Supplementary Materials: Low-Dimensional Reconciliation for Continuous-Variable Quantum Key Distribution

Laszlo Gyongyosi and Sandor Imre

S.1. Preliminaries

S.1.1. Spherical Code

A *d*-dimensional spherical code \mathcal{X} is defined over the *d*-dimensional unit sphere Γ^{d-1} , given by $\Gamma^{d-1} = \left(x = \left(x_0, x_1, \dots, x_{d-1}\right) \in \mathbb{R}^d : \|x\| = 1\right)$, and $\|x\| = 1$ is the unit norm. The (d-1)-dimensional surface $S(\Gamma^{d-1})$ of Γ^{d-1} is defined as $S(\Gamma^{d-1}) = 2\pi^{d/2}/\mathcal{G}(d/2)$, where $\mathcal{G}(d/2) = \int_0^\infty t^{(d/2)-1} e^{-t} dt$ is the gamma function [24]. The number of codewords of the code is $|\mathcal{X}|$, the smallest dimension d_{\min} of any Euclidean space for the spherical code \mathcal{X} is $d_{\min} = \dim |\mathcal{X}|$, while the minimum distance between any two elements x and y of $\mathcal{X} \subseteq \Gamma^{d-1}$, $x \neq y$, is $D = \min \left\{ \|x - y\|^2 \right\}$.

S.1.2. Gaussian Random Spherical Vectors

Let $\mathfrak{X} = (X_0, ..., X_{d-1})^T \in \mathbb{R}^d$ be a Gaussian random vector with independent components, and with norm $\|\mathfrak{X}\|$ drawn from an $\mathbb{N}(0, \sigma^2)$ memoryless Gaussian source. Over the *d*-dimensional unit sphere Γ^{d-1} , spherical Gaussian random vector $\mathbb{E}[\|\mathfrak{X}\|](\mathfrak{X}/\|\mathfrak{X}\|) \in \Gamma^{d-1} \in \mathbb{R}^d$ has radius $r = \mathbb{E}\|\mathfrak{X}\|$, where \mathbb{E} is the mean of the norm $\|\mathfrak{X}\|$, defined [24] as

$$\mathbb{E}\left[\left\|\mathfrak{X}\right\|\right] = \frac{\sqrt{2\sigma^2}\mathcal{G}\left(\frac{d+1}{2}\right)}{\mathcal{G}\left(\frac{d}{2}\right)} = \frac{\sqrt{2\pi\sigma^2}}{\beta\left(\frac{d+1}{2}\right)} \tag{1}$$

where $\beta(x,y) = \frac{\mathcal{G}(x)\mathcal{G}(y)}{\mathcal{G}(x+y)}$, is the beta function, while $\mathbb{E}\left[\|\mathfrak{X}\|^2\right] = d\sigma^2$. The Gaussian random vector $\mathfrak{X} \in \mathbb{R}^d$ over Γ^{d-1} has a probability density function

$$f(\mathfrak{X}) = \frac{2r^{d-1}e^{2\sigma^2}}{\mathcal{G}\left(\frac{k}{2}\right)(2\sigma^2)^{k/2}},$$
(2)

and variance

$$\operatorname{var}\left[\mathfrak{X}\right] = d\sigma^2 - \frac{2\pi\sigma^2}{\beta^2 \left(\frac{d}{2}, \frac{1}{2}\right)}$$
(3)

For $d \to \infty$, $\mathbb{E} \left\| \mathfrak{X} / \sqrt{d\sigma^2} \right\| \to 1$, and $r = \lim_{d \to \infty} \left\| \mathfrak{X} / \sqrt{d\sigma^2} \right\| \to 1$. The distribution of r approximates the Dirac distribution $\mathcal{D}_d(x)$, and gets to arbitrary close for $d \to \infty$.

S.2. Notations

The notations of the manuscript are summarized in Table S1.

Table S1. S	Summary	of the	notations.
-------------	---------	--------	------------

Notation	Description	
$\left \varphi_{i}\right\rangle = \left x_{A,i} + x_{B,i}' + i\left(p_{A,i} + p_{B,i}'\right)\right\rangle$	The first mode of the combined beam, phase space vector, where $x_{A,i}, x'_{B,i}$ and $p_{A,i}, p'_{B,i}$ are the position and	
$\left \phi_{i}\right\rangle = \left x_{A,i} - x_{B,i}' + i\left(p_{A,i} - p_{B,i}'\right)\right\rangle$	momentum quadratures. The second mode of the combined beam, phase space vector transmitted to Bob, where $x_{A,i}, x'_{B,i}$ and $p_{A,i}, p'_{B,i}$ are the	
$ \varphi_i = \omega_{A,i} - \omega_{B,i} + \langle P_{A,i} - P_{B,i} \rangle $	position and momentum quadratures.	
$\left \xi_{i}\right\rangle = \left x_{A,i}^{\prime} - x_{B,i}^{\prime\prime} + i\left(p_{A,i}^{\prime} - p_{B,i}^{\prime\prime}\right)\right\rangle$	The noisy version of phase space state $\left \phi_{i} ight angle$, with the noisy quadratures.	
	Alice's N-unit length raw data generated by N random quadrature measurements. Binary string, consists of $\ N/d$	
X	number of <i>d</i> -dimensional Gaussian random vectors $\mathbf{X}_j \in \mathbb{R}^d$.	
	Bob's <i>N</i> -unit length raw data generated by <i>N</i> random	
X'	quadrature measurements. Binary string, consists of N/d number of noisy <i>d</i> -dimensional Gaussian random vectors $\mathbf{X}'_i \in \mathbb{R}^d$.	
/	Alice's raw data <i>unit</i> , obtained from a random quadrature	
$X_i = x_{A,i} + x'_{B,i},$	measurement, where $x_{A,i}, x'_{B,i}$ and $p_{A,i}, p'_{B,i}$ are the	
$X_i = p_{A,i} + p'_{B,i}$	position and momentum quadratures.	
	Bob's noisy raw data <i>unit</i> , obtained from a random	
$X'_i = x'_{A,i} + x''_{B,i}, \ X'_i = p'_{A,i} + p''_{B,i}$	quadrature measurement and by a correction $+2x_{B,i}$ or	
	$+2p_{B,i}$, while $x'_{A,i}, x''_{B,i}$ and $p'_{A,i}, p''_{B,i}$ are the noisy	
	position and momentum quadratures. Alice's <i>d</i> -dimensional Gaussian random <i>vector</i> (<i>d</i> unit length	
$\mathbf{X}_{j} \in \mathbb{R}^{d}: \left\{ X_{j,0}, X_{j,1}, \dots X_{j,d-1} \right\}$	Gaussian random vector), where $X_{j,i}$ is a Gaussian random variable.	
$X_{j,i} \in \mathbb{R}$, $X'_{j,i} \in \mathbb{R}$	The <i>i</i> -th unit of <i>j</i> -th vector \mathbf{X}_j and \mathbf{X}'_j .	
J, ι J, ι J, ι	Bob's noisy <i>d</i> -dimensional Gaussian random <i>vector</i> (<i>d</i> unit	
$\mathbf{v}' \in \mathbb{D}^d$, $(\mathbf{v}' + \mathbf{v}' + \mathbf{v}')$	length vector), where $X_{j,i}^{\prime} = x_{A,i}^{\prime} + x_{B,i}^{\prime\prime}$ or	
$\mathbf{X}_j' \in \mathbb{R}^d: ig\{X_{j,0}', X_{j,1}', \ldots X_{j,d-1}'ig\}$	$X_{j,i}^{\prime} = p_{A,i}^{\prime} + p_{B,i}^{\prime\prime}$ is a Gaussian random <i>units</i> obtained	
	from a quadrature measurement.	
$\mathbf{K} = \left\{ \mathbf{U}_0, \dots \mathbf{U}_{\left(N/d\right)-1} \right\} \in \mathbb{R}^{N/d},$	Bob's secret key vector. The full key is granulated into N/d	
$\mathbf{U}_{j} = \left\{ U_{j,0}, U_{j,1}, \dots U_{j,d-1} \right\} \in \mathbb{R}^{d},$	number of $\mathbf{U}_j \in \mathbb{R}^d$ vectors.	
$U_j \in \left\{a, b\right\} \in \mathbb{R}$		
$\mathbf{X}_{j}^{\prime}\mathbf{U}_{j}\in\mathbb{R}^{d}$	Bob's <i>d</i> -dimensional vector sent to the classical channel.	
$X_{j,i}'U_{j,i} \in \mathbb{R}$	A unit of Bob's <i>d</i> -dimensional message sent to the classical channel.	
$C\left(\cdot ight)$	The Gaussian CDF function.	
$\mathfrak{C}(\cdot)$	Covariance matrix.	
$\mathcal{D}_{d}\left(\cdot ight)$	Dirac distribution of a <i>d</i> -dimensional vector.	
£	Lyapunov coefficient, $\ \mathfrak{L}>0$.	

$U'_{j} = \sum_{i=0}^{d-1} U'_{j,i},$ $U'_{j,i} = \left(C\left(X'_{j,i}\right)U_{j,i}\right) \frac{1}{C(X_{j,i})}$	The noisy version of Bob's secret $\ U_{j}$, and its unit $\ U_{j,i}$.
δ_{j} , $~\delta_{j,i}$	Noise on $U_j' = \sum_{i=0}^{d-1} U_{j,i}'$, and on unit $U_{j,i}$.
$\eta = \sqrt{\left(\sigma_{\delta_j}^2\right)_d}$	Standard deviation of the noise vector $\vec{\delta}_j$.
$\Lambda_{j} = \mathbb{N} \big(0, 1 \big)_{d} \in \mathbb{R}^{d}, \ \Lambda_{j,i} = \mathbb{N} \big(0, 1 \big) \in \mathbb{R}$	Standard Gaussian random noise vector, and the noise of the <i>i</i> -th unit of the <i>j</i> -th block $X_{j,i}$.
$\Delta_j = \mathbb{N} \Big(0, \sigma_2^2 \Big)_d \in \mathbb{R}^d$	Gaussian random noise vector of the quantum channel \mathcal{N}_2
	on \mathbf{X}_{j} .
$\Delta_{j,i} = \mathbb{N}\Big(0,\sigma_2^2\Big) \in \mathbb{R}$	The <i>i</i> -th unit of <i>j</i> -th noise vector, that results raw data unit
	$X_{j,i}' = X_{j,i} + \Delta_{j,i}.$

S.3. Abbreviations

-

AWGN	Additive White Gaussian Noise
BAWGN	Binary Additive White Gaussian Noise
BS	Beam Splitter
BSC	Binary Symmetric Channel
CDF	Cumulative Distribution Function
CLT	Central Limit Theorem
CV	Continuous-Variable
DPR	Differential Phase Reference
DV	Discrete-Variable
LDPC	Low Density Parity Check
PM	Prepare-and-Measure: entanglement-free protocol
RR	Reverse Reconciliation
SNR	Signal-to-Noise Ratio