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1. Video and File Links

Video S1: A video of SimRoach2 walking forward in a simulated environment can be found at the link
below.

https://vimeo.com/214706759
File S2: A link to download the AnimatLab 2 files for SimRoach2 can be found at the link below.

https://drive.google.com/open?id=0Bw02uf2W7DPXSkpDaVA1TDg5T1U
File S3: A link to download the version of the KinematicOrganism Toolbox used for SimRoach2 can be
found at the link below.

https://drive.google.com/open?id=1YBkv6uLMSZiGPbLHdn-fPKSvSyLSzMW-

2. Parameter Values

Tables S4-S8: Many parameter values were chosen as part of the design process. In this section,
these parameter values will be explicitly given (Tables 1-5).

2.1. Rest Posture - Spring, Flexor, and Extensor Rest Lengths

One of the steps of the design process involved choosing a resting posture for the model. The
chosen angles of the rest posture corresponded directly to specific resting lengths of the spring, flexor,
and extensor based on the muscle attachment points. Table 1 provides these values. In each joint, the
spring used the same attachment points as the flexor, thus the resting length was the same and that
value is only provided once.
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Table 1. Rest Lengths of Spring, Flexor, and Extensor.

Joint Rest Length of Spring and Flexor (mm) Rest Length of Extensor (mm)

LF ThC2 4.217 4.998

LF ThC1 4.331 4.778

LF ThC3 2.872 3.054

LF CTr 3.901 4.005

LF FTi 5.497 5.355

RF ThC2 4.217 4.999

RF ThC1 4.331 4.779

RF ThC3 2.869 3.054

RF CTr 3.901 4.005

RF FTi 5.490 5.359

LM ThC2 4.220 7.527

LM ThC1 3.548 3.841

LM CTr 5.167 5.490

LM TrF 5.464 5.211

LM FTi 8.602 8.109

RM ThC2 4.184 7.274

RM ThC1 3.548 3.84

RM CTr 5.167 5.490

RM TrF 5.464 5.211

RM FTi 8.610 8.102

LH ThC2 5.281 7.336

LH ThC1 5.177 5.774

LH CTr 7.565 8.243

LH TrF 4.595 4.597

LH FTi 8.672 8.692

RH ThC2 5.281 7.336

RH ThC1 5.177 5.774

RH CTr 7.565 8.243

RH TrF 4.596 4.597

RH FTi 8.672 8.692

2.2. Spring Stiffness and Damping Coefficients

Another step was to calculate each springs stiffness and damping coefficients. Table 2 provides
the calculated values.
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Table 2. Spring Stiffness and Damping Coefficients.

Joint Stiffness Coefficient (N/m) Damping Coefficient (mg/s)

LF ThC2 1009.9 2.414

LF ThC1 1009.9 2.414

LF ThC3 228.492 0.351

LF CTr 355.77 2.115

LF FTi 511.805 0.210

RF ThC2 1001.9 2.403

RF ThC1 1001.9 2.403

RF ThC3 231.762 0.353

RF CTr 355.77 2.115

RF FTi 434.372 0.209

LM ThC2 400.823 3.00

LM ThC1 708.231 2.238

LM CTr 549.196 3.640

LM TrF 612.759 3.503

LM FTi 289.236 0.399

RM ThC2 1008.99 3.00

RM ThC1 709.442 2.306

RM CTr 549.013 3.818

RM TrF 611.364 5.00

RM FTi 262.222 0.434

LH ThC2 1000.0 5.00

LH ThC1 2677.0 8.969

LH CTr 665.484 23.78

LH TrF 844.002 2.224

LH FTi 369.532 1.961

RH ThC2 1000.0 5.00

RH ThC1 2678.0 8.936

RH CTr 663.72 23.76

RH TrF 846.636 2.244

RH FTi 369.848 1.962

2.3. Muscle Parameter Values

For each muscle, the values of kse, kpe, and b were chosen to be 45 N/m, 11.24 N/m, and 0.1 Ns/m
respectively. The x-offset and steepness of the muscle activation curve were chosen to be -50 mV and
300, respectively. The amplitude of the muscle activation curve was chosen as part of the optimization
process. The y-offset of the curve was constrained such that there was zero active force when the
motor-neuron was at -60 mV. In Table 3, values of the amplitude and y-offset for each muscle are given.
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Table 3. Muscle Amplitude and Y-offset values.

Joint Flexor
Muscle
Amplitude
Tce (N)

Muscle
y-offset (mN)

Extensor Muscle
Amplitude Tce (N)

Extensor
y-offset (mN)

LF ThC2 1.456 -69.036 3.805 -180.47

LF ThC1 1.489 -70.623 1.038 -49.234

LF ThC3 0.407 -19.308 0.802 -38.016

LF CTr 1.145 -54.325 0.754 -35.768

LF FTi 0.0674 -3.198 2.375 -112.66

RF ThC2 1.177 -55.818 1.899 -90.066

RF ThC1 1.332 -63.174 0.713 -33.792

RF ThC3 0.328 -15.544 0.665 -31.555

RF CTr 0.530 -25.140 0.571 -27.092

RF FTi 1.048 -49.695 2.218 -105.20

LM ThC2 0.201 -9.512 0.506 -23.99

LM ThC1 1.00 -50.00 0.200 -10.00

LM CTr 0.600 -28.45 1.60 -80.00

LM TrF 0.684 -32.45 0.220 -11.0

LM FTi 1.097 -52.02 1.257 -59.634

RM ThC2 0.040 -1.897 0.434 -20.581

RM ThC1 1.569 -74.391 0.364 -17.257

RM CTr 0.546 -25.886 1.594 -75.576

RM TrF 0.669 -31.748 0.279 -13.255

RM FTi 1.146 -54.347 1.761 -83.514

LH ThC2 3.013 -143.0 3.905 -185.2

LH ThC1 2.352 -111.5 0.800 -37.0

LH CTr 1.122 -53.21 1.104 -52.358

LH TrF 1.326 -62.861 0.472 -22.363

LH FTi 0.691 -32.754 0.966 -45.82

RH ThC2 3.097 -146.9 3.898 -184.85

RH ThC1 3.00 -142.0 1.20 -56.0

RH CTr 1.00 -47.426 1.117 -52.981

RH TrF 1.211 -52.166 0.400 -18.97

RH FTi 0.411 -19.471 0.541 -25.678

2.4. Proportional and Integral Synapse Parameter Values

As part of the optimization process, the synaptic strength between the proportional and integral
parts of each joint position controller to the motor-neurons were chosen. These parameter values are
given in Table 4. The equilibrium potential of all of these synapses is -20 mV.
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Table 4. Proportional and Integral Synapse Parameter Values.

Joint Integral Synaptic
Conductance (uS)

Proportional Synaptic
Conductance (uS)

LF ThC2 19.292 1.354

LF ThC1 13.544 1.128

LF ThC3 19.142 1.396

LF CTr 8.826 0.876

LF FTi 18.31 1.0

RF ThC2 29.777 1.333

RF ThC1 16.381 0.678

RF ThC3 24.737 1.868

RF CTr 19.917 0.901

RF FTi 11.984 0.796

LM ThC2 10.982 1.321

LM ThC1 12.0 1.00

LM CTr 13.0 1.70

LM TrF 9.5 1.3

LM FTi 8.68 1.267

RM ThC2 11.0 0.60

RM ThC1 9.707 0.692

RM CTr 15.04 1.797

RM TrF 8.603 1.954

RM FTi 7.534 0.835

LH ThC2 10.982 1.522

LH ThC1 14.0 0.982

LH CTr 10.0 4.0

LH TrF 14.02 1.089

LH FTi 11.064 1.059

RH ThC2 10.955 1.499

RH ThC1 9.0 0.796

RH CTr 11.0 4.50

RH TrF 14.912 1.211

RH FTi 19.067 2.415

2.5. Upper Level Synapse Parameter Values

Using our tool KinematicOrganism, the synaptic conductance of the synapses from the upper
level to the intermediate level and were calculated. These parameter values are given in Table 5. The
equilibrium potential of all of these synapses are 300 mV. The standard case is when PEP Positive
Rotation and PEP Positive Translation neurons are connected to the PEP Sum neuron, and the PEP
Negative Rotation and PEP Negative Translation neurons are connected to the AEP Sum neuron. In
some joints, the rotation and/or translation parts are reversed. Table 5 provides this information.
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Table 5. Upper Level Synapse Parameter Values.

Joint Rotational Synaptic
Conductance (nS)

Translational Synaptic
Conductance (nS)

Reversed Synapses

LF ThC2 0.028411 51.592 Translation

LF ThC1 0.449 27.098 Neither

LF ThC3 1.356 18.47 Translation

LF CTr 1.275 16.241 Rotation

LF FTi 1.854 20.025 Rotation and Translation

RF ThC2 0.706 51.746 Rotation and Translation

RF ThC1 0.429 27.11 Rotation

RF ThC3 0.974 17.545 Rotation and Translation

RF CTr 1.188 16.322 Neither

RF FTi 2.224 19.697 Translation

LM ThC2 0.775 15.684 Rotation

LM ThC1 1.069 52.419 Rotation

LM CTr 0.578 28.093 Rotation

LM TrF 0.223 25.591 Rotation

LM FTi 0.728 6.392 Rotation

RM ThC2 0.664 16.963 Neither

RM ThC1 1.098 50.862 Neither

RM CTr 0.606 28.122 Neither

RM TrF 0.205 25.174 Neither

RM FTi 0.829 7.934 Neither

LH ThC2 0.2 17.032 Neither

LH ThC1 0.363 28.902 Rotation

LH CTr 0.574 46.953 Rotation

LH TrF 0.029312 1.947 Translation

LH FTi 0.329 25.562 Neither

RH ThC2 0.2 17.031 Rotation

RH ThC1 0.363 28.848 Neither

RH CTr 0.574 46.957 Neither

RH TrF 0.029212 1.934 Rotation and Translation

RH FTi 0.329 25.557 Rotation
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3. Methods Explained

For the sake of paper length and readability, many details were left out of the main paper. For the
purposes of research integrity, more details on the methods are explained in this section.

3.1. Modeling Overview: Description of Design Tools

The first design tool, FeedbackDesign, can simulate the dynamics of the system in both the time
domain and the frequency domain [31]. Time domain simulations are useful because we can learn
about the stability and equilibrium of a system. Frequency domain calculations are useful because we
can use stability margins to learn about the robustness of our model.

The second design tool, KinematicOrganism, can read an AnimatLab 2 file and construct a model
in MATLAB. A full model in MATLAB is very useful; this tool automates a lot of the calculations that
were performed in the design process. Among many other things, KinematicOrganism can calculate
the mapping between the length of the extensor and joint angle, calculate the AEP and PEP for walking,
and find the resting posture.

The last design tool, SimScan, can run batches of AnimatLab 2 simulations at once [31]. SimScan
does not display a graphics window and takes advantage of parallel computing capabilities, making it
much faster to run simulations. Parameters can be varied between simulations, so SimScan can scan
through permutations of parameter sets or parameters can be optimized against an objective function.

3.2. Neuron Dynamics

The primary dynamical variable of a neuron is the voltage across the cell membrane, V, with the
dynamics:

CmV̇(t) = Ileak(t) + Isyn(t) + INaP(t) + Iapp(t), (1)

where
Ileak(t) = Gm ·

(
Er −V(t)

)
, (2)

Isyn(t) =
n

∑
i=1

Gs,i(t) ·
(
Es,i −V(t)

)
, (3)

and
INaP(t) = GNa ·m∞

(
V(t)

)
· h ·

(
ENa −V(t)

)
. (4)

and Iapp(t) is an external stimulus current. Er is the resting potential of the neuron. Cm and Gm

are the capacitance and conductance of the cell membrane, respectively. Instead of inputing the
capacitance and conductance parameters values directly into AnimatLab 2, the neurons are defined by
the parameters “time constant” and “relative size.” The time constant is defined by τm = Cm/Gm, and
the relative size is equivalent to the conductance Gm.

Neurons communicate with each other via synapses. A neuron can, in general, have n incoming
synapses. Gs,i and Es,i are the conductance and resting potential of the ith synapse, respectively. The
conductance of the synapse is given by

Gs,i(t) = Gmax,i ·min

(
max

(Vpre(t)− Elo,i

Ehi,i − Elo,i
, 0
)

, 1

)
, (5)

where Gmax,i is the maximum conductance, Elo,i is the lower threshold, Ehi,i is the upper threshold, and
Vpre is the voltage of the pre-synaptic neuron.

Most neurons in our network have GNa = 0, however, neurons that make up the CPGs will have
GNa 6= 0. For these neurons, h is the second dynamical variable with dynamics

ḣ(t) =
h∞ − h(t)

τh(V)
. (6)
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m∞ and h∞ are functions of the neuron’s voltage, and are sigmoids of the form

z∞(V) =
1

1 + Az · exp(Sz · (V − Ez))
, (7)

where z represents either m or h and parameters A, S, and E are constants specific to m or h. The time
constant of h in Equation 6 is a function of the neuron’s voltage and is given by

τh(V) = τh,max · h∞(V) ·
√

Ah · exp(Sh · (V − Eh)). (8)

3.2.1. Units

Unless otherwise stated, voltages are measured in millivolts (mV), conductances are measured
in microsiemens (µS)(1/MΩ), currents are measured in nanoamps (nA), capacitances are measured
in nanofarads (nF), and time is measured in milliseconds (ms). The differential equation modeling a
neuron with 0 incoming synapses and no persistent sodium channels, from combining Equations 1
and 2, is

CmV̇(t) = Ileak = Gm ·
(
Er −V(t)

)
. (9)

Plugging in the units for each variable in place of the variable itself, we get

nF · mV
ms

= nA = µS ·mV. (10)

It can be seen that units on each side of the equation match.

3.3. Physical Model - Changes

The physical model was adapted from the model that N. Szczecinski created for his M.S. Thesis
[57]. As part of this thesis, Szczecinski dissected Blaberus discoidalis and measured the lengths of the
bodies and the angles of rotation of the joints to create this model. The changes to this original model
are detailed below.

First, an extra body was added to the back portion of the model. Cockroaches have large
abdomens, and this fact was not correctly modeled in the original model. From a results standpoint,
the purpose of adding the extra body was to bring the center of mass closer to the hind legs, which is
where it is located in the animal.

Secondly, we added a passive spring and damper to each joint. The spring for each joint has the
same attachment points as the flexor muscle for that joint. Insect exoskeletons possess elastic and
dissipative tissues that exert very large passive forces on the body, and show over-damped motion
even when all of their muscles are removed [35,36]. The spring stiffness and damping constants were
tuned to mimic this observation. By adding the springs to each joint, we can model that biological
observation and the result led to smoother dynamics overall.

Third, the modeling of the tarsus body segment was changed. In both models, the joint’s degree
of freedom was removed for simplification purposes. In Szczecinski’s original model, the tarsus was
attached to the tibia with a spring in between, allowing for some compliance via a passive degree of
freedom. In the current model, the tarsus is rigidly attached to the tibia. The simulation freezes the
foot in place when the leg is in stance phase and the foot is close to the ground. The tarsus is connected
to the tibia with a free ball and socket joint to allow rotation around the frozen tarsus during stance
phase. Actual cockroaches have claws that they use to grip the ground [38], so this technique, while
only possible in a simulation environment, is justified. Future improvements to this mechanism will
be discussed in future work.

The last major change to the physical model was to the muscle attachment points. Modeling
the muscle attachment points is difficult. In Szczecinski’s original model, muscle attachment points
were based on major muscle groups. However, since the musculature is simplified to just one pair
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of muscles for each joint, the muscle attachment points are also simplified. When going through the
design process to calculate spring constants such that the model could stand without muscles, it was
found that some of the springs required very large spring constants to meet the torque requirement
for that joint because the muscle attachment points were too close to the joint’s point of rotation. This
led to requiring unrealistically strong muscle forces to control the joint. If that was the case for any
joint, the muscle attachment points for that joint were modified slightly to increase the moment arm of
that muscle to get more reasonable spring constant and muscle force values. Modeling of the muscle
attachment points is a big area for improvement and will be discussed more in future work.

A small change was made to the way the modeled cockroach detects ground contact. Szczecinski’s
original model used AnimatLab 2’s receptive field pair feature; the current model uses the program’s
Contact Sensor feature. The end result is identical: a binary signal telling us if the tarsus is in contact
with the ground (or any body). Actual cockroaches have campaniform sensilla in their legs that
effectively act as strain sensors and are used to detect load [4].

3.4. Neural Network as Control System

3.4.1. Central Pattern Generator

The study of Central Pattern Generators is a rich field from both a biological standpoint and a
mathematical standpoint. A lot of work has been done to understand their non-linear dynamics and
sensitivity to inputs, and tools have been developed to aid in the design process [31]. The CPGs in this
model were designed using these tools. Therefore, an in-depth explanation of CPGs is left out of this
paper. The purpose of this section is to provide a general description of their function and explain how
we chose certain CPG parameters.

In insects, each joint of each leg is capable of independent oscillation, generated by a neural
oscillator called a Central Pattern Generator (CPG) [2]. The purpose of the CPG is to provide the
rhythmic oscillations useful for walking. The CPGs in each leg do not communicate with each other,
but they are coordinated via sensory information. One CPG from each leg is connected to the same
CPG in other legs to produce coordinated walking [3].

The CPG network used in this model is a non-spiking half-center oscillator. It is composed of
four neurons: two half-centers and two interneurons (for a more in-depth description, see [31]). The
half-centers are the oscillators: the “output” of the CPG. The interneurons relay the mutual inhibition
that produces the oscillation, and also mediate sensory inputs to the CPG. The interneurons are
standard non-spiking neurons similar to the neurons used for the rest of the neural networks. The
half-centers differ in that they utilize optional persistent sodium channels.

The four neuron CPG model can oscillate by itself without input. However, increasing the strength
of the inhibitory synapses will eventually stop oscillation [31]. This characteristic was desired because
when an insect stands still, its CPGs do not oscillate. So, the strength of the inhibitory synapses were
manually increased to just slightly above the threshold to stop oscillation. A CPG drive was added
that inputs current to both sides of the CPG, causing oscillation. The CPG drive is turned on when the
upper level signals walking and turned off when commanded to stand still.

Now that we have a CPG that can oscillate or not oscillate, it was desired to control the speed
and duration of oscillation. A cockroach walks at approximately 5 steps per second [61]; so, with a
tripod gait, one step lasts about 200 ms and therefore swing duration lasts approximately 100 ms.
Therefore, it was desired that the CPG would oscillate every 100 ms by itself for a total period of
200 ms. We also wanted the oscillation transition to happen over a relatively quick period of time.
Originally, we thought the CPG parameter values of SimRoach2 could be the same as the parameter
values used for MantisBot, but it was found that the transition time of these CPGs was not fast enough
for the much quicker steps that SimRoach2 takes. The strength of the CPG drive affects the speed of
the transition time between oscillations, and it has been shown that the Sodium Deactivation Time
Constant parameter has a large effect on the duration of oscillations. So, the process was to increase
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the CPG drive strength until we got a transition speed between oscillation that was fast enough for
SimRoach2, and then increase the Sodium Deactivation Time Constant until the CPG oscillated by
itself approximately every 100 ms.

The last item of concern regarding the CPGs for SimRoach2 was their sensitivity to inputs. A
CPG’s oscillation must be stable and sensitive to inputs to allow sensory feedback to coordinate the
CPGs. For the purposes of SimRoach2, the sensory feedback of interest is the load on a leg. If there
is load on the leg, the CPG should be stable in the stance-phase motion (flexion or extension) and
not continue to oscillate. Otherwise, the CPG should oscillate naturally as described earlier. Other
inputs to the CPG include Enter Stance or Enter Swing commands that come from other parts of the
network. Using previously developed design tools, the strength of the synapse of the sensory input
signaling load was tuned so that the CPGs would be stable if the network signaled load [65]. The
sensory synapses from the Enter Swing and Enter Stance command neurons were made stronger than
the load sensory synapses to interrupt the stability of stance phase oscillation.

3.4.2. Intermediate Level Network

The Intermediate Level Network for this work was designed by N.Szczecinski for MantisBot and
is explained in [60]. For these reasons, an in-depth explanation is left out of this paper and only a
general description is provided.

There are two main purposes for this network. The first purpose is to receive sensory feedback
and coordinate CPG oscillation. The network decides which side of the CPG to input this sensory
feedback based on the direction of intended walking (forward or backward).

The second purpose is to provide a Commanded Position to the Joint Position Control network.
Based on which side of the CPG is active, the network will provide a PEP or AEP as the Commanded
Position. The process of calculating the PEP and AEP for each joint is based on kinematics and whether
we want to walk forward or backward, and whether we want to turn. This process is integrated into
our tool KinematicOrganism and is explained in [26].

3.4.3. Inter-leg Coordination

The network designed to replicate the first influence is shown in Figure 1. The Influence 1 Neuron
is a copy of the influencing leg’s CTr Flx HC. The CTr Flx HC activity indicates that that leg is in swing
phase. So, for example, if this was the network for the left-middle leg, the Influence 1 Neuron would
get a signal from the left-hind CTr Flx HC. The Influence 1 Neuron then excites the Leg Don’t Enter
Swing Neuron via a binary synapse with a threshold at -50 mV, halfway between the CPG equilibrium
voltages of -60 mV and -40 mV. The Leg Don’t Enter Swing Neuron is designed to keep the leg in
stance phase if it is in stance phase, however, we do not want it to do anything if the leg is in swing
phase. Therefore, the Leg’s CTr Flx HC inhibits the Leg Don’t Enter Swing Neuron, causing Influence 1
to do nothing if the leg is in swing phase. If the leg is in stance phase, the Leg CTr Flx HC is not active,
which allows the Leg Don’t Enter Swing Neuron to excite the Enter Stance Neuron and inhibit the
Enter Swing Neuron. Exciting the Enter Stance Neuron sends and input current to the CPG Ext IN,
keeping the leg on the ground in stance phase. Inhibiting the Enter Swing Neuron will disable this
neuron. Influence 1 is stronger than the other influences. So, if this leg gets a command to Enter Swing
from another inter-leg influence, and Influence 1 is active, the leg will not enter swing phase.
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Influence 1

Leg
Don’t Enter 

Swing

Enter Stance Enter Swing

Leg CTr Flx HC
(Leg in Swing)

Inputs to appropriate CPG Interneuron

Influencing 
Leg CTr 
Flx HC

(Back Leg
in Swing)

Figure 1. Influence 1 Neural Network.

Figure 2 shows how Influence 1 coordinates CTr CPG activity between a rostral (anterior) and a
caudal (posterior) leg. To show Influence 1 working, data was taken from 0.4-1.0s such that a steady
state tripod gate was already active. The first and last posterior leg swing phases were unperturbed,
but the second posterior leg swing phase was enforced to be held for longer than nominal. This caused
the anterior leg to remain in stance phase for longer than expected.

Figure 2. Influence 1 inhibits the start of swing phase in the anterior leg.
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The network designed to replicate the Influence 2 is shown in Figure 3. This influence excites the
start of swing phase in the rostral leg when the caudal leg enters its stance phase. It is important to
note that, according to Cruse, this influence is not active throughout the duration of stance phase in the
caudal leg; it is only a short burst that occurs at the start of stance phase. When the caudal leg enters
stance, that leg’s CPG oscillates such that CTr Ext HC becomes active. To convert the stance phase
signal to a short spike, we use a differentiator network. The math behind the differentiator network is
explained in [40]. The Influence 2 Neuron then sends that short spike as current to the Enter Swing
Neuron for that leg. The Enter Swing Neuron will then make the leg enter swing via an input to the
leg’s CTr Flx HC Neuron.

Influence 2
Fast

Influence 2

Enter Swing

Inputs to Flx 
CPG Interneuron

Influence 2
Slow

Influencing 
Leg CTr 
Ext HC

(Inf. Leg
in Stance)

Figure 3. Influence 2 Neural Network.

Figure 4 shows how Influence 2 helps coordinate CTr CPG activity between a rostral (anterior)
and a caudal (posterior) leg. To show Influence 2 working, data was taken from a steady state tripod
gate; no perturbation was necessary. When the posterior leg finishes its swing phase and enters stance
(around 0.7s), Influence 2 excites the start of swing phase in the anterior leg.
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Figure 4. Influence 2 excites the start of swing phase in the anterior leg.

The network designed to replicate the last influence, Influence 3, is shown in Figure 5. This
influence excites the start of swing phase in the caudal leg when the rostral leg is in its stance phase.
According to Cruse, this influence increases in strength over time as the rostral leg moves farther in
its stance phase. Therefore, we use an integrator network to convert the constant voltage signal of
stance phase into a signal of increasing voltage. Then, the Influence 3 Neuron excites the Enter Swing
Neuron for that leg. A network exists to reset the integrator when the influencing leg enters its swing
phase. Also, because this influence only excites the start of swing phase, a network exists to disable the
Influence 3 neuron if the influenced leg is already in swing phase.
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Influencing 
Leg CTr 
Ext HC

(Inf. Leg
in Stance)

Influence 3
Integral

Influence 3
Integral 2

Influence 3
 To Integral

Influence 3

Enter Swing

Inputs to Flx 
CPG Interneuron

Network to Reset 
Influence When 
Influencing Leg 

Enters its Swing Phase
and Disable Influence

Throughout Swing Phase

Figure 5. Influence 3.

Influences 2 and 3 are similar in that they excite the start of swing phase of an adjacent leg. The
timing of these influences was important; if not properly tuned, it was possible that the influences
would work against each other. For example, if a hind leg enters stance, it tells the middle leg to
enter swing via Influence 2. However, during that time the middle leg was in stance, Influence 3 was
building, telling the hind leg to enter swing. Therefore, if not properly timed, the hind leg could want
to enter stance and tell the middle leg to enter swing with Influence 2, but Influence 3 would tell the
hind leg to enter swing again, keeping the hind leg from entering stance at all. The timing of these two
influences was manually tuned such that Influence 2 was “stronger" than Influence 3. Influence 2 is
active during steady state walking and helps coordinate a steady state tripod gait (Figure 4). Influence
3 exists in the network, however, it only influences the gait if there is a perturbation to the gait.
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Figure 6. Influence 3 excites the start of swing phase in the posterior leg if steady state walking is
perturbed.

Figure 6 shows how Influence 3 helps re-establish coordination of legs if the gait is perturbed.
Around 0.82 s, we forced swing phase to end early in the anterior leg. Influence 3 then becomes active,
and after a certain point causes swing phase to start early in the posterior leg. This influence only
excites the start of swing phase, it does not keep a leg in swing phase; therefore, separate neurons,
Influence 3 Neuron and Influence 3 Integral Neuron, are used and a network exists to disable the
Influence 3 Neuron if the posterior leg is already in swing phase. The extra “bumps" of Influence 3 in
Figure 6 are a result of the front leg transitions between stance and swing being slightly behind the
other legs. This is a result of the rostrally directed influences and is a behavior that has been observed
to exist in insects [61]. This data was taken from a front (anterior) and middle (posterior) leg. Those
extra pulses telling the middle leg to enter swing are negated by Influence 1 from the hind legs. If data
was taken from the middle and hind legs, those extra pulses would not exist.

As previously mentioned, Influence 3 does not activate during walking forward in this model. It
would be useful if swing phase ended early; for example, climbing over and object. However, for this
model swing phase is nearly constant for all legs.

3.4.4. Maintaining Ground Contact

Figure 7 shows the network designed to change the property adapter for each tarsus. If the leg is
in swing phase, then the CTr Flx HC is active and the Leg Loaded and In Stance Neuron is inhibited
regardless of whether there is load on the leg or not. If that is the case, the tarsus is not frozen. If the
leg is in stance phase, then the CTr Flx HC is not active, so there is no inhibition on the Leg Loaded
and In Stance Neuron. So, when the leg is loaded, the Leg Loaded Neuron excites the Leg Loaded
and In Stance Neuron, causing the tarsus to be attached to the ground. The tarsus is unattached from
the ground as soon as the leg enters swing phase (CTr Flx HC becomes active). This is similar to the
positive force feedback control of tarsal claw grip observed in insects [37].
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Figure 7. The Tarsus is frozen in place when the leg is loaded and when the leg is not in swing phase
(i.e. leg is in stance phase).

3.4.5. Height Control

Figure 8 shows the neural network that was implemented in each leg. This network is only active
during stance phase, and resets itself during every swing phase. The y-position (vertical height) of the
tarsus and the coxa are linearly mapped to neuron voltages via the height adapter. Those heights are
then compared via a subtraction network to get the Perceived Height Difference. The Commanded
Height Difference is calculated based on the rest posture and the physical geometry of the model (coxa
body attachment location for each leg are not all located at the same y-position relative to the main
body). The Commanded Height Difference and Perceived Height Difference are then subtracted from
each other to get two difference neurons: one if the Perceived Height Difference is greater than the
Commanded Height Difference and one if the Perceived Height Difference is less than the Commanded
Height Difference. This works exactly the same way as the Joint Control Network’s Commanded
Position and Perceived Position Neurons. Only one of these difference neurons can be active at a
time. If one is active, current is injected into the marginally stable integral neuron, which increases
or decreases the CTr PEP Position until the Perceived Height Difference and Commanded Height
Difference are equal. Additionally, the Height Control loop should only be active during stance phase.
Therefore, the CTr Flx HC was used to inhibit the height difference neurons. So, if the leg was in swing
phase, the difference neurons would be deactivated, no current can be input to the integral loop, and
the CTr PEP would not be adjusted. Lastly, we want to reset the CTr PEP each step, so a network was
designed to reset the Height Control Integral Neuron’s while the leg was in swing phase.
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Figure 8. Height Control Neural Network.

3.4.6. Upper Level Network

One of the major concepts in the development of our synthetic nervous systems is to minimize
descending commands from the upper level network. Therefore, this network is relatively simple.
Essentially, it acts like a joy stick, telling the organism whether to go forward or backward and left or
right [11].

Figure 9 shows a diagram of how this network is constructed. The PEP Positive Translation
and PEP Negative Translation Neurons correspond to walking forward and backward, respectively.
The PEP Positive Rotation and PEP Negative Rotation Neurons correspond to walking left and right,
respectively. The inputs are received by the PEP Positive Translation and PEP Positive Rotation
Neurons. If there is no input, all four of these neurons reach an equilibrium at -50 mV. The synapses
between these four neurons and the No Rotation and No Translation Neurons are binary with a
threshold of -49.9 mV. Therefore, if there are no inputs, the No Rotation and No Translation neurons
are both active. If both of these neurons are active, than the Stand Still Neuron is active (the Stand
Still Neuron has a negative tonic stimulus such that it will not be active unless both the No Rotation
and No Translation neurons are active). A positive input to the PEP Positive Translation neuron
corresponds to walking forward; a negative input corresponds to walking backward. If either of these
is the case, either the PEP Positive Translation or PEP Negative Translation will be active, inhibiting
the No Translation neuron and therefore deactivating the Stand Still neuron. The rotation part works
in exactly the same way. Because of the negative tonic stimulus in the Stand Still neuron, it will only
be active if both the No Translation and No Rotation neurons are active.
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Figure 9. Upper Level Network.

Stand Still Neuron

The Stand Still Neuron is a descending neuron that inhibits as few parts of the thoracic ganglia as
possible to halt walking. Functionally speaking, it causes every leg to enter stance phase, it inhibits
rhythmic motor output, it inhibits excitatory influences between the ganglia, and it inhibits height
control networks. It accomplishes these via the following: it inhibits CTr levation by stabilizing each
CPG in the depression phase; it inhibits excitatory drive to the CPGs, halting their oscillation; it inhibits
pathways that communicate inter-leg influence 3, which cause legs to enter swing phase; and it disables
pathways that adjust CTr depression to control body height. Such a neuron may represent the bulk
activity of the supra-esophageal ganglion.

3.5. Design Process for a Single Joint

3.5.1. Calculation of Passive Spring Stiffness and Damping Coefficients

Stiffness Coefficient

To begin the calculation of the stiffness coefficient using our method we first must calculate the
required torque on each joint to hold the leg in place under the weight of gravity. Each leg is assumed
to hold an equal amount of the weight of the body. We use the manipulator Jacobian method described
in [49] to calculate these torques.

The spatial frame is defined at the center of mass of the front body (Figure 10). The tool frame for
each leg is defined at the tarsus for each leg.
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Figure 10. Diagram of one leg in rest posture with spatial and tool frames labeled. The tool frame is
defined at the tarsus of each leg. The spatial frame is defined at the center of mass of the front body.
An end-effector force is applied from the ground to the tarsus.

To calculate the torque in each joint to maintain a static posture under the load of an end effector
force, we use Equation 3.60 from [49]

τ = (Js
st)

T Fs, (11)

where (Js
st)

T is the transpose of the spatial Jacobian and Fs is a wrench applied at the end-effector
in spatial coordinates. In this case, the end effector is the tarsus. Our tool KinematicOrganism uses
(Js

st)
T for other calculations and thus was already known. So, to find the required torque in each joint,

we only need to calculate the end-effector wrench in spatial coordinates.
To do that, we start with the actual force acting on the end effector. This is the force from the

ground pushing on the tarsus and is equal to one-sixth the weight of the body.

Fg =

 0
mg
6
0

 . (12)

This force acts at the center of the tool frame, so, the wrench in the tool frame has no rotational
component. To construct the wrench in the tool frame, however, we need to convert the linear
component, the force from the ground, from spatial frame to tool frame coordinates. The rotational
matrices were previously incorporated into our tool KinematicOrganism. So, the wrench in tool
coordinates is

Ft =


RtsFg

0
0
0

 . (13)
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The wrench in the tool frame needs to be converted to the spatial frame to use Equation 11. To do
this, we use Equation 2.65 from [49]

Fs = AdT
gts Ft. (14)

After calculating the wrench in the spatial frame, we use Equation 11 to solve for the torques
required for static posture. Because the springs’ rest lengths are set such that the spring will produce
zero force at the rest posture, we must rotate the joint a small amount for the spring to produce
the required torque. This small amount was chosen to be 0.1 radians. From there, using our tool
KinematicOrganism, we used an optimizer to increase the value of the spring constant k until each
slightly stretched spring produced the calculated required torque.

Damping Coefficient

The damping coefficient for each spring was calculated with the idea that the joint should be at
least critically damped for every possible movement of the system with just the spring (i.e. no muscles).
The damping value for a critically damped joint is not only a function of the stiffness and inertia but
also a function of the angle between the force that the spring is acting and the joint. This is ultimately
then a function of joint angle θ.

For a rotational joint with a rotational spring and damper, the damping coefficient is related to
the stiffness and inertia of the joint by

ct = 2ξωn I, (15)

where I is the inertia of limb and ωn is the natural frequency of the system defined as

ωn =
√
(kT/I). (16)

If we enforce ξ = 1, then if we know the inertia and equivalent torsional stiffness, we can calculate
a torsional damping value to critically damp the system.

Our system, however, uses a linear spring and damper (Figure 11). To convert our linear spring
to a torsional spring, we use the idea of equivalent energy.

Figure 11. Concept of equivalent energy is used to convert between linear and torsional stiffness and
damping values.

1
2

ktθ
2 =

1
2

kx2 sin2(α). (17)

We need the sin(α) term to account for the fact that the spring is not acting perpendicular to this
joint. For small rotations, x = rθ, so
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1
2

ktθ
2 =

1
2

kr2θ2 sin2(α), (18)

and by canceling terms,

kt = kr2 sin2(α). (19)

Also, once we calculate a torsional damping value, it needs to be converted to a linear damping
value. This is done using an identical process and it can be shown that

c =
ct

r2 sin2(α)
. (20)

To enforce the idea that the joint should be critically damped for every movement, we calculate
many values of c over the joint’s angles of possible rotations and pick the largest one. This is important
because the angle of each joint affects the sin(α) term, which affects whether our system is critically
damped or not. The calculated value of c also depends on the inertia of the joint. For the most distal
joint, this value is constant, however, for other joints, it depends on the joint angle of distal joints.

So, the process starts with the most distal joint in each leg. The inertia of that joint is always
constant. We rotate the limb over the joint’s limits of rotations and use our tool KinematicOrganism to
calculate α, the angle between the joint and the spring. We then use Equation 15, Equation 16, Equation
19, and Equation 20 to find the associated c value to critically damp the system at that joint angle. We
then pick the largest calculated value of c for that joint.

For other joints, we must first find the joint angles of the more distal joints that maximize the
inertia of the current joint. For most cases, this involves fully extending the distal joints. Then, the
same process of rotating the current joint and picking the maximum calculated value of c is done.

Our calculated values were tested in AnimatLab 2 and worked as intended (Figure 12). Joints
were forced to positions away from equilibrium and allowed to passively rotate to their equilibrium
position. For these tests, the rest length of the spring was changed to allow to joint to rotate to joint
positions that were more susceptible to becoming under-damped based on the angle between the
spring and the joint α. The results of one of these tests is shown in Figure 12. Our calculated value
critically damps the system at the equilibrium position that is most prone to becoming under-damped.
Lowering the value of the damping coefficient slightly results in a slightly under-damped system.
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Figure 12. Joints with only Passive Spring and Damper are at least Critically Damped. Joints were
forced to positions away from equilibrium and allowed to passively rotate to equilibrium. Our
calculated value for the dampers are always at least critically damped (orange). Lowering the damping
value by 10% resulted in a slightly under-damped system (blue). For this joint (LM FTi), because of the
spring attachment point geometry it was found that the larger joint angles were more susceptible to
becoming under-damped, so data is shown for that portion of the range of motion.

ThC2 Joints

For each leg, the calculated values for the stiffness and damping coefficients using the above
process for the ThC2 joints were not used. Instead, the values for the ThC1 joint for that leg or
smaller values were used. This is because the ThC2 joints are all nearly vertical in the model. Because
these joints are oriented almost parallel to the applied force, the end-effector wrench and Jacobian
method resulted in large torque requirements, leading to unrealistically large stiffness coefficients
for these joints. It’s interesting to note that the muscles and network could still be tuned to control
these joints using the method outlined below, however, it took abnormally strong muscles producing
unrealistically large forces to control these joints. Because of this, we decided to use the same values
calculated from the ThC1 joints for each leg or other smaller values. The joints are close together, so
we hypothesized that the biomechanics providing the passive stiffness were similar.

Muscle Attachment Points

The original muscle attachment points used in Szczecinski’s model for his M.S. Thesis were
adjusted at this stage in the process. For some joints besides the ThC2 joints, the numbers calculated
using this method resulted in very large stiffness and damping values. For these joints, the muscle
attachment points were adjusted to result in more realistic stiffness and damping coefficients. Generally,
the muscle attachment points for these joints were very close to the limb, so the spring had a small
moment arm and a larger stiffness was required to produce the torque necessary to hold a static posture
without muscles. So, the muscle attachment points were moved slightly away from the joint’s point of
rotation until reasonable values for the stiffness and damping coefficients were calculated.

It was found that the muscle attachment points greatly affected the calculated stiffness and
damping coefficients (and the entire system in general). Modeling of muscle attachment points is an
important area of improvement and will be discussed more in future work.
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3.5.2. Passive Muscle Force Parameters

After tuning the spring coefficients, the next step was to add passive muscle components. The
parameters of interest for this section are muscle parameters kse, kpe, and b. That is, the stiffness of the
series and parallel components and the damping in the muscle. Ideally, we could come up with a set
of values that are biologically accurate, controllable, stable, and robust. In the paper, we state that we
chose specific values for these coefficients. In this section, we provide more detail on why we simply
chose specific values.

Values for these parameters vary widely from muscle-to-muscle and even from
organism-to-organism [50]. Different sources cite different values of these parameters measured on the
same muscle in the same joint (Figure 3 in [50], Figure 6 in [51]). In addition, large scale data is not
available for every muscle in every joint in the cockroach, and even if there was, using average values
as a model would lead to an inaccurate model [50]. When choosing these values, we need to think
on an individual-to-individual basis, not a muscle-to-muscle basis and definitely not use large data
averages. No individualized data is available for all of these parameter values for all of the muscles in
one cockroach. Therefore, we needed to develop a way to pick these parameter values.

Adding passive muscles complicated the dynamics, however, it was not possible to destabilize
the system. Also, it was found that after going through the rest of this design process, the performance
of the system using different parameter combinations of kse, kpe, and b was almost identical. This
was an important observation. Our Joint Position Controller can be optimized to control the muscles
regardless of their passive parameter values. So, picking these values became less of a question of
system performance and more of a question of picking parameter values that would induce the least
number of additional problems. The biggest problem that a “bad” set of parameter values could result
in was simulation instability.

It was found that if the value of b was too small or too large, the simulation required an extremely
small time step to run a stable simulation. The system itself was stable, but the simulation was not.
While this problem can be solved by simply lowering the time step, that solution was undesirable.
Because we are dealing with a small cockroach will small inertia values, a small time step was already
necessary to begin with. Lowering that time step even more would result in impractical simulation
run times.

Looking at the equation for muscle tension, this make sense. If the value of b is too small compared
to kse, then the we would be multiplying everything in parenthesis by a very large value. This would
result in a very large Ṫ that would destabilize the simulation at the next time step unless the time step
was short enough.

Large b values alone are not the solution to this issue, though. Yes, a larger b value lowers the
number that everything in parenthesis is multiplied by. But, it also increased the magnitude of the bẋ
term. For small b values, this term was a non-issue, but for relatively larger b values, this term had
the potential to blow up the simulation. These joints are moving fairly quickly, so the ẋ terms can get
relatively high. So, for larger b values, especially when paired with a relatively large kse value, the
simulation was also unstable.

The relative size of the passive parameters, especially the size between kse and b, was an important
factor in simulation stability. So, for SimRoach2, we picked values of kse and kpe, and then picked a
reasonable value of b to keep the simulation stable at the current time step.

As previously mentioned, the values of kse and kpe vary greatly from muscle-to-muscle and from
organism-to-organism. Guschlbauer cited kse and kpe values of approximately 6.32 N/m and 3.156
N/m (Figure 6 in [51]) while Blumel cited kse and kpe values of approximately 45 N/m and 11.24
N/m (Figure 3 in [50]). Knowing that either or any parameter choice would result in the same system
perforance after optimization, we chose kse and kpe values of 45 N/m and 11.24 N/m.

These values of kse and kpe were small enough to not induce any of the simulation stability issues
associated with a large b value. However, if b was too large, we would have an extremely over-damped
system that would require large muscle forces to control. As mentioned before, if the b value was
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too small relative to these values of kse and kpe, the simulation would be unstable. A b value of 0.1
Ns/m was chosen as a good value to keep the system from being too over-damped while keeping the
simulation stable, eliminating the need to lower the time step.

3.5.3. Active Muscle Parameters

Figure 13 shows an example of what one of our muscle activation curves looks like.

Figure 13. Example of one muscle activation curve used in this model. In this case, the amplitude of the
curve is 1 N. The rest of the parameters are constrained such that the curve looks similar to biological
data (See Figure 5 from [50]).

3.6. Results: Measuring the AEP and PEP During Walking

For each joint in each leg during walking, the joint angle at the AEP and PEP were measured.
To get these measurements, we looked at the beginning point and ending point of stance phase for
forward walking. Stance phase was defined as when that leg supported some body weight. Steps
that were considered too short were removed from this analysis. Simply taking the data points at
the exact point of stance to swing transitions was not robust and lead to large variances in the data.
Therefore, we looked at a small window around the transition points and took either the maximum
or the minimum value. If the joint extended during stance phase, we took the minimum of the AEP
window and the maximum of the PEP window. If the joint flexed during stance phase, we took the
maximum of the AEP window and the minimum of the PEP window. The ∆θ row was calculated by
subtracting the AEP from the PEP.
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