Supplementary Materials: Low-Dimensional Reconciliation for Continuous-Variable Quantum Key Distribution

Laszlo Gyongyosi and Sandor Imre

S.1. Preliminaries

S.1.1. Spherical Code

A d-dimensional spherical code \mathcal{X} is defined over the d-dimensional unit sphere Γ^{d-1}, given by $\Gamma^{d-1}=\left(x=\left(x_{0}, x_{1}, \ldots, x_{d-1}\right) \in \mathbb{R}^{d}:\|x\|=1\right)$, and $\|x\|=1 \quad$ is the unit norm. The $(d-1)$-dimensional surface $S\left(\Gamma^{d-1}\right)$ of Γ^{d-1} is defined as $\mathrm{S}\left(\Gamma^{d-1}\right)=2 \pi^{d / 2} / \mathcal{G}(d / 2)$, where $\mathcal{G}(d / 2)=\int_{0}^{\infty} t^{(d / 2)-1} e^{-t} d t$ is the gamma function [24]. The number of codewords of the code is $|\mathcal{X}|$, the smallest dimension $d_{\min }$ of any Euclidean space for the spherical code \mathcal{X} is $d_{\text {min }}=\operatorname{dim}|\mathcal{X}|$, while the minimum distance between any two elements x and y of $\mathcal{X} \subseteq \Gamma^{d-1}$, $x \neq y, \quad$ is $D=\min \left\{\|x-y\|^{2}\right\}$.

S.1.2. Gaussian Random Spherical Vectors

Let $\mathfrak{X}=\left(X_{0}, \ldots, X_{d-1}\right)^{T} \in \mathbb{R}^{d}$ be a Gaussian random vector with independent components, and with norm $\|\mathfrak{X}\|$ drawn from an $\mathbb{N}\left(0, \sigma^{2}\right)$ memoryless Gaussian source. Over the d-dimensional unit sphere Γ^{d-1}, spherical Gaussian random vector $\mathbb{E}[\|\mathfrak{X}\|](\mathfrak{X} /\|\mathfrak{X}\|) \in \Gamma^{d-1} \in \mathbb{R}^{d}$ has radius $r=\mathbb{E}\|\mathfrak{X}\|$, where \mathbb{E} is the mean of the norm $\|\mathfrak{X}\|$, defined [24] as

$$
\begin{equation*}
\mathbb{E}[\|\mathfrak{X}\|]=\frac{\sqrt{2 \sigma^{2}} \mathcal{G}\left(\frac{d+1}{2}\right)}{\mathcal{G}\left(\frac{d}{2}\right)}=\frac{\sqrt{2 \pi \sigma^{2}}}{\beta\left(\frac{d}{2}, \frac{1}{2}\right)} \tag{1}
\end{equation*}
$$

where $\beta(x, y)=\frac{\mathcal{G}(x) \mathcal{G}(y)}{\mathcal{G}(x+y)}$, is the beta function, while $\mathbb{E}\left[\|\mathfrak{X}\|^{2}\right]=d \sigma^{2}$. The Gaussian random vector $\mathfrak{X} \in \mathbb{R}^{d}$ over Γ^{d-1} has a probability density function

$$
\begin{equation*}
f(\mathfrak{X})=\frac{2 r^{d-1} e^{\frac{-r^{2}}{2 \sigma^{2}}}}{\mathcal{G}\left(\frac{k}{2}\right)\left(2 \sigma^{2}\right)^{k / 2}} \tag{2}
\end{equation*}
$$

and variance

$$
\begin{equation*}
\operatorname{var}[\mathfrak{X}]=d \sigma^{2}-\frac{2 \pi \sigma^{2}}{\beta^{2}\left(\frac{d}{2}, \frac{1}{2}\right)} \tag{3}
\end{equation*}
$$

For $d \rightarrow \infty, \quad \mathbb{E}\left\|\mathfrak{X} / \sqrt{d \sigma^{2}}\right\| \rightarrow 1$, and $r=\lim _{d \rightarrow \infty}\left\|\mathfrak{X} / \sqrt{d \sigma^{2}}\right\| \rightarrow 1$. The distribution of r approximates the Dirac distribution $\mathcal{D}_{d}(x)$, and gets to arbitrary close for $d \rightarrow \infty$.

S.2. Notations

The notations of the manuscript are summarized in Table S1.

Table S1. Summary of the notations.

Notation

Description

The first mode of the combined beam, phase space vector,

$$
\left|\varphi_{i}\right\rangle=\left|x_{A, i}+x_{B, i}^{\prime}+i\left(p_{A, i}+p_{B, i}^{\prime}\right)\right\rangle \quad \text { where } x_{A, i}, x_{B, i}^{\prime} \text { and } p_{A, i}, p_{B, i}^{\prime} \text { are the position and }
$$ momentum quadratures.

The second mode of the combined beam, phase space vector, transmitted to Bob, where $x_{A, i}, x_{B, i}^{\prime}$ and $p_{A, i}, p_{B, i}^{\prime}$ are the position and momentum quadratures.
$\left|\xi_{i}\right\rangle=\left|x_{A, i}^{\prime}-x_{B, i}^{\prime \prime}+i\left(p_{A, i}^{\prime}-p_{B, i}^{\prime \prime}\right)\right\rangle$
The noisy version of phase space state $\left|\phi_{i}\right\rangle$, with the noisy quadratures.
Alice's N-unit length raw data generated by N random quadrature measurements. Binary string, consists of N / d number of d-dimensional Gaussian random vectors $\mathbf{X}_{j} \in \mathbb{R}^{d}$.
Bob's N-unit length raw data generated by N random quadrature measurements. Binary string, consists of N / d $X^{\prime} \quad$ number of noisy d-dimensional Gaussian random vectors

$$
\mathbf{X}_{j}^{\prime} \in \mathbb{R}^{d}
$$

$X_{i}=x_{A, i}+x_{B, i}^{\prime}$,
$X_{i}=p_{A, i}+p_{B, i}^{\prime}$
Alice's raw data unit, obtained from a random quadrature measurement, where $x_{A, i}, x_{B, i}^{\prime}$ and $p_{A, i}, p_{B, i}^{\prime}$ are the position and momentum quadratures.
Bob's noisy raw data unit, obtained from a random $X_{i}^{\prime}=x_{A, i}^{\prime}+x_{B, i}^{\prime \prime}, \quad$ quadrature measurement and by a correction $+2 x_{B, i}$ or $X_{i}^{\prime}=p_{A, i}^{\prime}+p_{B, i}^{\prime \prime} \quad+2 p_{B, i}$, while $x_{A, i}^{\prime}, x_{B, i}^{\prime \prime}$ and $p_{A, i}^{\prime}, p_{B, i}^{\prime \prime}$ are the noisy position and momentum quadratures.
Alice's d-dimensional Gaussian random vector (d unit length
$\mathbf{X}_{j} \in \mathbb{R}^{d}:\left\{X_{j, 0}, X_{j, 1}, \ldots X_{j, d-1}\right\}$
Gaussian random vector), where $X_{j, i}$ is a Gaussian random variable.

$X_{j, i} \in \mathbb{R}, X_{j, i}^{\prime} \in \mathbb{R}$	The i-th unit of j-th vector \mathbf{X}_{j} and \mathbf{X}_{j}^{\prime}.
$\mathbf{X}_{j}^{\prime} \in \mathbb{R}^{d}:\left\{X_{j, 0}^{\prime}, X_{j, 1}^{\prime}, \ldots X_{j, d-1}^{\prime}\right\}$	Bob's noisy d-dimensional Gaussian random vector (d unit length vector), where $X_{j, i}^{\prime}=x_{A, i}^{\prime}+x_{B, i}^{\prime \prime}$ or $X_{j, i}^{\prime}=p_{A, i}^{\prime}+p_{B, i}^{\prime \prime}$ is a Gaussian random units obtained from a quadrature measurement.
$\begin{aligned} \mathbf{K}= & \left\{\mathbf{U}_{0}, \ldots \mathbf{U}_{(N / d)-1}\right\} \in \mathbb{R}^{N / d}, \\ \mathbf{U}_{j}=\{ & \left\{U_{j, 0}, U_{j, 1}, \ldots U_{j, d-1}\right\} \in \mathbb{R}^{d}, \\ & U_{j} \in\{a, b\} \in \mathbb{R} \end{aligned}$	Bob's secret key vector. The full key is granulated into N / d number of $\mathbf{U}_{j} \in \mathbb{R}^{d}$ vectors.
$\mathbf{X}_{j}^{\prime} \mathbf{U}_{j} \in \mathbb{R}^{d}$	Bob's d-dimensional vector sent to the classical channel.
$X_{j, i}^{\prime} U_{j, i} \in \mathbb{R}$	A unit of Bob's d-dimensional message sent to the classical channel.
$C(\cdot)$	The Gaussian CDF function.
$\mathfrak{C}(\cdot)$	Covariance matrix.
$\mathcal{D}_{d}(\cdot)$	Dirac distribution of a d-dimensional vector.
\mathfrak{L}	Lyapunov coefficient, $\mathfrak{L}>0$.

$$
\begin{array}{cc}
U_{j}^{\prime}=\sum_{i=0}^{d-1} U_{j, i}^{\prime}, & \text { The noisy version of Bob's secret } U_{j}, \text { and its unit } U_{j, i} . \\
U_{j, i}^{\prime}=\left(C\left(X_{j, i}^{\prime}\right) U_{j, i}\right) \frac{1}{C\left(X_{j, i}\right)} & \text { Noise on } U_{j}^{\prime}=\sum_{i=0}^{d-1} U_{j, i}^{\prime}, \text { and on unit } U_{j, i} .
\end{array} \delta_{j, \delta_{j, i}} \begin{gathered}
\text { Standard deviation of the noise vector } \vec{\delta}_{j} .
\end{gathered}
$$

S.3. Abbreviations

AWGN	Additive White Gaussian Noise
BAWGN	Binary Additive White Gaussian Noise
BS	Beam Splitter
BSC	Binary Symmetric Channel
CDF	Cumulative Distribution Function
CLT	Central Limit Theorem
CV	Continuous-Variable
DPR	Differential Phase Reference
DV	Discrete-Variable
LDPC	Low Density Parity Check
PM	Prepare-and-Measure: entanglement-free protocol
RR	Reverse Reconciliation
SNR	Signal-to-Noise Ratio

