency is equal to the optical carrier, which is shown in Figure 2b. The beating Brillouin
signal can be amplified by just injecting a pump pulse when the frequency span of the OFC covers and
the BFS of the FUT in a frequency-domain via the SBS amplification. Then, the distributed BGS can be
demodulated using a fast Fourier transform (FFT) of the beating Brillouin signal.
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SBS effect.

To improve the performance of the OFC-based BOTDA, a dual-polarization OFC-probe wave [36]
is generated based on the orthogonal frequency-division multiplexing (OFDM) modulation. Both of
the upper sideband OFC in the x-polarization axis and the lower sideband OFC in the y-polarization
axis are injected into a 1.08 km standard SMF with a counter-propagating pump pulse, which results
in a Brillouin loss (in Figure 3a) and a Brillouin gain (in Figure 3b), respectively. The distributed BGS
(in Figure 3c) can be reconstructed by calculating the absolute spectra of the Brillouin loss and the
Brillouin gain. Then, the combined Brillouin signal can be drastically enhanced by coherent detection
and polarization combination. Without frequency-sweeping, polarization noise and averaging a
temperature measurement along a 1.08 km SSMF is through the interaction of the OFDM-probe and
just one pump pulse. It can be clearly concluded that the maximum sampling rate of this scheme
is only confined by the fiber length. Then, the temperature change can be clearly recognized with a
spatial resolution of 20.48 m and the comparison of the BGSs at a different position is displayed in
Figure 3d.
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Figure 3. The results of the OFC-based fast BOTDA scheme [36]. The distributed BGS of the polarization
axis: (a) x, (b) y, and (c) the combination. (d) The BGS at position A, B, and C. Experimental data:
scatters. The curve-fittings curves: lines.
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4.2. Optical Frequency-Agile Based Fast BOTDA

As the development of electrical devices, an OFA-based fast BOTDA [34] is proposed to compress
the frequency-sweeping process in the time-domain. As shown in Figure 4, for example, an optical
wave in the left path is intensity-modulated into a series of pulses with a fixed central frequency
used as the pump pulse while an optical wave in the right path is frequency-modulated into the
OFA-probe wave by employing an arbitrary waveform generator (AWG) whose output waveform
can be user-defined. After the user-defined microwave for the frequency-sweeping process is tailored
into the microwave segments with equal duration beyond the round-trip time Tround_trip and equal
frequency interval, all waveforms of the microwave segments are recorded into the memory of
the AWG on a head-to-end link mode in a time-domain so that the Tswitch is dropped to ~ns.
Ultimately, the continuous probe wave is single-sideband modulated by the output user-defined
microwave (i.e., frequency-agile microwave) generating the OFA-probe wave. Each probe wave
segment can be amplified by the corresponding pump pulse and its amplitude obeys the BGS curve.
Based on Equation (6), the sampling rate of this scheme can be effectively increased because the
frequency-switching time Tswitch can be neglected. However, the bandwidth of the AWG is required to
be around ~11 GHz corresponding to the BFS of the FUT, which has increased the cost of the system.
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To cut down the bandwidth requirement for the AWG and to increase the spatial resolution,
a combination scheme of the second-order sideband modulation (SOSM) [32] and DPP technique
[23,28,30,32,37] is proposed, which is shown in Figure 5. By appropriately selecting the maximum
working point of an intensity modulator, the even-order optical sidebands are excited by loading the
frequency-agile microwave while the optical carrier and odd-order sidebands are perfectly suppressed
(see the black line in Figure 5a). Subsequently, the lower second order optical sideband is selected as
the probe wave by an optical filter so that the frequency requirement of the frequency-agile microwave
output from the AWG can be decreased to around 5.5 GHz [32]. At the same time, two optical pulses
with a narrow width difference are encoded as a pump pulse pair (i.e., Ncode = 2), which is the black
line in Figure 5b. This results in two high SNR Brillouin signals. Then, a reconstructed Brillouin
signal with a high SNR can be obtained by subtracting the two Brillouin signals. Its spatial resolution
is also equal to the subtraction of the spatial resolutions for these two Brillouin signals. However,
the sampling rate of this scheme is also cut by half because it needs two times the duration for the
OFA-probe wave to avoid the overlap of the two Brillouin signals.

In the experiment, a dynamic strain measurement with a 20-cm spatial resolution [32] is obtained
by subtracting two Brillouin signals generated by two pump pulses of 52 ns and 50 ns, respectively.
Then, two time-evolutions of the BGSs at the end of the 50-m FUT, corresponding to two different
mechanical vibrations, are measured with a 2-kHz sampling rate, as shown in Figure 6a,b. The vibration
waveforms are calculated by curve-fitting the BGSs, which is shown in Figure 6c.
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for the probe wave, which is shown in Figure 7a. The optical carrier of the right branch is first 
modulated by a sinusoidal microwave with a fixed frequency of ~10 GHz output from a microwave 
source. Subsequently, the first order sideband is selected to be intensity-modulated into a 10-ns pulse 

Figure 6. The time-evolutions of the BGS at the vibration section with the frequencies of (a) 33.3 Hz
and (b) 50 Hz. (c) The vibration waveforms for the two vibration frequencies [32].

To further decrease the bandwidth requirement for AWG, a dual-modulation scheme [38] is
proposed by employing a single-frequency modulation for a pump wave and an OFA modulation
for the probe wave, which is shown in Figure 7a. The optical carrier of the right branch is first
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modulated by a sinusoidal microwave with a fixed frequency of ~10 GHz output from a microwave
source. Subsequently, the first order sideband is selected to be intensity-modulated into a 10-ns
pulse by an optical filter, which is used as an up-converted pump pulse. For the left branch,
a single-sideband modulator is driven by the frequency-agile microwave output from the AWG
to generate a down-converted OFA-probe wave. As a result, a lower bandwidth requirement of only
several hundred of MHz for the AWG is achieved as the frequency difference between the pump pulse
and the OFA-probe wave, which can cover the BFS of the FUT. A damped oscillation with the central
frequency of 12.3 Hz is measured by a sampling rate of 100 Hz (see Figure 7b).
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schematic diagram. The damped oscillation measurement is demonstrated as (b) the time-evolution of
the BGS at the vibration point.

4.3. Slope-Assisted Fast BOTDA

Different from the classical BOTDA that needs curve-fitting of the whole BGS to get the sensing
curve, an SA-BOTDA [39,40] is implemented by selecting one of the two slopes of the BGS as the
sensing curve. As shown in Figure 8, the central part of the left slope of the BGS can be simply
regarded as a linear section. After fixing the probe wave’s frequency in the middle of this linear section
(i.e., N f = 1), the intensity of the Brillouin signal will be changed as the whole BGS as well as the
BFS, which is shifted by the environmental strain or temperature. After injecting the one-shot pump
pulse (i.e., Ncode = 1), the distributed BFS along the fiber can be easily demodulated by substituting
the intensity of the Brillouin signal into the expression of the pre-fitted linear section. It should be
noted that, based on Equation (6) and without averaging, the maximum sampling rate is also confined
by the fiber length L. However, the frequency variation of the SA-BOTDA is limited within 30-MHz
corresponding to the linewidth of the BGS. To increase the dynamic range, recent researchers are
concentrating on increasing the slope number and enlarging the available dynamic range of the single
monotonous slope of the sensing curve.
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the BFS changes.

4.3.1. Increasing the Slope Numbers

To make full use of both slopes of the BGS, a coefficient RB [41] is defined as the ratio of the two
Brillouin gains corresponding to the two tones (i.e., N f = 2), which is shown in Figure 9a. It should be
noted that the profile of RB has a wide monotonous slope and its insensitivity of the power fluctuation
for the pump pulse. The BFS of the FUT can be demodulated based on the value of RB. Furthermore, a
multi-slope-assisted BOTDA is implemented using the OFA-probe wave, which is shown in Figure 9b.
A special OFA-probe wave, which has a large frequency interval, is generated and amplified by obeying
the BGS profile from which two neighbor and the maximum Brillouin signals are chosen to calculate
the value of RB and the BFS. In this scheme, a wide dynamic range is obtained by adding the tones at
the expense of the sampling rate.
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Figure 9. The frequency relationship [42] for (a) a double-slope-assisted scheme and (b) a multi-slope-
assisted scheme.

In the experiment, a dynamic strain with a vibration frequency of ~12.8 Hz is acquired and
demodulated at the sampling rate of 1 kHz. The maximum strain variation of 5000 µε corresponding
to the BFS change of 241 MHz is realized with the frequency intervals ranging from 20 MHz to 80 MHz
(see Figure 10a–d). It should be noted that the maximum sampling rate in theory of this scheme can
reach 10 times higher than that of the typical OFA-based BOTDA thanks to its large frequency interval.
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4.3.2. Enlarging the Monotonous Slope of the Sensing Curve

Instead of the slope of the BGS, the slopes of the BPSS [43,44] and RF phase-shift profile [45] are
selected as the sensing curve resulting in the dynamic ranges of 40 MHz and 128 MHz, respectively.
Recently, a dimensionless coefficient K [11] is defined as the expression below.

K(νS, z) =
ϕSBS(νS, z)
gSBS(νS, z)

(7)

where the coefficient K spectrum (KS) is a function of the frequency detuning ∆ν. The KS is insensitive
to the power fluctuation of the pump pulse so as to improve the SNR. Especially for the situation of a
continuous pump wave, Equation (7) can be simplified as the formula below.

K(νS, z) =
2∆ν

∆νB
(8)

where the KS is a straight line with the slope value of 2/(∆νB).
The measured spectra of the BGS, the BPSS, and the KS are obtained as shown in Figure 11 for a

pump pulse of 20 ns. By Lorentzian-fitting (blue line) the BGS, its BFS and linewidth are computed to
be 10.694 GHz and 48 MHz, respectively. The available frequency range of the slopes of the BGS and
BPSS for dynamic sensing is narrower than the linewidth of the BGS while that of the monotonous
slope of the KS is beyond 200 MHz, which is wider than fourfold of the linewidth of the BGS. Moreover,
the SNR of the KS is better than that of the BGS and the BPSS.
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Figure 11. The experimental results for a 20-ns pump pulse [11]. BGS: blue line and dot. BPSS:
magenta line and dot. KS: red line and dot. The dots are the experimental data and the lines are their
fitting curves.

A single-slope-assisted BOTDA scheme is proposed using KS as the sensing curve, which is
shown in Figure 12a. The probe wave and a reference wave (Ref) are injected into the sensing fiber
while the pump pulse is injected in the opposite direction. The beating Brillouin signal between
the probe wave and the Ref wave can be detected via the heterodyne detection and demodulated
based on the IQ demodulation algorithm [46], which results in the BGS value and the BPSS value.
Then, the K value can be calculated based on Equation (7). Generally, working at the K = 0 point, the
dynamic BFS is computed by substituting the K value into the expression of the KS sensing curve.
Then, to further enlarge the dynamic range, a multi-slope-assisted BOTDA scheme is also assembled
through the combination of the KS and the OFA techniques, which is shown in Figure 12b,c. In our
scheme, the pump pulses are frequency-modulated using the OFA technique so that each pump pulse
corresponds to one K value. Subsequently, the K value closest to zero is selected and substituted into
the expression of the KS sensing curve to calculate the BFS of the FUT.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  11 of 17 

10.60 10.65 10.70 10.75 10.80
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
7

 K
 Kfit

K
 (a

.u
.)

Frequency (GHz)

0.00

0.05

0.10

0.15

0.20

0.25

 Gain
 Gfit

G
ai

n 
(a

.u
.)

-0.2

-0.1

0.0

0.1

0.2

 Phase
 Pfit

Ph
as

e 
(r

ad
)

 
Figure 11. The experimental results for a 20-ns pump pulse [11]. BGS: blue line and dot. BPSS: 
magenta line and dot. KS: red line and dot. The dots are the experimental data and the lines are their 
fitting curves. 

A single-slope-assisted BOTDA scheme is proposed using KS as the sensing curve, which is 
shown in Figure 12a. The probe wave and a reference wave (Ref) are injected into the sensing fiber 
while the pump pulse is injected in the opposite direction. The beating Brillouin signal between the 
probe wave and the Ref wave can be detected via the heterodyne detection and demodulated based 
on the IQ demodulation algorithm [46], which results in the BGS value and the BPSS value. Then, the 
K value can be calculated based on Equation (7). Generally, working at the K = 0 point, the dynamic 
BFS is computed by substituting the K value into the expression of the KS sensing curve. Then, to 
further enlarge the dynamic range, a multi-slope-assisted BOTDA scheme is also assembled through 
the combination of the KS and the OFA techniques, which is shown in Figure 12b,c. In our scheme, 
the pump pulses are frequency-modulated using the OFA technique so that each pump pulse 
corresponds to one K value. Subsequently, the K value closest to zero is selected and substituted into 
the expression of the KS sensing curve to calculate the BFS of the FUT. 

Pump

Probe Ref
νB

ννS νP

f0

(a) (b)

Pump (FAT)
Probe

Ref
νB

ννS νP

f0

Δf Δf
K K

f1 f2 f3 fN

CW Probe

CW Ref f1

P1

f2

P2 P3

f3

PN

fN

PMF
ΔT ΔT ΔT

Frequency-modulated pump pulse train

(c)  
Figure 12. The operation principle of (a) the single-slope and (b) the multi-slope assisted BOTDA. (c) 
The time relationship between the pump pulse and the probe wave [11]. 

The results of dynamic strain measurements using the multi-slope-assisted BOTDA are shown 
in Figure 13, which are demodulated based on two methods i.e., the traditional curve-fitting method 
and the hybrid KS + OFA method, respectively. The reference time traces are demodulated through 
curve-fitting the BGS and the KS to calculate the BFS with a frequency number of = 101fN  and a 

Figure 12. The operation principle of (a) the single-slope and (b) the multi-slope assisted BOTDA.
(c) The time relationship between the pump pulse and the probe wave [11].

The results of dynamic strain measurements using the multi-slope-assisted BOTDA are shown
in Figure 13, which are demodulated based on two methods i.e., the traditional curve-fitting method
and the hybrid KS + OFA method, respectively. The reference time traces are demodulated through
curve-fitting the BGS and the KS to calculate the BFS with a frequency number of N f = 101 and a
frequency interval of 4 MHz. As shown in Figure 13a–d, the time traces (red line) are demodulated
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by searching the minimum |K| to compute the BFS for the frequency interval of 80 MHz, 120 MHz,
160 MHz, and 180 MHz, and for the frequency number N f of 6, 4, 3, and 3, respectively. It can be clearly
seen that the time traces are in good agreement with the reference time trace in Figure 13a–c while
several distortion points (the blue ellipse in Figure 13d) and severe waveform distortion (zoom-in view
in Figure 13e) are generated for the frequency interval of 180 MHz. Therefore, the maximum frequency
interval for this scheme is 160 MHz, which is twice of that of the BGS-based multi-slope-assisted
BOTDA scheme [42]. This results in a doubled sampling rate. The dynamic strain with a maximum
variation of about 5372.9 µε (254.3 MHz) and a 5.58 Hz main vibration frequency is obtained at the
sampling rate of 1 kHz, as illustrated in Figure 13f.
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Figure 13. The experimental results of the dynamic strain measurement using the multi-slope-assisted 
BOTDA based on the KS and the OFA [11]. The time traces for frequency intervals of (a) 80 MHz, (b) 
120 MHz, (c) 160 MHz, and (d) 180 MHz. The reference time traces (the black and blue dots) are 
calculated by curve-fitting the BGS and KS. (e) A zoom-in view of the time traces within the red 
blocks. (f) The power spectra at the frequency interval of 160 MHz. 

Figure 13. The experimental results of the dynamic strain measurement using the multi-slope-assisted
BOTDA based on the KS and the OFA [11]. The time traces for frequency intervals of (a) 80 MHz,
(b) 120 MHz, (c) 160 MHz, and (d) 180 MHz. The reference time traces (the black and blue dots) are
calculated by curve-fitting the BGS and KS. (e) A zoom-in view of the time traces within the red blocks.
(f) The power spectra at the frequency interval of 160 MHz.
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4.4. Optical Chirp Chain Technique for Fast BOTDA

Different from recovering the BGS in frequency-domain for the OFC-based BOTDA, OCC-based
BOTDA schemes [1,47] have been implemented to recover the whole BGS or BLS in the time-domain
thanks to the time-frequency mapping of the chirp signal. As demonstrated in Figure 14a, with a
high-performance AWG, the frequency-sweeping process can be compressed into an optical chirp
segment with a few tens of nanoseconds and the frequency ranged from ν1 to νN by the OFA technique.
The chirp distribution of this optical chirp segment is given by the equation below.

fAWG(t) = f1 + η·t (9)

where f1 is the initial frequency and η is the frequency chirp value.
Subsequently, the OCC-probe wave is formed by head-to-tail linking several segments in the time

domain. The duration of the OCC-probe wave should be longer than the round-trip time of the pump
pulse. When single-shot pump pulse interacts with every optical chirp segment and the frequency
span of the OCC-probe wave covers the BFS of the FUT (see Figure 14b), the BGS can be revealed at
every segment in the time domain. The parameters of the OCC-BOTDA scheme can be summarized as
Tswitch << Tround_trip, Ncode = 1 and N f = 1. Based on Equation (6), the maximum sampling rate of
the OCC-based BOTDA without averaging is only limited by the fiber length.
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Lastly, the OCC-based BOTDA scheme is examined by three different types of vibration: a
periodic mechanical vibration, a mechanical shock, and a switch event. The vibrational waveforms
(see Figure 16a–c) are measured at the sampling rates of 25 kHz, 2.5 MHz, and 6.25 MHz, respectively.
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5. Challenges and Future Perspectives

A comparison between the traditional frequency-sweeping method and the above four improved
schemes is shown in Table 2. Since the length L of the FUT is the inherent limitation and the code
length Ncode have the same influence on these schemes, the two factors haven’t been listed in Table 2.
For the averaging time Naνe, the OFC + OFDM scheme can eliminate the polarization noise while the
OCC scheme can enhance it through a cross-correlation algorithm [1,48,49]. Since all the frequency
segments are injected into FUT at the same time for the OFC + OFDM scheme, its frequency-switching
time is ideally zero. Compared to the ~ms frequency-switching time for the traditional scheme, the
frequency-switching time of the other three improved schemes can be dropped down to ns thanks to
the OFA technique. The OFA technique is unable to optimize the averaging time Naνe and the effective
frequency-sweeping number N f . For the effective frequency-sweeping number N f , the OFC + OFDM
scheme multiplexes Brillouin signals with all frequencies in frequency-domain and demultiplexes
the BGS by the FFT while the OCC scheme directly demultiplexes the BGS through the optical chirp
segment piece-by-piece in the time domain, so that their effective frequency-sweeping number is 1.
The effective frequency-sweeping number for the SA + OFA scheme is dependent on the dynamic
range. However, the OFC + OFDM scheme has an inferior spatial resolution of about tens of meters
and the SA + OFA scheme has a nonlinear sensing curve, which will influence the demodulation
accuracy while the OCC scheme cannot provide the symmetrical BGS and the absolute BFS value.
In the future, a “cocktail therapy” that combines two or more techniques may be a good solution for
distributed ultra-fast measurements with a proper spatial resolution. For example, combining the DPP
technique, a high spatial resolution may be obtained for the OCC scheme and the OFC scheme. As the
development of the fast BOTDA schemes and electrical signal processing, a real-time, ultra-fast, and
distributed Brillouin-based optical fiber sensing will be realized, which has a wide range of applications
such as the earth activity detection, the health monitoring of large civil infrastructure (transportation
system, bridge, dam, oil, and gas pipeline), border security, the capturing of the reaction process,
and more.

Table 2. Comparison of the proposed BOTDA schemes in this work.

Averaging Time
Nave

Frequency-Switching
Time Tswitch

Effective Frequency-Sweeping
Number Nf

Frequency-sweeping ~100 ~ms ~100
OFC + OFDM ≥1 0 1

OFA ~100 ~ns ~100
SA + OFA ≥1 ~ns ≥1

OCC ≥1 ~ns 1
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6. Conclusions

Brillouin-based optical fiber sensing can offer good solutions for the modern transportation
and industrial facilities thanks to its significant advantages. For the classical BOTDA scheme,
the frequency-sweeping process to obtain the BGS is generally executed for several seconds or minutes,
which limits its applications in static or slowly-varying measurements. In this paper, several improved
BOTDA schemes proposed to break the speed limitations have been summarized: the OFC scheme,
the OFA scheme, the SA scheme, and the OCC scheme. We believe that the combination of two or
more schemes can provide a better distributed ultra-fast measurement solution for the capturing of the
moving objects, high-temperature warning of buildings, and health monitoring of large infrastructures.
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