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Abstract: The objective of this study was to assess the mineralization and microhardness of
bovine dental enamel surfaces treated with fluoride, tri-calcium phosphate, and infrared (IR)
810 laser irradiation. The study used 210 bovine incisors, which were divided into six groups
(n =35 in each): Group A: Untreated (control), Group B: Fluoride (Durapath-Colgate), Group C:
Fluoride+Tri-calcium phosphate (Clin-Pro White-3 M), Group D: Laser IR 810 (Quantum), Group E:
Fluoride+laser, and Group F: Fluoride+tri-calcium phosphate+laser). Mineralization was measured
via UV-Vis spectroscopy for phosphorus and via atomic absorption spectroscopy for calcium upon
demineralization and remineralization with proven agents. Microhardness (SMH) was measured
after enamel remineralization. Mineral loss data showed differences between the groups before and
after the mineralizing agents were placed (p < 0.05). Fluoride presented the highest remineralization
tendency for both calcium and phosphate, with a Vickers microhardness of 329.8 HV0.1/11 (p < 0.05).
It was observed that, if remineralization solution contained fewer minerals, the microhardness
surface values were higher (r = —0.268 and —0.208; p < 0.05). This study shows that fluoride has
a remineralizing effect compared with calcium triphosphate and laser IR810. This in vitro study
imitated the application of different remineralizing agents and showed which one was the most
efficient for treating non-cavitated injuries. This can prevent the progression of lesions in patients
with white spot lesions.
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1. Introduction

Dental caries is one of the most prevalent diseases affecting humans worldwide. As technology
advances, white spot lesions must be treated with non-invasive techniques to prevent further disease
progression and preserve the integrity of tooth structure [1-3]. Remineralization of tooth enamel is
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defined as the process whereby calcium and phosphate ions are supplied from an external source to
promote ion-deposition-demineralized enamel crystals to produce mineral gain [4]. Speaking about
mineralization, it is fundamental to use the term biomineralization when referring to its formation.
In particular, there are two kinds of dental hard tissue: enamel, which covers the tooth crown,
and dentin, which constitutes the whole body of the tooth. Hard tissue formation involves two
main processes: a biological one with cell signaling and a biochemical one with the interaction of
biomolecules in crystal apatite formation [5].

Fluoride is the cornerstone of remineralization, but its ability to promote remineralization
is limited by the availability of calcium and phosphate ions [4]. Recently, new alternatives
that purport to be better than fluoride have appeared in the dentistry market. These include
a calcium-phosphate-based delivery system and low-level lasers (LLLs). A laser is a device consisting
of solid, liquid, or gas substances that produce a light beam when excited by a source of energy.
This device can be classified into two categories: high-power lasers or surgical lasers, featuring thermal
effects with cutting, vaporization, and hemostasis properties, and low-power lasers or therapeutic
lasers, with analgesic, anti-inflammatory, and biostimulation properties [6]. The manufacturers claim
that these products provide a new option for the remineralization of non-cavitated dental lesions.
It has been reported that laser irradiation on enamel causes crystalline changes promoting significant
acid resistance of dental hard tissue [7].

Producers of varnish based calcium and phosphate state that the crystalline system showed the
potential to deliver calcium and phosphorous to enamel lesion. This tricalcium phosphate system
is encapsulated in sodium lauryl sulfate. This is more efficient than using only fluoride on the
lesion [4,8-10].

Similarly, LLLs have been proposed as a remineralization treatment when combined with
fluoride to maximize their effects. It has been demonstrated that the application of a high-power
lasers, such as CO; and erbium lasers (erbium:yttrium-aluminium-garnet (Er:YAG) and erbium,
chromium:yattrium-scandium-gallium-garnet (Er, Cr:YSGG)), are effective in white spot lesion
prevention. These lasers absorb water from the hydroxyapatite of tooth tissues and can modify
the crystalline structure, acid solubility, and permeability of the tooth surface to increase resistance
against demineralization. However, high-power lasers are costly and not readily available in every
practice [11-14].

LLLs are relatively inexpensive, small, and portable and have multiple applications in several
areas of dentistry. Equally, their application in the prevention or arrestment of tooth caries is interesting.
However, the efficacy of these lasers in remineralization has not yet been sufficiently studied.

Dental researchers have utilized several analytical techniques to quantify changes in the
mineral content of enamel during white spot lesion formation. The most common are the
Knoop and Vickers micro-hardness, polarized light microscopy, confocal laser scanning microscopy,
and light-induced fluorescence.

In the present study, we primarily used the Vickers microhardness followed by UV-Vis
spectroscopy to quantify the absence or presence of phosphorus. Atomic absorption spectroscopy was
used to measure calcium. Bovine enamel was used as a model for human teeth. This model offers
a large surface area and more uniform enamel thickness; previous studies have shown that they are
very similar to human teeth [15-17].

The efficient treatment of enamel demineralization can prevent white spot lesions and be used
in difficult children or post-orthodontic treatment. There is a need for less expensive and less
invasive approaches for therapy. Therefore, the aim of this study was to assess mineralization and
microhardness on bovine enamel surface treated by fluoride and tri-calcium phosphate exposed to
LLL irradiation.
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2. Materials and Methods

2.1. Materials

An experimental laboratory study was performed. Three remineralizing agents were evaluated
in this study: (a) Duraphat (Colgate-Palmolive, New York, NY, USA) sodium fluoride to 22,600 ppm
in content, (b) Clinpro White Varnish (3M ESPE, Saint Paul, MN, USA) functionalized with
tri-calcium phosphate containing 22,600 ppm fluoride, and (c) LLL irradiation (IR810, Quantum,
Queretaro, Mexico).

2.2. Specimens Preparation

Two hundred ten extracted bovine incisor teeth with no abnormalities were stored in thymol
solution 0.2% until use. The root was removed with a low-speed turbine under water cooling.
The palatal area was immersed in acrylic circles (a circular base of acrylic where the sample was
placed to facilitate the manipulation), and the buccal surface was mounted horizontally. They were
polished using 800, 1200 and 2400 grit silicon carbide paper. An acid-resistant nail varnish was applied
around the exposed enamel surface, leaving an uncovered area of about 4 x 4 mm.

2.3. Demineralization

Following the proposal suggested by Prado et al. [2], the white spot lesions were created by
individually immersing acrylic-mounted enamel specimens in a demineralization solution that had
2.2 mM CaCl,, 2.2 mM NaH,POy, 0.05 M acetic acid, and a pH adjusted to 4.6 with 1 M KOH over
two days at 37 °C; uniform demineralization was created on the surface of the enamel.

2.4. Remineralization

The remineralizing solution was prepared according to the formulation of Prado et al. [2]
and consisted of 1.5 mM CaCly, 0.9 mM NayPOy, and 0.15 mM KCI, pH 7.0; the sample containers
were kept at a constant temperature (37 °C). Mineralizing agents were applied every day for 15 days
with pH cycling: 3 h demineralization and 21 h remineralization. Both solutions were changed daily.
Specimens were randomly divided into six groups (1 = 35) according to the treatment employed:

1. Group A: Control. No treatment was given to the enamel (but they underwent the cyclic pH as
all the groups).

2. Group B: Fluoride (Duraphat varnish). The specimens were cleaned and dried with cotton;
material was then applied on the surface and left for 1 min followed by storage in the
remineralization solution.

3. Group C: Tricalcium phosphate (Clinpro White varnish). The sample was rinsed and dried, and the
material was applied to the surface and left for 1 min and stored in a remineralization solution.

4. Group D: LLL (IR810 (Quantum)). The surface of the specimens were rinsed and dried, and it
was exposed to infrared LLLs for 1 min at 810 nm and 200 mW in continuous wave mode.
The window treatment received 6 J of energy.

5. Group E: Fluoride + LLL. The sample was rinsed and dried followed by fluoride for 1 min.
This was then irradiated on the fluoride for another minute with the laser as mentioned earlier.

6.  Group F: Tricalcium phosphate + LLL. The window treatment was rinsed, dried, mineralized for
1 min. It was then exposed to another minute of laser-like Group D with the remineralizing agent.

2.5. UV-Vis Spectroscopy for Phosphorus Determination

Measurements were made with a spectrophotometer UV-Vis (PerkinElmer, Inc., Lamda 25,
Waltham, MA, USA) at a wavelength of 830-850 nm. All instruments were washed with chemicals
before use to prevent contamination, and the solution standard was 1 M P,Os. The reducing solution
contained ammonium molybdate, ascorbic acid, and sulfuric acid. Four milliliters of reducing solution
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with deionized water to the 10 mL capacity was added to 0.5 mL of the sample. This was stored at
50 °C for 45 min, and 1 mL of sample was used. The mixture was taken to quartz cell and read it at
830 nm.

2.6. Atomic Absorption Spectroscopy for Calcium Determination

All measurements were made via flame atomic absorption spectroscopy (PerkinElmer, Inc.
Aanalyst 400, Waltham, MA, USA) using high purity air-acetylene. The radiation source was
a calcium-based hollow cathode lamp operating at 4 mA. The wavelength was 422.7 nm with
a bandwidth of 1.2 nm. Every sample was measured three times. The solution stock was 50 ppm for Ca.
Hydrochloric acid and lanthanum oxide was used to prevent ionization and chemical interferences.
One milliliter of 5% lanthanum oxide and 1 mL of hydrochloric acid was added to 1 mL of the sample,
which was then diluted to 10 mL.

2.7. Surface Micro-Hardness (SMH)

Enamel surface micro-hardness was measured before applying remineralizing agents using the
micro-hardness tester with a Vickers diamond indenter in three dental areas (Vickers diamond, 100 g,
11 s, HMV; Shimadzu Corporation Tokyo, Tokyo, Japan). All readings were performed by the same
examiner, using the same calibrated machine.

2.8. Statistical Analyses

The mean values of mineral loss before and after placing the mineralizing agents were statistically
analyzed via Wilcoxon. Comparison microhardness values between groups used the Kruskal-Wallis
test, and the Spearman correlation determined whether there was a relationship between the decrease
in the minerals in the sample solution and its influence over microhardness. All data were processed
by SPSS (Statistical Package for the Social Sciences version 20.0) software package (SPSS Inc., Chicago,
IL, USA).

2.9. Ethical Considerations

This article does not contain any studies with human participants or animals performed
by any of the authors; when the teeth of the sample was extracted, the animals were already
dead. All experiments were conducted and approved in accordance with the guidelines of the
Bioethics Committee at Advanced Studies and Research Center in Dentistry “Dr. Keisaburo Miyata,”
Autonomous University State of Mexico, and adhered to the principles of the Declaration of Helsinki.

3. Results

3.1. Phosphorus and Calcium Determination

The mean values of phosphorus and calcium loss in the demineralization and remineralization
solution before and after treatment agents are shown in Table 1. There are significant differences
between the pre- and post-treatment samples (p < 0.05). There are low levels of minerals in each group
(p < 0.05, Wilcoxon), but Group B (fluoride) was the only one that had the least amount of both kinds
of minerals. This was observed in the mineralizing solution after using the product on the treated
surface. In Table 2, calcium and phosphorus ion content is presented.
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Table 1. Solutions analysis of calcium and phosphorus content during treatment.

50f8

Calcium Content mg/L

Phosphorus Content mg/L

Demineral Remineral Demineral Remineral
Groups Groups
Before Treatment After Treatment Before Treatment After Treatment
A (Control) 3.80 &+ 0.67 1.00 £ 0.20 A (Control) 217 +£0.22 0.52 £ 0.05
B (Fluoride) 3.00 &+ 0.63 0.88 £0.11* B (Fluoride) 145+ 0.24 0.40 4+ 0.05 *
C (TriFC) 3.75 +0.75 1.34 +£0.17 C (TriFC) 1.58 £0.29 0.41 £0.07
D (LLL) 3.02 + 0.58 0.99 £+ 0.15 D (LLL) 194 £0.32 0.53 £ 0.08
E (Fluoride + LLL) 2.52 +0.90 0.96 + 0.16 E (Fluoride + LLL) 1.98 £ 0.19 0.42 £ 0.05
F (TriFC + LLL) 2.70 + 0.54 1.14 £ 0.19 F (TriFC + LLL) 1.98 £ 0.25 0.43 £0.07

Demineral = demineralization; Remineral = remineralization; TriFC = Fluoride + Tri-calcium phosphate;
LLL = low-level laser, * shows the lowest amount of calcium and phosphorus ions in solution after the use of

remineralizing agents. p < 0.05, Wilcoxon. All mineral levels decrease after placing remineralizants.

Table 2. Analysis of calcium and phosphorus ion content in solution after the use of remineralizing agents.

Calcium A B C D E F
A -
B 0.018271 -
C 0.000000*  0.000000 * -
D 0.399090 0.009474 0.000002 * -
E 0.000000*  0.000035*  0.000000*  0.000000 * -
F 0.003380 0.000001 * 0.013938 0.007088 0.000000 -
Phosphorus A B C D E F
A -
B 0.000000 * -
C 0.000000 * 0.199111 -
D 0.444079 0.000000 *  0.000000 * -
E 0.000000 * 0.076646 0.279880 0.000000 * -
F 0.000001 * 0.019918 0.113015 0.000002 * 0.265181 -

* Adjusted p-value for significance is 0.001667. One-way analysis of variance by ranks (Kruskal-Wallis Test).
A = Control, B = Fluoride (Duraphat varnish), C = Tricalcium phosphate (Clinpro White varnish), D = LLL (IR810
(Quantum)), E = Fluoride + LLL, F = Tricalcium phosphate + LLL.

3.2. Enamel Surface Micro-Hardness

The treatment microhardness measurements were made to verify that the most remineralized
surface would be the hardest. The mean micro-hardness values of the enamel surfaces are shown in
Figure 1. The fluoride group had the highest micro-hardness after remineralization with 329.8 VH
(p < 0.05). Groups A and D were significantly different (Control, Laser). Tri-calcium phosphate and
tri-calcium phosphate + LLL showed no differences. Figure 2 shows indentation marks.
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Figure 1. Mean microhardness values between groups (p < 0.05).
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Spearman correlation determined a relationship between decreased mineralization in the
remineralizing solution and the microhardness of the enamel surface (Table 3).

Figure 2. (A) Indentation from Group B: (B) Indentation from Group D where the mark is bigger than
the previous image, (C) Indentation from Group F, showing a softer surface for a greater indentation.

Table 3. Correlation between decreased mineralization and microhardness value.

Variable Variable R p
Remi lizati luti Calcium ions Microhardness —0.268 0.0008
€mineralization solution Phosphorus ions Microhardness —0.208 <0.002

Negative correlation between the presence of minerals and microhardness (p < 0.05).

4. Discussion

There are many ways to treat demineralization. Here, fluoride and tri-calcium phosphate fluoride
were added, followed by an LLL. These were evaluated in terms of micro-hardness and mineral content
on bovine enamel.

Atomic absorption spectroscopy was used to measure calcium, and UV-Vis spectroscopy was used
to measure phosphorus. These processes were used to determine mineral loss. Similarly, mineralizing
agents were used in the remineralization solution. These methods were used to efficiently identify
calcium and phosphorus and indirectly study the mineral components on dental surfaces [16,18-20].

The treatments offering the most calcium in the demineralization solution were the control,
the tri-calcium phosphate, and the laser-irradiated tri-calcium phosphate; whereas the control, laser,
and laser-irradiated tri-calcium phosphate offered the most phosphorus. This suggests that the
minerals were not on the dental surface. These groups showed the lowest remineralizing potential.
In other studies, tri-calcium phosphate was added to fluoride, and calcium was encapsulated in sodium
lauryl sulfate, which was placed on white spot lesions and made dental enamel more resistant [8,9].
This contradicts the present study.

The laser increases hardness and prevents the treated area from becoming a cavitation.
Moreover, the effects are higher when fluoride- or calcium-based compounds are irradiated
concurrently [11-14,17]. Nevertheless, the data show that the mineral content of the laser group
was similar to the control. In all examples where fluoride was exposed to laser irradiation, there was
no increase in remineralization potential. This puts their effectiveness into question.

The group with the highest remineralizing effect was fluoride. Both calcium and phosphorus
were found in low levels in the remineralization solution assuming that both components should be
precipitated on enamel surfaces and transformed into more resistant tissue. Although tri-calcium
phosphate and simple varnish fluoride had 22,600 ppm concentrations, fluoride was the most effective
treatment for dental remineralization.

This was a model of constant remineralization, and cyclic pH (including periods of demineralization)
was used over 15 days to emulate oral conditions in an optimal environment to determine the best
performance of each of the mineralizing agents. An additional demineralizing solution was added at
a critical pH to create a white spot lesion. The remineralization solution at pH 7.0 was similar to saliva.
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Despite this model’s chemical conditions, there are still biological differences, which might modify results
in the laboratory.

The enamel surfaces of the samples were polished flat to homogenize them and create the
area needed for testing microhardness. This can certainly be a factor because the studied area was
susceptible to deep demineralization in accordance with Elkassas et al. [9]. The Vickers test was used
to analyze the surface resistance because it provides indirect information about the mineral content
and hardness of dental tissue [2,15].

The average microhardness of the control and laser groups had a similar remineralizing effect,
which contradicts other studies that show that low-power lasers create a harder and more resistant
surface than the additional calcium compounds or the control group [12,14]. The group with the
best microhardness was fluoride, although the rate of application and fluoride content for all groups
was the same (22,600 ppm). The group with tri-calcium phosphate that directly incorporated these
components into the lesion is not shown here.

One limitation of this study is that baseline microhardness was not measured before the
demineralization process. Additionally, bovine teeth may have important differences from human
teeth. White spot lesions are formed much faster on bovine teeth than on human teeth and has more
carbonate and less fluoride. This could affect remineralization and make it less efficient, although the
distribution of minerals is almost the same in both tissues [15].

5. Conclusions

Even under the limitations of the present study, it can be concluded that fluoride is the most
effective treatment for dental remineralization—more so than the addition of tri-calcium phosphate
and low-level lasers. This in vitro study imitated the application of different remineralizing agents
and showed which was the most efficient for treating non-cavitated injuries. This can help to prevent
the progression of lesions in patients with white spot lesions.

Acknowledgments: We thank the National Council of Science and Technology (CONACYT Mexico) for their
support for the development of this research. Publication was supported by the Ministry of Education, Mexican
Federal Government, through the Faculty Development Program (PRODEP).

Author Contributions: E.L.-C., N.L.-R., R AM.-L. and N.L.R.-B. were involved in the design and development of
the study. E.L.-C. designed the study, analyzed the data, and wrote the first draft of the manuscript. M.M.G.-F,,
R.d.1.R.-S. and C.E.M.-S. were involved in the conception of the paper and in the analysis and interpretation of the
results. All authors were involved in the critical review and made intellectual contributions. They also approved
the final version.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Peters, M. Strategies for noninvasive demineralized tissue repair. Dent. Clin. N. Am. 2010, 54, 507-525.
[CrossRef] [PubMed]

2. Murdoch-Kinch, C.A.; McLean, M.E. Minimally invasive dentistry. J. Am. Dent. Assoc. 2003, 134, 87-95.
[CrossRef] [PubMed]

3. Cochrane, N.; Cai, F; Huq, N.; Burrow, M.; Reynolds, E. New Approaches to enhanced remineralization of
tooth enamel. J. Dent. Res. 2010, 89, 1187-1197. [CrossRef] [PubMed]

4. Zhou, S.; Zhou, ].; Watanabe, S.; Watanabe, K. In vitro study of the effects of fluoride-releasing dental
materials on remineralization in an enamel erosion model. J. Dent. 2012, 40, 255-263. [CrossRef] [PubMed]

5. Caruso, S.; Bernardi, S.; Pasini, M.; Giuca, M.R.; Docimo, R.; Continenza, M.A.; Gatto, R. The process of
mineralisation in the development of human tooth. Eur. |. Paediatr. Dent. 2016, 17, 322-326. [PubMed]

6. Lins, R.D.; Dantas, EMM.; Lucena, K.C.; Catao, M.H.; Granville-Garcia, A.F.; Carvalho Neto, L.G.
Biostimulation effects of low-power laser in the repair process. An. Bras. Dermatol. 2010, 85, 849-855.
[CrossRef] [PubMed]

7. Matson, ].R.; Matson, E.; Navarro, R.S.; Bocangel, ].S.; Jaeger, R.G.; Eduardo, C.P. Er: YAG laser effects on
enamel occlusal fissures: An in vitro study. J. Clin. Laser Med. Surg. 2002, 20, 27-35. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.cden.2010.03.005
http://www.ncbi.nlm.nih.gov/pubmed/20630193
http://dx.doi.org/10.14219/jada.archive.2003.0021
http://www.ncbi.nlm.nih.gov/pubmed/12555961
http://dx.doi.org/10.1177/0022034510376046
http://www.ncbi.nlm.nih.gov/pubmed/20739698
http://dx.doi.org/10.1016/j.jdent.2011.12.016
http://www.ncbi.nlm.nih.gov/pubmed/22227269
http://www.ncbi.nlm.nih.gov/pubmed/28045323
http://dx.doi.org/10.1590/S0365-05962010000600011
http://www.ncbi.nlm.nih.gov/pubmed/21308309
http://dx.doi.org/10.1089/104454702753474986
http://www.ncbi.nlm.nih.gov/pubmed/11902351

Appl. Sci. 2018, 8,78 8of 8

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

3M ESPE. Solutions. Products 3M. Available online: http:/ /solutions.3m.com.mx/wps/portal /3M/es_MX/
3MESPE_LA /dental-professionals/ (accessed on 25 November 2014).

Elkassas, D.; Arafa, A. Remineralizing efficacy of different calcium-phosphate and fluoride based delivery
vehicles on artificial caries like enamel lesions. J. Dent. 2014, 42, 466—474. [CrossRef] [PubMed]

Karlinsey, R.; Mackey, A.; Walker, E.; Frederick, K. Surfactant-modified beta-TCP: Structure, properties,
and in vitro remineralization of subsurface enamel lesions. |. Mater. Sci. Mater. Med. 2010, 21, 415-420.
[CrossRef] [PubMed]

Vlacic, J.; Meyers, 1; Kim, J.; Walsh, L. Laser-activated fluoride treatment of enamel against and artificial
caries challenge: Comparison of five wavelengths. Aust. Dent. J. 2007, 52, 101-105. [CrossRef] [PubMed]
Muller, K.; Rodrigues, C.; Nunez, S.; Rocha, R.; Ribeiro, M. Effects of low-power red laser on induced-dental
caries in rats. Arch. Oral Biol. 2007, 52, 648-654. [CrossRef] [PubMed]

Laser Systems. Laser Dental Quantum® IR810. Available online: http://www.lasersystems.com.mx/dental.
php (accessed on 20 October 2014).

Heravi, F,; Farzaneh, A.; Mahdieh, M.; Sorouh, B. Comparative evaluation of the effect of Er: YAG laser and
low level laser irradiation combined with CCP-ACPF cream on treatment of enamel caries. J. Clin. Exp. Dent.
2014, 6, 121-126. [CrossRef] [PubMed]

Lippert, F; Lynch, R. Comparison of Knoop and Vickers surface microhardness and transverse
microradiography for the study of early caries lesion formation in human and bovine enamel. ]. Arch.
Oral Biol. 2014, 59, 704-710. [CrossRef] [PubMed]

Diaz-Monroy, ].M.; Contreras-Bulnes, R.; Olea-Mejia, O.F,; Garcia-Fabila, M.M.; Rodriguez-Vilchis, L.E.;
Sanchez-Flores, 1.; Centeno-Pedraza, C. Chemical changes associated with increased acid resistance of Er:
YAG laser irradiated enamel. Sci. World . 2014, 1, 1-6. [CrossRef] [PubMed]

Lippert, F; Hara, A. Fluoride dose-response of human and bovine enamel caries lesions under remineralizing
conditions. Am. J. Dent. 2012, 25, 205-209. [PubMed]

Lépez, G.; De la Casa, M.; Sdez, M.; Lopez, M. Decalcification of root dentin: Comparison of two methods
for identification. Sci. Oral J. 2013, 10, 15-23.

Hjortsjo, C.; Jonski, G.; Young, A.; Saxegaard, E. Etching effect of fluorides on human tooth enamel in vitro.
Arch. Oral Biol. 2014, 59, 1328-1333. [CrossRef] [PubMed]

Low, I; Alhuthali, A. In-situ monitoring of dental erosion in tooth enamel when exposed to soft drinks.
Mater. Sci. Eng. 2008, 28, 1322-1325. [CrossRef]

@ © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://solutions.3m.com.mx/wps/portal/3M/es_MX/3MESPE_LA/dental-professionals/
http://solutions.3m.com.mx/wps/portal/3M/es_MX/3MESPE_LA/dental-professionals/
http://dx.doi.org/10.1016/j.jdent.2013.12.017
http://www.ncbi.nlm.nih.gov/pubmed/24412586
http://dx.doi.org/10.1007/s10856-010-4064-y
http://www.ncbi.nlm.nih.gov/pubmed/20364363
http://dx.doi.org/10.1111/j.1834-7819.2007.tb00472.x
http://www.ncbi.nlm.nih.gov/pubmed/17687954
http://dx.doi.org/10.1016/j.archoralbio.2006.12.018
http://www.ncbi.nlm.nih.gov/pubmed/17292847
http://www.lasersystems.com.mx/dental.php
http://www.lasersystems.com.mx/dental.php
http://dx.doi.org/10.4317/jced.51309
http://www.ncbi.nlm.nih.gov/pubmed/24790710
http://dx.doi.org/10.1016/j.archoralbio.2014.04.005
http://www.ncbi.nlm.nih.gov/pubmed/24798979
http://dx.doi.org/10.1155/2014/501357
http://www.ncbi.nlm.nih.gov/pubmed/24600327
http://www.ncbi.nlm.nih.gov/pubmed/23082383
http://dx.doi.org/10.1016/j.archoralbio.2014.08.007
http://www.ncbi.nlm.nih.gov/pubmed/25178018
http://dx.doi.org/10.1016/j.msec.2008.02.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Materials 
	Specimens Preparation 
	Demineralization 
	Remineralization 
	UV-Vis Spectroscopy for Phosphorus Determination 
	Atomic Absorption Spectroscopy for Calcium Determination 
	Surface Micro-Hardness (SMH) 
	Statistical Analyses 
	Ethical Considerations 

	Results 
	Phosphorus and Calcium Determination 
	Enamel Surface Micro-Hardness 

	Discussion 
	Conclusions 
	References

