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Abstract: Infrared smoke screen has been playing an important role in electro-optical countermeasures
on the battlefield. Smoke transmittance is one of the most important parameters which can evaluate the
obscuration performance of smoke. In this paper, an efficient numerical approach for field infrared
smoke transmittance based on grayscale images is presented. Firstly, a field trial experimental setup
is introduced. Then a grayscale smoke transmittance mathematical model is deduced and built.
In addition, an image processing algorithm is used to extract the gray values of certain pixel points
from grayscale images, and the positions of the selected points are discussed. Lastly, a field trial
sample calculation is included to illustrate the procedure of the proposed method. The results prove
to be of enough precision for engineering applications, and the method has greatly simplified the
field trial process, thus improving efficiency.
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1. Introduction

A smoke screen is a cloud of smoke released into the air to mask the movement or location of
military units such as infantry, tanks, aircraft, or ships. Smoke screens are usually either deployed
by a canister (such as a grenade) or generated by a vehicle (such as a tank or a warship) [1,2].
As a practical and cost-effective countermeasure on battlefield operations, the infrared smoke screen,
has long been employed tactically to protect land and naval targets from hostile threats [1–5]. With the
rapid development of smoke techniques, questions arise as to the performance of smoke against
electro-optical equipment in general [6–8]. Therefore, methods that can practically evaluate the
effectiveness of a smoke screen, especially in the field trial, are of great interest.

Smoke transmittance, which provides an objective and quantitative evaluation criterion,
is a key parameter for evaluating the interference capability of smoke screen [9–12]. In previous
smoke transmittance measurement studies, traditional methods rely on a spectrometer to receive
point-to-point target radiation in line of sight, so field of view is limited to a narrow area due to
equipment specifications [13–16]. However, the dynamic smoke cloud in the field trial usually covers
a wide area and diffuses with atmospheric turbulence over time. Thus, in order to evaluate smoke
screening performance comprehensively, infrared imaging techniques, which are extensively applied in
electro-optical instrumentations, have been introduced to facilitate smoke research. Infrared imaging
techniques have the advantages of a larger field of view, simulating the actual combat scene and
allowing us to handle heterogeneous smoke clouds and smoke diffusion [17]. With the grayscale
images provided by a thermal infrared imager, we can analyze the target radiance by extracting the
pixel gray value and thus evaluate screening performance of the smoke. Until now, there has not been
a universal and convincing method to assess the overall field trial smoke screen performance in any
open literature.
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The approach introduced in this paper utilizes a thermal infrared imager to output real-time
grayscale images of target scene. An infrared target array is set to provide target radiance information.
According to the theory of infrared transmission and infrared imaging calibration, a grayscale smoke
transmittance model is then put forward. By analyzing the images frame by frame, field smoke
transmittance can finally be calculated using the mathematical model.

2. Experimental Setup

The field trial described in this paper is illustrated in Figure 1 below. The experiment site consists
of three parts: an infrared radiation target array, a smoke release site, and an observation site.
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Figure 1. Schematic diagram of field trial.

Standard blackbodies, which can emit electromagnetic radiation as targets, were placed in lines
and columns vertically to form an n × m infrared signal array. Here, n stands for the number of
columns in the target array, and m means the number of lines. The infrared signal array intends to
cover most of the smoke diffusion path to provide more target information. In order to determine the
size of infrared signal array, the size of the smoke cloud and atmospheric turbulence at the scene need
to be taken into account.

According to the infrared blackbody calibration theory, the geometrical resolution on the
blackbodies at the given range should be at least twice but preferably four to five times the geometrical
resolution of the system (IFOV) [18]. Therefore, the distance between two blackbodies in the infrared
signal array was set to be five times the geometrical resolution of the system.

The distance between the observation site and the smoke release site was selected to get the
optimum spatial resolution for imaging systems. At the observation site, images of the infrared signal
array during the smoke diffusion process were recorded by a thermal infrared imager. When the
smoke cloud covers certain targets, the smoke transmittance can be evaluated by comparing the targets
radiation before and after smoke release.

3. Principles of Numerical Approach

3.1. Grayscale Smoke Transmittance Model

The fundamental equation of smoke transmittance is shown below, according to the theory of
infrared radiation transmission [19].

τsmk =
Lre

Ltar
(1)

where τsmk means smoke transmittance, Ltar refers to the infrared radiance of the target that the
infrared detector receives before the attenuation of smoke, Lre stands for the residue target radiance
that infrared detector receives under the attenuation of the smoke screen.
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Theoretically, smoke transmittance can be accurately calculated based on Equation (1).
However, it is impractical to measure Ltar and Lre directly in the field trial due to environmental
factors. As evident, every nonzero temperature object in nature will emit electromagnetic energy
spontaneously [20]. Thus, targets, background, and smoke cloud itself are all electromagnetically
radiant. The incident radiation that thermal infrared imager receives is the total amount of radiation in
line of sight, and the infrared detector cannot quantitatively distinguish the amount of radiation from
the target. In order to obtain the true value of Ltar and Lre in Equation (1), some other parameters are
introduced to represent them as below.

The total radiance that the infrared detector receives before smoke interference in line of sight can
be obtained from

L(r0) = Ltar + Lsur (2)

where L(r0) stands for the total radiance that the infrared detector receives before smoke interference
in line of sight. This not only includes the radiation from the target Ltar but also consists of radiation
from the surrounding Lsur, such as the background, the sun, and the sky.

The total radiance that the infrared imager receives after the release of smoke in line of sight can
be obtained from

L(r) = L′tar + L′sur + Lsmk (3)

where L(r) refers to the total radiance that the infrared imager receives after the release of smoke in
line of sight, and it contains the target remaining radiance after attenuation by the smoke L′tar and
surroundings radiance L′sur. In addition, the radiation from the smoke itself Lsmk is also included.

Substituting Equations (2) and (3) into Equation (1), the smoke transmittance calculation equation
is expressed as follows:

τsmk =
L(r)− L′sur − Lsmk

L(r0)− Lsur
. (4)

For the purpose of calculating smoke transmittance, five radiance variables in Equation (4) have
to be determined first. With the field trial images provided by the infrared imager, the gray value of
each pixel in the image can be extracted by an image processing algorithm. Consequently, a method of
converting the radiance to a corresponding gray value in infrared images is proposed here.

According to the infrared radiance calibration and the relevant infrared physics information, the
relationship between the target’s radiance in the field and its corresponding gray value in the image is
as follows [21]:

L = aG + Lo f f (5)

where L stands for target’s radiance, G is the corresponding gray value in the infrared image, a is a
coefficient relating radiance to gray level, and Lo f f refers to the radiance offset. For the same model of
thermal infrared imager equipment, a and Lo f f are constants.

Substituting Equation (5) into Equation (4), the mathematical model of smoke transmittance based
on gray value can be finally concluded as

τsmk =
G(r)− (G′sur + Gsmk)

G(r0)− Gsur
(6)

where G(r0) is the total gray value of the target before smoke interference in line of sight; G(r) is the
total gray value of the target under the interference of smoke in line of sight; Gsur is the gray value
of the target’s surrounding background before the interference of the smoke screen; G′sur is the gray
value of the surrounding background under the influence of smoke; Gsmk is the gray value of the
smoke itself.
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3.2. Selections of Positions

Once the coordinates of the points in an image are determined, the gray value of each points
can be obtained by the image processing method [22]. In Equation (6), G(r0) and G(r) can be directly
obtained by extracting the gray value of the corresponding target pixel point in the image. Gsur and
G′sur + Gsmk need to be estimated by extracting the gray value of the surrounding points of the target,
which will be disscussed in this section.

The principle of selecting positions of Gsur and G′sur + Gsmk is based upon the theory that choosing
the surrounding points of targets that can represent the background conditions of targets. The midpoint
between targets was set to be twice the geometrical resolution of the system (IFOV) away from the
target. In this way, the midpoint is close enough to the target to represent its background condition.

Figure 2 below shows the schematic picture for the selection of positions without a smoke screen.
In Figure 2, the red points stand for standard blackbodies used as targets, and blue points represent
the midpoints near targets. The total gray value of each target G(r0) can be directly obtained by
extracting the pixel gray value of the corresponding red point in the infrared image. In addition,
the environmental condition of nearby blue points is similar to that of the target, so the gray value from
the environment Gsur of each target can then be estimated by the gray value of a certain nearby blue
point, or the mean gray value of the surrounding blue points in the image. By the method mentioned
above, G(r0) and Gsur can be obtained, and the denominator in Equation (6) remains a constant value
during the calculation process.
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Figure 2. The selection of positions of G(r0) and Gsur (no smoke).

Figure 3 shows the schematic picture of the selection of positions under the influence of smoke.
After being released, smoke spreads out gradually and starts to obscure certain targets. In this
circumstance, the total gray value of target G(r) can be acquired by extracting the gray value of
the red point in the infrared image. In addition, the gray value of the environment and smoke itself
under the influence of smoke G′sur + Gsmk can also be estimated by the gray value of a certain nearby
blue point, or the mean gray value of the surrounding blue points in the image.
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Provided that all the variables required in Equation (6) are all obtained by the method mentioned
above, the infrared smoke transmittance of each obscured target during the smoke diffusion process
can then be calculated.

Moreover, the number of surrounding midpoints to represent target background condition also
needs further study. In this paper, we propose three different algorithms to calculate the background
condition of the target. The three value computing methods are shown in Figure 4 as follows:
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4. Results and Discussion

With the field experiment setup and grayscale smoke transmittance model introduced above,
a field trial example is illustrated and discussed in this section. A flow chart of the approach is shown
in Figure 5 below.
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Figure 5. Field smoke transmittance trial flow chart.

First of all, a video of the target scene is input into the Matlab computer software
(R2012a, Mathworks, Natick, MA, USA); secondly, the grayscale image is converted into a binary image
for the convenience of target positioning; thirdly, the motion path of dynamic smoke is tracked and
recorded in the image; lastly, the smoke transmittance of each target is calculated based on the grayscale
smoke transmittance model, and an n×m smoke transmittance matrix can be output at each image
frame. Thus, a smoke transmittance matrix cube containing a smoke transmittance matrix of each
frame is formed in the end. Combined with the transmittance threshold, we can demonstrate whether
the target is efficiently obscured by a smoke screen during anytime of the smoke diffusion process.

In order to observe the variation trend of smoke transmittance, we chose 8 targets that were exactly
within the smoke transport and diffusion path as study objects according to the video. In Figure 6,
targets circled in red are the selected study objects to output its smoke transmittance variation graph.
By using the three value computing methods mentioned in Section 3, smoke transmittance curves
were obtained and are shown in Figure 7.
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In Figure 7, calculation curves are almost consistent with the theory analysis. The smoke
transmittance remains 1 at first, when there is no block of radiation in line of sight. After the release of
smoke, smoke transmittance gradually drops to nearly 0 due to the obscuration effect of the smoke
cloud. When the smoke cloud continues to drift out of the target area with the wind, the transmittance
finally recovers to 1 again.

In theory, the true value of transmittance should be between 0 and 1. According to the three value
computing methods shown in Figure 7, methods (a) and (b) have large relative errors compared with
method (c). For example, in (5) and (8) of Figure 7, the value of transmittance by method (a) even
reaches −0.3 and 1.3 at 5 s, respectively. This is because a smoke cloud forms and has very intense
infrared radiance. Since method (c) extracts more samples adjacent to the target, the value it calculates
is closer to the true value of the background condition. Thus, it is suggested that method (c) be applied
to calculate the background condition of targets.

Based on the infrared images and grayscale smoke transmittance model, the smoke transmittance
of the study objects can be calculated at any time. Figure 8 below is the image of the target scene at
9.72 s, and Table 1 below describes the smoke transmittance at each target.
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Table 1. Smoke transmittance of study objects at 9.72 s.

Number 1 2 3 4 5 6 7 8

Transmittance 0.66 0.19 0.59 0.11 0.89 0.12 0.19 0.98

5. Conclusions

This study investigated the numerical approach of field infrared smoke transmittance based on
grayscale images. Experiment results show that this approach can provide great help in the evaluation
work of field smoke performance. According to the findings of the study, the following conclusions
can be made:

(1) With the help of the field target array and one thermal infrared imager, a method for testing
smoke transmittance is put forward, which efficiently solves the difficulty of measuring smoke
transmittance in the field trial.

(2) The infrared radiance of the target and the background in the field trial can be expressed by a
corresponding gray value in the infrared image to some extent.

(3) The selection of positions of G(r) and G′sur + Gsmk is discussed. Three different value computing
methods of the background position are compared, which provides a recommendation of
choosing the mean value of midpoints circled around the target to represent the background
gray value.
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