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Abstract: This paper deals with the current sensor fault diagnosis and isolation (FDI) problem
for a permanent magnet synchronous generator (PMSG) based wind system. An observer based
scheme is presented to detect and isolate both additive and multiplicative faults in current sensors,
under varying torque and speed. This scheme includes a robust residual generator and a fault
estimation based isolator. First, the PMSG system model is reformulated as a linear parameter
varying (LPV) model by incorporating the electromechanical dynamics into the current dynamics.
Then, polytopic decomposition is introduced forH∞ design of an LPV residual generator and fault
estimator in the form of linear matrix inequalities (LMIs). The proposed gain-scheduled FDI is
capable of online monitoring three-phase currents and isolating multiple sensor faults by comparing
the diagnosis variables with the predefined thresholds. Finally, a MATLAB/SIMULINK model
of wind conversion system is established to illustrate FDI performance of the proposed method.
The results show that multiple sensor faults are isolated simultaneously with varying input torque
and mechanical power.

Keywords: fault diagnosis and isolation; multiple sensor faults; LPV observer; permanent magnet
synchronous generator

1. Introduction

Due to the high power density and efficiency, permanent magnet synchronous generator based
wind turbines are promising in wind conversion systems (WECSs) with variable speed operation
and full-scale power delivery [1,2]. To fulfill control demands for maximum power point tracking
(MPPT) and grid codes, closed-loop feedback control is designed, relying on the mechanical, current
and voltage measurements. Any inaccurate measurements caused by sensor faults will cause the
controller malfunction and performance degradation. According to industrial and field statistics [3–5],
current sensor faults are a type of major faults resulting from the electromagnetic interference and high
power density, which causes system shutdown and fragile components.

Fault diagnosis and isolation (FDI) schemes enable the control system to locate fault sensors
and to compensate the fault further. For power converter systems, various diagnostic techniques
are presented to handle current sensor FDI problems, including observer based, signal processing
based and data-driven based methods. Model based diagnostic techniques are discussed most for
power converter systems. A parallel observers based method is presented in [6] to diagnose stator
and rotor current sensor faults in doubly fed induction generator (DFIG) system, but it requires
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open-loop operation while detecting the sensor fault. Similarly, a sensor FDI in [7] that a bank of
observers are designed to generate residuals sensitive to sensor fault for DFIG based WECSs also
requires open-loop operation until the fault is isolated. In [8], a geometric approach is presented to
detect and isolate multiple sensor faults in induction motor (IM) drives. By utilizing the redundant
properties of three-phase currents, two stationary frame based state space models are established to
generate distinguished residuals sensitive to phase a and phase b sensor faults. In [9], the nonlinear
model of DFIG is transformed into a Takagi–Sugeno (T-S) fuzzy model and a bank of observers based
on the model are presented to generate residuals for sensor fault detection and isolation. To deal with
both additive and multiplicative sensor faults, a generalized observer scheme is presented in [10] by
combiningH_/H∞ filter with Kalman-like observer for DFIG systems.

Aforementioned schemes are presented for sensor FDI in IM drives while only a few model
based sensor FDIs are proposed for permanent magnet synchronous motor (PMSM) and permanent
magnet synchronous generator (PMSG) systems. In [11], a two-stage extended Kalman filter (EKF)
and adaptive observer is presented to generate mechanical estimations for speed and rotor position
sensor fault diagnosis. An adaptive EKF for position sensor fault diagnosis and tolerant scheme is
presented in [12] for PMSM drive in electric vehicle (EV). In [13], a high-order sliding model based
observer is proposed to detect and estimate rotor speed sensor fault in PMSM based EV. The authors
later present a bank of observers based scheme for multiple sensor FDI [14]. However, it requires
additional voltage sensors to establish the fault observers. In [15], an EKF based FDI is presented for
the diagnosis of sensor fault in PMSM drives, but it can only isolate single sensor faults and does not
additionally discuss about the influence of unknown disturbances on FDI performance. Furthermore,
in [2], to diagnose additive and multiplicative faults for PMSG based WECSs, a two-stage model based
method is proposed, in which time-varying Kalman filter (TVKF) and maximum-shift method are
designed to generate robust residuals and evaluate these residuals.

According to the state-of-the-art analysis, model based FDI methods are rarely reported for
simultaneous multiple current sensor FDI for PMSM and PMSG based applications. Nevertheless,
current sensor FDI is necessary for control system in power converters to provide further information
for fault tolerant control [2,8]. In this paper, an observer based scheme is presented to detect and
isolate both additive and multiplicative faults in current sensors under varying torque and speed.
The proposed method includes a robust residual generator and a fault estimation based isolator.
The system model is established in the stationary reference frame and the nonlinear term with
rotor position is transformed into a polytopic linear parameter varying (LPV) model. Based on
the stability and convergency analysis, a gain-scheduled fault detector and isolator is designed in the
form linear matrix inequalities (LMIs). The proposed gain-scheduled FDI scheme is capable of online
monitoring three-phase currents and isolating multiple sensor faults with only one fault estimator.
Comparing with the existing methods for current sensor isolation, this method does not require
complex observer combination or a bank of observers and can isolate both additive and multiplicative
faults. The contributions of this paper are concluded as follows:

(1) A scheme is proposed for detection and isolation of multiple sensor faults. Compared with the
existing methods, the proposed method is capable of isolating three-phase current sensor faults
while most existing schemes are presented to isolate faults in stationary frame or synchronous
reference frame.

(2) The proposed isolator is based on a fault estimation scheme. Fault estimates contain all the fault
information, which makes it possible to deal with both additive and multiplicative faults.

(3) All of the measurements are available in the control loop. No additional hardware
or measurements are required. Furthermore, the proposed method is implemented in
closed-loop operation.

The rest of this paper is organized as follows. Section 2 establishes PMSG and sensor fault
model, and polytopic decomposition of the model. The gain-scheduled observer design for fault
detection residuals generation is presented in Section 3. In Section 4, a fault estimation design scheme
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is presented for isolation of each phase current sensor fault. The simulation results are presented
in Section 5 to illustrate the performance of proposed method. Finally, the conclusion is presented
in Section 6.

2. Problem Statement

The system configuration of PMSG based WECS is shown in Figure 1. Typically, a full-scale
back-to-back converter is designed as the interface between generator and the electrical grid.
The field-oriented control (FOC) is employed to transfer maximum power generated by wind turbine
while tracking the rotor speed reference that requires measured values of rotor position θ, rotor speed
ωr and three-phase currents ia, ib, ic.
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Figure 1. Control and fault diagnosis scheme for the PMSG system (reproduced from [2,16]).

Machine-side control is designed to implement an MPPT scheme for variable-speed WECSs.
Each wind turbine operates in a certain wind speed region according to its ideal power curve. This leads
a varying rotor speed or torque to feed the generator. As shown in Figure 2, generator stops in Regions
I and IV while it continues to generate electrical power in Regions II and III.
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Figure 2. Operation regions of a PMSG based wind turbine (reproduced from [17]).

The mechanical signals and current measurements are crucial to ensure a stable and optimal
operating condition of the WECSs. Any sensor malfunction will be fed back into the control system,
which could cause performance reduction or even system downtime. Sensor faults are investigated
in [11] and exhibited as: (1) sensor gain drop Type a; (2) bias in sensor measurement Type b and
(3) complete sensor outage Type c . Type b and Type a faults can be modeled as an addictive fault in
sensor measurements

ym (k) = yr (k) + f (k) (1)
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in which ym (k), yr (k) and f (k) denote the faulty measurements, nominal values and fault signals
respectively. Type a fault is the sensor gain degradation and modeled as a multiplicative fault in [2]

ym (k) = β (k) yr (k) . (2)

By defining f (k) = (β (k)− 1) yr (k), Type a fault in Equation (2) is rewritten as an additive fault
with Formula (1). These three types of faults are uniformly modeled as additive faults.

Remark 1. In (1), f (k) is unknown when kTs > t f ault ( ∀ kTs < t f ault, f (k) = 0 ). A practical
assumption of the sensor faults f (k) is introduced in this paper: f (k) is L2− bounded ‖ f (k) ‖ ≤ ‖α (k) ‖ and
α (k) is a known function. The upper bound of fault is essential for fault estimator design in Theorem 2.

2.1. LPV Model of PMSG

The mathematical model of a surface-mounted PMSG can be expressed in the stationary reference
frame as [14,18,19]

diα
dt

= −Rs

Ls
iα +

npψ

Ls
sin (θ)ωr +

1
Ls

uα

diβ

dt
= −Rs

Ls
iβ −

npψ

Ls
cos (θ)ωr +

1
Ls

uβ

dωr

dt
= −

3npψ

2J
sin (θ) iα +

3npψ

2J
cos (θ) iβ −

F
J

ωr −
1
J

TL

dθ

dt
= npωr,

(3)

where iα, iβ and uα, uβ are the currents [A] and voltages [V] of phases α and β in the stationary frame,
respectively. In addition, θ is rotor electrical angle [rad]; ωr denotes rotor velocity [rad/s]; F is the
viscous friction coefficient [N·m·s/rad]; TL is the load torque [N·m]; J is the inertia of the motor
[Kg·m2]; ψ is the magnetic flux of the motor [Wb]; Rs is the resistances of the phase winding [Ω]; L is
the inductance of the phase winding [H]; np is the number of pairs of rotor poles.

By defining state variables x =
[
iα, iβ, ωr, θ

]T and measurements y = [ia, ib, ic, ωr, θ]T , system (3)
is expressed as a linear parameter varying model

ẋ = A (θ) x + Buu + Bdd,

y = Cx,
(4)

in which ia, ib and ic denote three-phase currents of PMSG which are acquired by current sensors.
Provided that the currents and voltages remain nearly constant at each sample time interval Ts.
The Forward Euler Approximation method is introduced for discretization of a PMSG model

x (kTs + Ts) = x (kTs) + Ts

{
dx (t)

dt

}
t=kTs

, (5)

where Ts is the sampling time. Accordingly, system (4) leads to the following discrete system model:

x (k + 1) = A (θk) x (k) + Buu (k) + Bdd (k) ,

y (k) = Cx (k) ,
(6)

where A (θk), Bu, Bd and C are listed as Equation (A1) in Appendix A.
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2.2. Polytopic Decomposition of the System Model

An LPV model of PMSG with sensor faults is presented as follows with bounded varying parameters:

x (k + 1) = A (θk) x (k) + Buu (k) + Bdd (k) ,

y (k) = Cx (k) + Ff f (k) ,
(7)

where Ff is the fault distribution matrix. A (θk) contains two time-varying terms sin (θk) and cos (θk),

an auxiliary variable is defined µ (θk) =
[
µ1 (θk) µ2 (θk)

]T
,

µ1 (θk) = sin (θk) ,

µ2 (θk) = cos (θk) .
(8)

It is obvious that A (θk) depends affinely on the parameter µ (θk)

A (θk) = A0 + µ1 (θk)A1 + µ2 (θk)A2, (9)

where A0, A1 and A2 are constant matrices. The time-varying parameter vector µ (θk) is determined
by the rotor electrical angle θk. Moreover, µ1 (θk) and µ2 (θk) are trigonometric function and bounded
by the lower and upper bounds

µ1 ∈
[

µ
1

µ̄1

]
µ2 ∈

[
µ

2
µ̄2

]
µ(θk)

Tµ (θk) = 1

(10)

in which µ
1
= µ

2
= −1 and µ̄1 = µ̄2 = 1. A convex polytope Θ with four vertices µv,1, µv,2, µv,3, µv,4

is defined to ensure that the trajectory of parameter µ (θk) is enclosed:

µv,1 =

[
µ

1
µ

2

]
µv,2 =

[
µ

1
µ̄2

]

µv,3 =

[
µ̄1

µ
2

]
µv,1 =

[
µ̄1

µ̄2

]
.

(11)

Consequently, parameter µ (θk) can be expressed as a convex combination of the vertices with

coordinates ηk =
[
ηk,1 ηk,2 ηk,3 ηk,4

]T
,

µ (θk) =
[

µv,1 µv,2 µv,3 µv,4

]
ηk,

ηk,1 + ηk,2 + ηk,3 + ηk,4 = 1,
(12)

in which ∀i = 1, · · · , 4, ηk,i ≥ 0 and the parameter-dependent matrix A (µ) is rewritten by a
combination of coordinate vector ηk

A (µ) =
4

∑
i=1

ηk,i Av,i, (13)

in which Av,i = A (µv,i) with i = 1, · · · , 4. The system Equation (7) can be transformed into a
polytopic form

x (k + 1) =
4

∑
i=1

ηk,i Av,ix (k) + Buu (k) + Bdd (k) ,

y (k) = Cx (k) + Ff f (k) .

(14)

Since Equation (12) is an underdetermined equation, further constraints are required to solve
this equation. In [20–22], a vertex expansion technique is presented to get a unique solution of ηk.
Furthermore, this work decomposes A (θk) with this method.
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2.3. Extended Bounded Real Lemma

This section extends the bounded real lemma to polytopic-LPV system, consider the
following systems

Gyω (z, ρ) :

{
x (k + 1) = A (ρ) x (k) + B (ρ)ω (k) ,

y (k) = C (ρ) x (k) + D (ρ)ω (k) ,
(15)

where x (k) , ω (k) , y (k) denote the state variables, disturbances and measurements, respectively.
ρ ∈ Pρ is a time-varying parameter vector with ρi ∈

[
ρ

i
, ρ̄i

]
. Assuming that parameter space Pρ is a

convex hull, the system (15) can be presented as a polytopic form[
A (ρ) B (ρ)

C (ρ) D (ρ)

]
∆
=

N

∑
i=1

ηi

[
Ai Bi
Ci Di

]
, (16)

where N is the number of vertices,
N
∑

i=1
ηi = 1 and ηi ≥ 0. The H∞ performance is defined as

Equation (17) to guarantee the asymptotically stability of system (15)

‖Gyω (z, ρ) ‖∞ = sup
‖ω(k)‖2 6=0

‖y (k) ‖2

‖ω (k) ‖2
. (17)

An extended Bounded real lemma can be derived from the results in [23,24].

Lemma 1. Given the system (15) and for all ρ ∈ Pρ, Gyω (z, ρ) is asymptotically stable with ‖Gyω (z, ρ) ‖∞ < γ,
if there exists a symmetric positive definite matrix P satisfying that

−P 0 PA (ρ) PB (ρ)

∗ −γI C (ρ) D (ρ)

∗ ∗ −P 0
∗ ∗ ∗ −γI

 < 0. (18)

Lemma 1 can be proved by definition of a Lyapunov function

V (x (k) , ρ) = xT (k)Px (k)

such that
V (x (k + 1) , ρ)−V (x (k) , ρ) + γ−1‖y (k) ‖2

2 − γ‖ω (k) ‖2
2 < 0 (19)

for all k = 0, 1, · · · , k + 1. In this paper, a parameter-independent Lyapunov function is defined.
In order to achieve a less conservative solution, the parameter-dependent matrix P (ρ) is designed
in [25,26].

3. Current Sensor Fault Detection

In this section, an LPV observer based residual generator is presented to detect current sensor
faults. The fault detection threshold is based on the L2 re-constructible condition proposed in [27].

3.1. Parameter-Dependent Observer Design

For system (14), a parameter-dependent observer based residual generator is designed to detect
sensor fault

x̂ (k + 1) = A (θk) x̂ (k) + Buu (k) + L (θk) r (k) ,

ŷ (k) = Cx̂ (k) ,

r (k) = y (k)− ŷ (k) ,

(20)
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in which x̂ (k) is state estimation, r (k) is the desired residual to current sensor fault. L (θk) denotes
the observer gain. By defining the state estimation error e (k) = x (k)− x̂ (k), the error dynamics is
obtained by substituting Equation (20) into system Equation (7)

e (k + 1) = (A (θk)− L (θk)C) e (k) + Bdd (k)− L (θk) Ff f (k) ,

r (k) = Ce (k) + Ff f (k) .
(21)

For the fault-free case f (k) = 0, the error dynamics (21) become

e (k + 1) = (A (θk)− L (θk)C) e (k) + Bdd (k) ,

r (k) = Ce (k) .
(22)

The following theorem provides a method to determine the gain matrix L (θk) and to guarantee
the stability and convergency of the proposed residual generator.

Theorem 1. For the system (14) and residual generator (22), suppose that there exists a scalar γ > 0, positive
definite matrix P = PT and real matrices Ui, for i = 1, · · · , 4 such that

−P 0nx×nx PAv,i −UiC PBd
∗ −γInx×nx C 0nx×nd

∗ ∗ −P 0nx×nd

∗ ∗ ∗ −γInd×nd

 < 0. (23)

Then, the residual generator is s asymptotically stable and the following holds

∞

∑
k=0

rT (k) r (k) = γ2
∞

∑
k=0

dT (k) d (k) + γV (0) (24)

and parameter-dependent observer gain is given for i = 1, · · · , 4

L (θk) =
4

∑
i=1

ηk,iLi,

Li = P−1Ui.

(25)

Remark 2. In this paper, only A (θk) in system (6) is parameter-dependent while Bu, Bd, C and Ff remain
constant. Otherwise, varying matrices C and Ff may lead to a bilinear matrix inequality (BMI) of Equation (23).
Further procedures are required to deal with such BMIs.

Proof of Theorem 1. This proof contains two parts: one is to prove the stability of the residual
generator and the other is to calculate the upper bound of residuals in Equation (24).

First, assume that Equation (23) holds. By substituting Equation (25) into Equation (23),
−P 0 P (Av,i − LiC) PBd
∗ −γI C 0
∗ ∗ −P 0
∗ ∗ ∗ −γI

 < 0 (26)

for all i = 1, · · · , N, by multiplying Equation (26) with ηk,i and sum to obtain
−P 0 P (A (θk)− L (θk)C) PBd
∗ −γI C 0
∗ ∗ −P 0
∗ ∗ ∗ −γI

 < 0. (27)
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Letting A (ρ) = A (θk)− L (θk)C, B (ρ) = Bd, C (ρ) = C and D (ρ) = 0, Equation (27) implies
Equation (18). According to Lemma 1, residual generator (22) is asymptotically stable.

Second, consider the following Lyapunov function

V (k) = eT (k) Pe (k) , (28)

where P is a positive definite matrix and ∆V (k) = V (k + 1)−V (k). Noting that

k

∑
i=0

∆V (i) = V (k)−V (0) (29)

for all i = 0, 1, · · · , k, Equation (19) is summed as follows:

V (k + 1)−V (0) + γ−1
k

∑
i=0
‖y (i) ‖2

2 − γ
k

∑
i=0
‖d (i) ‖2

2 < 0. (30)

Since V (k + 1) > 0, Equation (24) is obtained by multiplying γ to inequality (30). The proof
is completed.

3.2. Current Sensor Fault Detection

Theorem 1 provides a scheme to design a robust observer for residual generation sensitive to
current sensor faults. For the purpose of fault detection, a residual evaluation function is defined by a
moving window [1, N]

Jd =
1
N

l+N

∑
i=l+1

rT (i) r (i), (31)

where N is the sampling length related to the current frequency. This paper follows L2 re-constructible
condition [27] to set the evaluation threshold. Recalling Theorem 1, the error system (22) satisfies the
L2 re-constructible condition with Equation (24). The detection threshold of evaluation function (31) is

Jth =
1
N

(
γ2d2

max + sup
x(0),x̂(0)

γV (x (0) , x̂ (0))

)
. (32)

The detection logic is defined as follows:

• J > Jth, sensor fault alarm,
• J ≤ Jth, no fault alarm.

Although the proposed residual generator is designed for fault detection of three-phase current
sensor faults, it can be utilized to detect the component or actuator faults in the system. Nevertheless,
this is not in the scope of this work.

4. Sensor Fault Isolation Scheme

This section deals with the fault isolation problem of a three-phase current sensor. Since it is
difficult to isolate the sensor fault by direct residual analysis, a robust fault estimation based method
is presented to generate distinguished residual sensitive to each phase current sensor fault. First,
a parameter-dependent fault estimation observer is constructed for system (7)

x̂ (k + 1) = A (θk) x̂ (k) + Buu (k) + L (θk) (y (k)− ŷ (k)) ,

ŷ (k) = Cx̂ (k) + Ff f̂ (k) ,

f̂ (k + 1) = f̂ (k) + Γ (θk) (y (k)− ŷ (k)) ,

(33)
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where x̂ (k) ∈ Rnx , ŷ (k) ∈ Rny and f̂ (k) ∈ Rn f are observer state, observer output and estimate of
sensor faults. L (θk) and Γ (θk) are the gain matrices. Suppose that[

L (θk)

Γ (θk)

]
=

4

∑
i=1

ηk,i

[
Li
Γi

]
. (34)

Let ex (k) = x (k)− x̂ (k) and e f (k) = f (k)− f̂ (k), the estimation error dynamics is expressed as

ex (k + 1) = (A (θk)− L (θk)C) ex (k)− L (θk) Ff e f (k) + Bdd (k) ,

e f (k + 1) = −Γ (θk)Cex (k) +
(

I − Γ (θk) Ff

)
e f (k) + f (k + 1)− f (k) .

(35)

Choose ξ (k) =
[
eT

x (k) , eT
f (k)

]T
and ∆ f (k) = f (k + 1)− f (k) ,

ξ (k + 1) = (Ā (θk)− L̄ (θk) C̄) ξ (k) + B̄dd̄ (k) ,

e f (k) = C̄eξ (k) ,
(36)

with d̄ (k) =

[
d (k)

∆ f (k)

]
, Ā (θk) =

[
A (θk) 0nx×n f

0n f×nx In f

]
, L̄ (θk) =

[
L (θk)

Γ (θk)

]
,

B̄d =

[
Bd 0nx×n f

0n f×nd In f×n f

]
, C̄ =

[
C Ff

]
, C̄e =

[
0n f×nx In f×n f

]
.

Theorem 2. If there exists a symmetric positive definite matrix P1, real matrices Ȳv,i with appropriate
dimensions, i = 1, · · · , 4, positive scalar γ1, such that the following linear matrix inequality holds

−P1 0(nx+n f )×n f
P1 Āv,i −Yv,iC̄ P B̄d

∗ −γ1 In f×n f C̄e 0n f×(nd+n f )
∗ ∗ −P1 0(nx+n f )×(nd+n f )
∗ ∗ ∗ −γ1 I(nd+n f )×(nd+n f )

 < 0, (37)

then fault estimaiton error dynamics (36) satisfies H∞ performance ‖e f (k) ‖2
2 ≤ γ2

1‖d̄ (k) ‖2
2. The fault

estimation observer gain matrix is L̄ (θk) =
4
∑

i=1
ηk,i (θk)L̄i with L̄i = P1

−1Yv,i.

Proof of Theorem 2. According to the polytopic decompostion, parameter-dependent matrix Ā (θk)

and ¯L (θk) are as follows:

Ā (θk) =
4

∑
i=0

ηk,i Āv,i,

L̄ (θk) =
4

∑
i=0

ηk,i L̄v,i.

(38)

Consider the following Lyapunov function

V (k) = ξT (k)P1ξ (k) . (39)

The cost function J∞ is defined as

J∞ =
∞

∑
k=0

[
∆V (k) +

1
γ1

eT
f (k) e f (k)− γ1d̄T (k) d̄ (k)

]
< 0. (40)
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By substituting ∆V (k) and eT
f (k) e f (k) into Equation (40), we have

J∞ =

[
ξ (k)
d̄ (k)

]T [
ĀT (θk)P1 − C̄T L̄T (θk)P1

B̄T
dP1

]
P−1

1

[
P1 Ā (θk)−P1 L̄ (θk) C̄ P1B̄d

] [ ξ (k)
d̄ (k)

]

+

[
ξ (k)
d̄ (k)

]T [ 1
γ1

C̄T
e C̄e −P1 0

0 −γ1 I

] [
ξ (k)
d̄ (k)

]
.

(41)

Furthermore, Equation (41) can be rewritten as[
ĀT (θk)P1 − C̄T L̄T (θk)P1

B̄T
dP1

]
P−1

1

[
P1 Ā (θk)−P1 L̄ (θk) C̄ P1B̄d

]
+

[
1

γ1
C̄T

e C̄e −P1 0

0 −γ1 I

]
< 0. (42)

Note that Equation (37) is a sufficient condition of (42). Thus, if Equation (37) holds, the estimation
error system satisfiesH∞ performance ‖e f (k) ‖2

2 ≤ γ2
1‖d̄ (k) ‖2

2. The proof is completed.

This method presents a biased estimation of sensor fault f̂ (k) with an upper bound γ2
1‖d̄ (k) ‖2

2
due to the disturbances d̄ (k). However, it has the ability to locate the fault sensor phase by the tuned
isolation threshold for each estimation f̂a (k), f̂b (k) and f̂c (k).

Remark 3. Before designing the proposed residual generator and fault estimator, it is necessary to check
observability of the pair (A (θk) , C) and (Ā (θk) , C̄). This paper checks this property by analyzing the
observability of each pair on the vertices.

5. Simulation Results and Discussion

To illustrate the proposed model based fault diagnosis for current sensor in machine side converter,
a MATLAB/SIMULINK (Version R2018a, MathWorks Inc., Natick, MA, USA) model is developed
referring to the real laboratory prototype. The parameter is listed in Table 1. A field-oriented control
combined with a space vector modulation is applied to control the rotor-side converter. Both the wind
conversion system and fault diagnosis algorithm are implemented in the SIMULINK environment.
Observer gains can be obtained by solving Equations (23) and (37) with MATLAB LMI tool or Yalmip
tool box.

Three types of sensor faults are designed to verify the performance:

• Type a: gain error in phase a sensor, only 80% of the measured value fed to the controller,
• Type b: bias fault in phase b sensor, 4 A is added to the measured value,
• Type c: disconnection of phase c sensor, the measurement output becomes zero.

Type a fault is modeled as multiplicative fault, Type b and Type c are additive faults. These faults
are commonly presented in literature and practice applications.

Table 1. Parameters of the surface-mounted permanent magnet synchronous generator.

Quantity Value Quantity Value

Magnet steel NdFeB permanent magnet Insulation class Class F
Protection IP54 Stator winding connection Star connection
Rated voltage 110 V Rated frequency 32.67 Hz
Stator resistance 0.3667 Ω Rated power 2.5 kW
Stator inductance 3.29 mH Rated speed 335 r/min
Flux linkage 0.283 Wb DC-link voltage 300 V
Generator inertia 0.1133 Kg·m2 Grid inductance 2 mH
Viscous damping 0.008 N·m·s Grid resistance 0.19 Ω
Pole pairs 7 Grid voltage 110 V
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The proposed method generates three fault isolation variables Ja, Jb,Jc and a detection flag fd. fa,
fb and fc denote the isolation flags related to Ja, Jb and Jc. When the detection observer detects fault in
the system, fd changes from ‘0’ to ‘1’. Only when the isolation variables Ja, Jb and Jc exceed the defined
thresholds will the corresponding isolation flags change from ‘0’ to ‘1’.

5.1. Performance for Single Sensor FDI with External Disturbance

The mechanical power fed to generator varies slowly to simulate real wind power in all simulation.
Type a and type c fault occur at t = 0.4 s and t = 2.0 s as shown in Figure 3 and Figure 4. Fault detection
variable fd changes instantly and corresponding isolation flag fa and fc change subsequently at
t = 0.42 s and t = 2.01 s. In addition, the mechanical power variation starts at t = 0.5 s, which causes
sudden variation of the rotor speed. During this period, fd and fa remain higher than the threshold
while fb and fc are lower than detection threshold, which indicates that the isolation algorithm is
robust to the disturbances.
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Figure 3. Simulation results on the single phase fault isolation, under varying mechanical disturbance
(from top to bottom are phase a current iabc, rotor speed ωr, isolation variables fa, fb, fc and FDI flags).

The current waveforms of the healthy phase will be distorted by the faulty sensor because of
feedback control. As shown in Figure 4, Type c fault of phase c current sensor distorts phase a and
phase b currents. When phase c fault is triggered at t = 2 s, fault detection flag fd and isolation flag fc

change from ‘0’ to ‘1’ while fa and fb remain ‘0’. This reports that the proposed isolation variables are
only sensitive to the corresponding fault phase and makes it possible to isolate all phase current sensor
faults. The next section will show the multiple sensor fault diagnosis performance.
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Figure 4. Simulation results for fault isolation of Type c fault in phase c (from top to bottom are
three-phase current iabc, isolation variables fa, fb, fc and FDI flags fd, fa, fb, fc).

5.2. Multiple Fault Detection and Isolation

Multiple sensor FDI scenarios are presented as follows:

• Type a and Type b fault at t = 0.4 s and t = 0.8 s,
• Type b and Type c fault at t = 0.4 s and t = 0.7 s,
• Type a and Type c fault at t = 0.4 s and t = 0.6 s,
• Three type faults occur simultaneously at t = 0.4 s, t = 0.7 s and t = 1.2 s.

The FDI variable behaviors during multiple current sensor faults are shown in Figure 5–8.
The fault detection flag fd and isolation flags fa, fb, fc change from ‘0’ to ‘1’ after the faults occurred.
For two sensor fault scenarios, the isolation flag for healthy sensor remains ‘0’, indicating that it
operates normally.
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Figure 5. Simulation results on simultaneous isolation of phase a and phase b fault.
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Figure 6. Simulation results on simultaneous isolation of phase b and phase c fault.
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5.3. Comparison with the Existing Sensor FDIs

Table 2 presents a brief comparison of model-based current sensor FDIs. These schemes are
proposed for an IM system [8,28–30], DFIG system [9,10] and PMSG system [2,31]. The schemes
in [28–30] are presented to isolate single sensor fault. In these approaches, a bank of observers is
established to monitor each sensor fault on the basis of the rest sensors are health. T-S fuzzy observer [9]
and sliding mode observer [31] are proposed to isolate single type of faults in α− β and d− q frame.
The measurements of three-phase currents are utilized to generate estimation errors that can only
isolate faults in a stationary frame or synchronous reference frame. The TVKF scheme is presented for
the PMSG system in [2]. It utilizes a generalized likelihood ratio maximum-shift strategy to evaluate
the faulty residuals generated by the frequency domain model, which results in higher computation
complexity. This work is presented for multiple sensor fault isolation of PMSG or PMSM based system
with a simple observer based algorithm framework. In general, the proposed method can detect and
isolate multiple sensor faults simultaneously in a short diagnosis time. It employs mechanical signals
and current signals in the control loop without any additional measurements and hardware circuits,
and can be integrated into the control loop. In addition, it shows excellent performance in multiple
types of faults including gain fault, biased fault, and disconnection fault. The fault detection threshold
is related to disturbances with respect to Theorem 1 and Theorem 2. Furthermore, the maximum and
minimum power for WECSs are specifically defined by the operational region shown in Figure 2.

Table 2. Comparison of a model-based current sensor FDI scheme.

FD Scheme Measurements Fault Types Isolability System Model Detection Variables

Bank of observers [28] 1 voltage, 3 currents,
1 speed

Type c Single IM model in α− β Estimation errors of
rotor flux and speed

EKF [29] 1 voltage, 2 currents,
1 speed

Type c Single IM model in α− β Estimation errors of
phase currents

Adaptive observer [30] 1 voltage, 2 currents,
1 speed

Type c Single IM model in d− q Fault inference based on
current errors

Bank of observers [8] 1 voltage, 2 currents,
1 speed

Type a, Type b,
Type c

2 faults IM model in α− β Geometric residuals

TS fuzzy observers [9] 2 currents, 1 speed Type b 2 faults DFIG model in
α− β

Estimation errors of
the states

Integrated H_/H∞
filters [10]

2 currents, 1 speed,
1 position

Type a, Type b,
Type c

2 faults DFIG model in
d− q and α− β

Generalized likelihood
ratio of residuals

TVKF [2] 2 currents, 1 speed Type a, Type b,
Type c

3 faults PMSG model in
harmonic domain

Generalized likelihood
ratio of residuals

Sliding mode
observer [31]

3 currents, 1 speed,
1 position

Type c 2 faults PMSG model in
d− q

Evaluation of
estimation errors

This method 3 currents, 1 speed,
1 position

Type a, Type b,
Type c

3 faults PMSG model in
α− β

Evaluation of the
fault estimates

5.4. Discussions

In this paper, only simulation results are presented to validate the FDI performance. The proposed
scheme is designed for online operation and is independent from control strategies. Some essential
issues are discussed with respect to the lack of experimental results.

a The component parameters of simulation model come from the real laboratory prototype with
rated power 2.5 kW. Its controller parameters are designed on the simulation file and can
guarantee the control performance. The real waveforms and power characteristics are the same
as those of simulation results. The observer design is a dual problem of controller design. Thus,
the parameters designed in SIMULINK environment can be applied to the real experiments.

b The threshold selection is the most challenging problem in implementing the proposed algorithm.
In real application, the mechanical torque and measurement noise are different from the simulation
configuration. This will be further introduced into the observer and error dynamics. These effects
can be modeled as generalized unknown disturbances. The upper bound of the disturbances in
real application is slightly different from simulation scenarios. However, this does not affect the
performance since the upper bounds of disturbances and faults hold for real applications.
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c The harmonics is another issue for current sensor fault diagnosis. The influences of harmonics on
system behavior need to be further discussed with respect to system parameter and dynamics
variation. However, few results have been presented for dealing with this problem, even for the
controller designs in [20–22]. Recalling the FDI schemes in Table 2, only the method in [2] utilizes
the harmonic model of PMSG to diagnose additive and multiplicative faults in current sensors.
The state space model and output equation are linear combinations of each order harmonic in
frequency domain, which indicates that the residuals can be modeled as the combination of finite
harmonics. The proposed FDI takes the time domain behaviors of residuals into consideration.
The average value of each fault estimate is calculated with a sliding window. Current sensor
faults are evaluated via the threshold function defined in Equation (32). From this perspective,
the harmonics will not affect the residual evaluation in time domain analysis.

-40

0

40

-40

0

40

0

10

20

30
Jth

0

10
Jth

0

500 Jth

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time(s)

0

1

2
fd fa fb fc

Figure 7. Simulation results on simultaneous isolation of phase a and phase c fault.
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Figure 8. Simulation results on simultaneous isolation of three-phase sensor faults.

6. Conclusions

In this paper, a robust observer based sensor FDI scheme, targeting both additive and
multiplicative faults, is presented for PMSG in WECSs. This method isolates multiple sensor
faults via two procedures: robust residual generation based fault detection and fault estimation
based isolation. The system is reformulated as a LPV model in the α − β frame by introducing
electromechanical dynamics of PMSG. The polytopic decomposition technique is applied to obtain
the parameter-dependent form of the system model by defining a convex polytope with four vertices.
Furthermore, the gain-scheduled residual generator and fault estimator are designed byH∞ synthesis
in the form of LMIs. The proposed gain-scheduled FDI scheme is capable of online monitoring of
three-phase currents and isolating multiple sensor faults under varying disturbances.

The proposed scheme is implemented in a MATLAB/SIMULINK environment and multiple
sensor faults are isolated correctly. Due to the lack of experimental validation, the corresponding
issues are discussed in Section 5.4, of which the challenging issue is the influence of disturbances
and harmonics on threshold selection and system dynamics. In a real power conversion system, the
diagnosis thresholds in (32) need to be investigated further by defining the augmented disturbances
including measurement noise and parameter uncertainties. However, it does not affect the theoretical
results of Theorem 1 and Theorem 2 since the observability of the pair (A (θk) , C) and (Ā (θk) , C̄)
is independent of disturbances. Since further results is lacked about the influence of harmonics on
system dynamics, it is difficult to quantify these effects on the system. The results in [20–22] indicate
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that the gain-scheduled controller design based on the this LPV model suffers less from the harmonics.
Observer design as the dual problem of controller design is less dependent on the harmonic problem.

In addition, fault estimates are sensitive enough to distinguish each phase current sensor fault but
cannot be applied directly for the purpose of fault compensation because of the unknown disturbances.
The future work will be focused on the unbiased fault estimation and fault tolerant control for PMSG
based WECS system on the basis of this LPV modeling technology.
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Appendix A

The system matrices of Equation (6) are as follows:

A (θk) =


1− RsTs

Ls
0 npψTs

Ls
sin (θk) 0

0 1− RsTs
Ls

− npψTs
Ls

cos (θk) 0

− 3npψTs
2J sin (θk)

3npψTs
2J cos (θk) 1− FTs

J 0
0 0 npTs 1

 ,

Bu =


Ts
Ls 0
0 Ts

Ls
0 0
0 0

 ; Bd =


0
0
− Ts

J
0

 ; C =


1 0 0 0

− 1
2

√
3

2 0 0

− 1
2 −

√
3

2 0 0
0 0 1 0
0 0 0 1

 .

(A1)
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