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Abstract: In this paper, a linearly approximate signal detection scheme is proposed in multiple input
multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems. The huge
MIMO-OFDM system, which uses many transmit antennas and high order modulation, requires
a detection scheme at the receiver with very low complexity for practical implementation.
In the proposed detection scheme, one N × N MIMO-OFDM system is divided into N/2 2 × 2
MIMO-OFDM systems for linear increase of complexity. After the partial zero-forcing (ZF), decision
feedback equalizer (DFE) and QR decomposition-M algorithm (QRD-M) are applied to each
2× 2 MIMO-OFDM system. Despite nonlinear detection schemes, the overall complexity of the
proposed algorithm increases almost linearly because the DFE and the QRD-M are applied to 2× 2
MIMO-OFDM systems. Also, the value of M in the QRD-M is fixed according to position of the center
point in constellation for efficient signal detection. In simulation results, the proposed detection
scheme has higher error performance and lower complexity than the conventional ZF. Also, the
proposed detection scheme has very lower complexity than the conventional DFE, with slight loss of
error performance.
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1. Introduction

Multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM)
system, which is a combination of the MIMO and OFDM, is a core technology for high speed mobile
communication systems. The MIMO systems provide a high channel capacity and high data rate,
without additional bandwidth and high transmit power when compared to single input-single output
(SISO) systems [1,2]. However, received signal is a mixed form of the several distorted transmit
signals that go through the fading channel. At the receiver, maximum likelihood (ML) detection has
optimal error performance [3,4]. The ML calculates the squared Euclidean distance (SED) between
the received signals and all of the reference signals in the constellation. However, the ML cannot
be implemented in the huge MIMO-OFDM system due to very high complexity. Unlike the ML,
the zero-forcing (ZF), which is popular for linear detection can be implemented easily in the huge
MIMO-OFDM system [5–8]. Also, ZF based decision fusion schemes have been studied for low
complexity in huge MIMO systems [9,10]. However, the error performance for the linear detection
scheme is poor as the number of transmit antennas increases and its error performance is not acceptable
in real-time systems. The decision feedback equalizer (DFE) and QR decomposition-M algorithm
(QRD-M), which are nonlinear detection schemes, have higher error performance than the linear
detection schemes [11–18]. Among several nonlinear detection schemes, the DFE and the QRD-M
use QR receiver for low complexity. However, the complexity for the nonlinear detection scheme
increases exponentially as the number of transmit antennas increases, and these algorithms cannot
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be implemented in the huge MIMO-OFDM systems. Specifically, the complexity for the QRD-M
increases exponentially when the modulation order is high, due to tree structures. In [19–22], many
detection algorithms were developed to reduce the complexity for tree search algorithms. In [19–21],
the proposed algorithms are based on sphere decoding (SD) and K-best decoding. These algorithms
have a very lower complexity than the conventional detection scheme and the ML, with similar error
performance. Specifically, [19,20] represented complexities as the average number of metric operations
at all layers with respect to signal-to-noise ratio (SNR). Also, the average number of metric operations
is decreased very sharply according to increased SNR. However, the number of metric operations
converges to certain point and the decrease of the complexity is limited although the value of SNR
goes to infinity. Also, [22] proposed the semidefinite relaxation (SDR) based scheme. However, the
complexity order is still high to use in the huge MIMO-OFDM system.

In this paper, linearly approximate signal detection scheme is proposed for easy implementation
in the huge MIMO-OFDM system. The proposed scheme is composed of three stages. The first stage
is partial ZF, which is a core scheme to reduce the whole complexity for the proposed algorithm.
The purpose of the partial ZF is that it divides one N × N MIMO-OFDM system into several 2× 2
MIMO-OFDM systems. After the partial ZF, the number of 2× 2 MIMO-OFDM systems is N/2.
The second and the third stages are DFE and QRD-M to increase the error performance because
noise power may be increased in the partial ZF. Also, the DFE and the QRD-M are applied to
2× 2 MIMO-OFDM systems, and it does not require high complexity. Due to the partial ZF, the
whole complexity for the proposed algorithm increases linearly according to the increased number of
transmit antennas.

2. System Model

In this system model, the MIMO-OFDM system has N transmit antennas and receive antennas.
Also, it is assumed that N = 2P(P ≥ 2) is considered where P is natural number, which is larger than
one. At the MIMO-OFDM transmitter, an input data is demultiplexed into N data substreams. Then, N
data substreams go through digital modulation, inverse fast Fourier transform (IFFT) for multi-carrier
transmission. Finally, guard interval (GI) is added to reduce the effect of inter-symbol interference (ISI)
and inter carrier interference (ICI). At the receiver, N × 1 MIMO received vector Y is as follows,

Y = HX + Z, (1)

where H is N × N rich scattering complex Rayleigh flat fading channel matrix, X is N × 1 transmit
vector, and finally, Z is N× 1 zero mean additive white Gaussian noise vector. The channel matrix H is
represented as follows,

H =


H11 H12 · · · H1N
H21 H22 · · · H2N

...
...

. . .
...

HN1 HN2 · · · HNN

, (2)

where an element Hij, i, j = 1, 2, . . . , N denotes channel coefficient from the j-th transmit antenna to
the i-th receive antenna. Also, each Hij, i, j = 1, 2, . . . , N is independent and identically distributed
(i.i.d) random variables.

3. Conventional Detection Schemes

In this section, conventional detection schemes are represented, i.e., ZF, DFE, and QRD-M, which
are basic schemes for explanation of the proposed detection.
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3.1. ZF

The ZF removes inter-antenna interference (IAI) perfectly by multiplying pseudo-inverse channel
matrix by received vector. The pseudo-inverse channel matrix G, which is a least square (LS) solution
to estimate the transmit signal, is as follows,

G =
(

HHH
)−1

HH . (3)

Then, the estimated MIMO transmit vector X̂ZF is as follows,

X̂ = GY = X + Z, (4)

where Z = GZ is a modified noise vector.

3.2. DFE

For higher error performance than the linear detection, the DFE uses ordered decision feedback
and successive interference cancellation at each layer. The DFE has three stages, i.e., ordering, QR
decomposition, and finally, decision feedback and IAI cancellation. At first, the DFE decides the
cancelling order with respect to the norm value of each row of the G in Equation (3) to minimize the
error propagation. Likewise, each column of the H is also ordered with respect to above order and the
ordered channel matrix HS is defined as follows,

HS = HU (5)

where U is column change matrix, which is composed of 1 and 0.
Then, HS is decomposed by using QR decomposition. In the QR decomposition, Q denotes

unitary quadrature matrix, which is satisfied with QHQ = I and R denotes the upper triangular matrix.
The QR decomposition of the HS is as follows,

HS = QR

=


Q11 Q12 · · · Q1N
Q21 Q22 · · · Q2N

...
...

. . .
...

QN1 QN2 · · · QNN




R11 R12 · · · R1N
0 R22 · · · R2N
...

...
. . .

...
0 0 · · · RNN

.
(6)

Using Equation (6), the MIMO received vector in Equation (1) can be rewritten as follows,

Y = HX + N = HSXS + N = QRXS + N, (7)

where XS = U−1X is ordered transmit vector.
Multiplying QH on both sides of Equation (7), the resulted N × 1 vector V is as follows,

V = QHY = RXS + Ñ, (8)

where Ñ = QHN is modified noise vector which has the same statistical property as existing noise
vector N because Q is unitary orthogonal matrix.
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The vector form of V without noise is as follows,
V1

V2
...

VN

 =


R11 R12 · · · R1N
0 R22 · · · R2N
...

...
. . .

...
0 0 · · · RNN




XS,1

XS,2
...

XS,N

. (9)

Finally, decision feedback and interference cancellation are operated from the bottom layer to the
top layer in Equation (9). The estimated MIMO transmit symbol at the n-th layer X̂n is as follows,

X̂S,n = Q

((
Vn −

N

∑
i=n+1

RniX̂i

)
/Rnn

)
, (10)

where Q(·) denotes quantization operator.
To estimate the MIMO transmit vector, X̂S is multiplied by U as follows,

X̂ = UX̂S. (11)

The DFE has higher error performance than the ZF due to detection ordering. However, the
complexity of the DFE is higher than the ZF.

3.3. QRD-M

In Equation (9), |S| times SEDs between ZN and reference symbol Ck, k = 1, 2, · · · |S| are calculated
at the N-th layer, where |S| is constellation size. The SED between ZN and the k-th reference symbol Ck
is as follows,

EN,k = |VN − RNNCk|2. (12)

With respect to k in Equation (12), the SED vector EN is as follows,

EN =
[

EN,1 EN,2 · · · EN,|S|

]
. (13)

In Equation (13), the small M values are selected and its corresponding symbols are selected
as candidate symbols at the N-th layer. The selected M candidates are extended to the (N − 1)-th
layer. At the m(1 ≤ m ≤ N − 1)-th layer, M|S| times SEDs are calculated. However, accumulated SED
(ASED) is calculated for accurate estimation. The ASED between Vm and Ck, which considers the
ASED for the dm+1-th candidate symbol, is as follows,

Edm+1
m,k =

∣∣∣∣∣Vm −
(

RmmCk +
Nt

∑
i=m+1

RmiX̂
di
i

)∣∣∣∣∣
2

+ Edm+2
m+1,dm+1

, (14)

where X̂di
i is temporarily estimated symbol at the i-th layer corresponding to the di-th candidate symbol.

At the first layer, transmit symbols are estimated by selecting the candidate that has the smallest ASED
with respect to k.

Figure 1 shows the tree structure of the conventional QRD-M (M = 2) in 4× 4 MIMO-OFDM
system using quadrature phase shift keying (QPSK) modulation. In Figure 1, bold circles are candidate
symbols at each layer. The complexity of the conventional QRD-M increases exponentially in huge
MIMO-OFDM systems because the conventional QRD-M calculates M|S| times ASEDs at each layer.
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Figure 1. The tree structure of the conventional QR decomposition-M algorithm (QRD-M) (M = 2)
in 4 × 4 multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system using
quadrature phase shift keying (QPSK) modulation.

4. Proposed Detection Scheme

To reduce the complexity of nonlinear detection scheme, the proposed detection scheme is
composed of three stages, i.e., partial ZF (slightly different to the conventional ZF in Section 3.1), DFE,
and QRD-M. For easy understanding and detailed explanation, the proposed detection scheme is
explained in 4 × 4 MIMO-OFDM system without noise vector as follows,

Y1

Y2

Y3

Y4

 =


H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44




X1

X2

X3

X4

. (15)

4.1. Partial ZF Stage

The partial ZF stage nulls not all signals unlike the conventional ZF. The purpose of the partial ZF
is to simply divide 4× 4 channel matrix into two 2× 2 channel matrices by using cancelling process.
That is, one matrix contains only X1 and X2, another matrix contains only X3 and X4. The cancelling
process is as follows, [

Ỹ3

Ỹ4

]
=

[
Y1

Y2

]
−WT

[
Y3

Y4

]
, (16)

where W =

[
w11 w12

w21 w22

]
is a weight matrix as follows,

[
H31 H32

H41 H42

]T[
w11 w12

w21 w22

]
=

[
H11 H12

H21 H22

]T

. (17)
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The modified received vector
[

Ỹ3 Ỹ4

]T
in Equation (16) is as follows,

[
Ỹ3

Ỹ4

]
=

[
H̃31 H̃32

H̃41 H̃42

][
X3

X4

]
, (18)

where H̃ij is modified channel coefficient.
From above results, the received vector has only X3 and X4. So, the dimension of the modified

channel matrix in Equation (18) is half of the dimension of existing channel matrix in Equation (15).
The modified channel matrix is as follows,[

H̃31 H̃32

H̃41 H̃42

]
=

[
H13 H14

H23 H24

]
−WT

[
H33 H34

H43 H44

]
. (19)

Likewise, another modified received vector
[

Ỹ1 Ỹ2

]T
which has only X1 and X2 is obtained in

a similar method. Another modified received vector is as follows,[
Ỹ1

Ỹ2

]
=

[
H̃11 H̃12

H̃21 H̃22

][
X1

X2

]
+

[
Z̃1

Z̃2

]
(20)

Therefore, the original 4 × 4 MIMO-OFDM system is divided into two 2 × 2
MIMO-OFDM systems.

4.2. DFE Stage

The conventional DFE in Section 3 is applied to the two systems in Equations (18) and (20),
respectively. So, the complexity of the DFE stage is lower than the conventional DFE, which is simply
applied in original 4× 4 MIMO-OFDM system. After the DFE stage, all of the transmit symbols from
X̂1 to X̂4 are initially estimated.

4.3. QRD-M Stage

The QRD-M is applied to the two MIMO-OFDM systems in Equations (18) and (20). For low
complexity QRD-M, the value of M is fixed with respect to the used modulation order, like Figure 2.
Figure 2 shows the method for candidate selections in the 16-quadrature amplitude modulation (QAM)
constellation with respect to three cases. The candidates are both center point (black colored circle)
and neighbor points (dash-lined circles). The center point is a symbol, which is estimated by the DFE
stage, as shown in Section 4.2. Also, the neighbor points are symbols that are within one point from
the center point. The case (a) is that the center point is in the middle of the constellation and the case
(b) is that the center point is in the edge of the constellation. Finally, the case (c) is that the center
point is the nearest point from the edge point. The value of M is different according to the estimated
center point, and it is fixed as 5, 4, 6 for cases (a–c), respectively. The neighbor points may have high
probability for the original transmit symbol if the DFE stage fails to estimate the accurate transmit
symbols. From the QRD-M, all of the transmit symbols are estimated again and all processes of the
proposed detection scheme are completed. With a slight increase of the complexity, the estimated
symbols are more reliable than the estimated symbols in the DFE stage. Table 1 represents the number
of complex multiplications for the proposed detection scheme in N × N MIMO-OFDM system. Also,
it is assumed that one multiplication between two complex numbers requires four real multiplications.
Finally, Figure 3 shows the flow chart for the proposed detection scheme. It is composed of three stages
which are explained in Sections 4.1–4.3.
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Table 1. The number of complex multiplications ZF: zero-forcing; DFE: decision feedback equalizer;
QRD-M: QR decomposition-M algorithm).

Detection Scheme The Number of Complex Multiplications

Conventional ZF 8N3 + 4N2

Conventional DFE 12N3 + 4N2 + 4
N
∑

k=2
(k + 1) + 4

Proposed scheme (Partial ZF stage)
N/2
∑

n=2

(
12n2 + 4n

)
N (n = 2, 4, 8, · · · , N/2)

Proposed scheme (DFE stage) 64N

Proposed scheme (QRD-M ZF stage)
(
4M2 + 8M

)
N

Group Iterative Linear ZF in [7] 14N3 + 8N2

Hybrid ZF and QR Receiver in [8] 15N3 + 6N2 + 4
N/2
∑

k=2
(k + 1) + 4

Hybrid dynamic QRD-M and ZF in [16]

12N3 + 4N2(1 + dN/3e) +

4N
(
dN/3e2 + dN/3e

)
8L + 4LM

Nt−dN/3e+1
∑

l=2
(l + 1)

where dN/3e denotes the integer number which is
larger than N/3 or equal to N/3.
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5. Simulation Results

This section shows the simulation results for bit error rate (BER) performance and complexity.
In the simulation results, the used modulation scheme is 16-QAM. Also, the number of used total
subcarriers is 128 and length of the cyclic prefix (CP) is 32. Figure 4 shows the BER performances
for the conventional ZF, DFE, and proposed detection scheme in 4× 4 MIMO-OFDM system. In this
simulation, the transmit symbols go through 7-path Rayleigh fading channel. The proposed detection
scheme uses MMSE based detection for robustness to noise effect and higher error performance.
For the MMSE, the estimation of the noise power is very simple and it does not cause high complexity
to the overall systems. Also, the BER performance for the ML is shown for comparison. The BER
performance for the proposed detection scheme is higher than the conventional ZF because the DFE
and QRD-M stages are helpful for the accurate estimation of transmits symbols with slight addition
of the complex multiplications. Also, the BER performance for the proposed detection scheme is
slightly lower than the conventional DFE at low SNR because the noise is amplified in the partial
ZF and it causes severe error propagations. However, the gap of the BER performances between the
conventional DFE and the proposed detection scheme becomes small, according to increased SNR.Appl. Sci. 2017, 7, x FOR PEER REVIEW    9 of 12 
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MIMO-OFDM system (BER: bit error rate; ML: maximum likelihood).

Figure 5 shows the BER performances for the conventional ZF, DFE and proposed detection
scheme in 8× 8 MIMO-OFDM system. For various environments, the transmit symbols go through
10-path Rayleigh fading channel. Also, the BER performance for the ML is shown for comparison.
Like in 4× 4 MIMO-OFDM system, the BER performance for the proposed detection scheme is higher
than the conventional ZF, and is lower than the conventional DFE at low SNR. As a result, the error
performance for the proposed detection scheme is slightly decreased, according to the increased
number of transmit antennas due to severe noise enhancement in the partial ZF stage. However, the
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complexity for the proposed scheme is increased almost linearly, according to the increased number of
transmit antennas. This result is shown in Figure 6.
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For further comparisons, Tables 2 and 3 compare the error performance and the complexity for the
proposed detection scheme with the proposed simplified ML decoding (SMLD) in [3]. The number of
transmit and receive antennas is four and eight. Also, the used modulation is 16-QAM. The parameter V
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denotes the number of candidate symbols at the top layer in the DFE algorithm. The error performance
and complexity increase nonlinearly, according to increased V. Table 2 represents the required SNR to
obtain the BER performance for 10−3. The required SNR for the SMLD is decreased according to the
increased number of transmit antennas. However, the required SNR for the proposed detection scheme
is increased according to the increased number of transmit antennas because the noise enhancement
is very severe in the partial ZF stage. In a similar way, Table 3 represents the required number of
complex multiplications. Like Table 2, the number of complex multiplications for the SMLD is variable
according to V. The required number of complex multiplications for the proposed detection scheme
increases linearly. according to the increased number of transmit antennas relative to the SMLD due to
the partial ZF stage.

Table 2. The required signal-to-noise ratio (SNR) to obtain the BER performance for 10−3 (BER: bit
error rate; QAM: quadrature amplitude modulation; ML: maximum likelihood).

Detection Scheme Nt = Nr = 4
Modulation: 16-QAM

Nt = Nr = 8, 16-QAM
Modulation: 16-QAM

Low complexity ML V = 1 V = 8 V = 16 V = 1 V = 8 V = 16

29 dB 25.5 dB 25 dB 27 dB 25 dB 24.5 dB

Proposed scheme 33 dB 36 dB

Table 3. The required number of complex multiplications (SMLD: simplified ML decoding).

Detection Scheme Nt = Nr = 4
Modulation: 16-QAM

Nt = Nr = 8
Modulation: 16-QAM

SMLD
V = 1 V = 8 V = 16 V = 1 V = 8 V = 16

892 1284 1732 6708 8836 11268

Proposed scheme 1089 3842

6. Conclusions

This paper proposes linearly approximate signal detection scheme in the MIMO-OFDM system.
At the first stage, the proposed detection scheme uses the partial ZF to increase the complexity linearly.
The partial ZF divides the huge MIMO-OFDM system into N/2 2× 2 MIMO-OFDM systems. After the
partial ZF, the conventional DFE and QRD-M are used. The conventional DFE and QRD-M have
high complexity in the huge MIMO-OFDM system. However, these nonlinear detection schemes are
applied to 2× 2 MIMO-OFDM systems, and it makes the whole complexity linear. The simulation
results show that the proposed detection scheme has a higher error performance than the conventional
ZF and slightly lower error performance than the conventional DFE. Also, the required number of
complex multiplications for the proposed detection scheme is lower than the conventional ZF and
the conventional DFE, according to the increased number of transmit antennas due to the partial ZF
divides the huge MIMO-OFDM system into several small MIMO-OFDM systems. Therefore, the whole
complexity for the proposed algorithm increases linearly, although the number of transmit antennas
increases. The proposed algorithm can be widely used in the huge MIMO-OFDM systems that require
very low complexity for practical implementations.
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