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Featured Application: This paper introduces the application of metallic 3D printing technology
to fabricate K-band-stepped, double-ridged horn antennas. The proposed antennas feature
comparable performance with commercial counterparts with lower cost and a reduced turn-
around time.

Abstract: This paper presents K-band-stepped, double-ridged square horn antennas fabricated by
metallic 3D printing technology in copper (85% copper and 15% stannum) and aluminum alloy
(89.5% aluminum, 10% silicon, and 0.5% magnesium). Compared with the popular dielectric 3D-printed
horn antenna, the metallic counterpart features better mechanical robustness in terms of material.
Moreover, the metallic horns are printed in one piece in one run, different from the dielectric horns that
are printed in split pieces and electroplated, they simplify the process and thus result in reduced cost.
The agreement between the simulation and measurement results verified the antenna’s performance.
Both the 3D-printed copper and aluminum alloy antenna have an impedance bandwidth across the
K-band, with a maximum gain of 13.23 dBi @ 25 GHz and 13.5 dBi @ 24 GHz, respectively. The metallic,
3D-printed horn antennas are preferable alternatives to replace traditionally-fabricated antennas.
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1. Introduction

The 3D printing technology, invented in 1980s, is catching attention recently because of its
eco-friendliness, short turn-around time and versatility with complex structures [1–3]. In terms of
materials, 3D printing technology can be categorized as dielectric and metallic, both of which feature
merits as well as drawbacks. Dielectric 3D printed parts usually bear low material and process costs.
The low body mass is the other advantage which is highly appreciated in space engineering due to the
tightly controlled payload. However, the weak mechanical robustness and the electrostatic discharge
(ESD) from dielectric 3D printed parts are the major concerns under harsh circumstances. For the
metallic 3D printed parts, the mechanical weakness and ESD might not be observed, while the heavy
body mass and comparatively high material cost are not desirable.

The horn antenna is widely used in microwave engineering. The traditional way to fabricate
horn antennas is computer numerical control (CNC) machining [4], electrical discharge machining
(EDM), deposition technology and stacked ring technology [5]. CNC is the most popular, especially
for fabricating low-frequency horns. EDM and deposition are often used for terahertz (THz) antenna
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fabrication because of the required tight dimensional tolerance. The stacked ring technology is limited
to producing horns with small physical dimensions, due to the ring alignment problem. Recently,
3D printing technology has been attempted for horn antenna fabrication. For example, Timbie reported
a dielectric 3D-printed, W-band (75–110 GHz) corrugated horn antenna, which was first printed in split
pieces, then metal plated and finally assembled [6]. Chieh proposed a Ku-band (10–16 GHz) corrugated
horn antenna by dielectric 3D printing [7], which went through the same process as [6]. Bieren managed
to take advantage of this technology to print an H-band dielectric horn antenna [8]. The metallic 3D
printing technology was first used for horn antenna fabrication in 2012 by Garcia [9], who printed
Ku-band horn antennas using electron beam melting (EBM) turned up with 25.9 um surface roughness
by an un-optimized post-process. The working principle of EBM (i.e., the high pre-heat temperature
and the pre-sintering of the powder bed) is the main cause of the relatively poor surface finishing
compared to laser-based powder processes. Guo and Zhang pushed the upper limit of the metallic 3D
printed horn antenna up to the H-band (220–325 GHz) [10–12]. They used selective laser melting (SLM)
to print a series of millimeter-wave (mmWave) and terahertz (THz) passive devices of comparable
performance with commercial ones. Gordon demonstrated a metallic 3D-printed corrugated horn
antenna at the F-band (110–140 GHz) for CubeSat application [13]. Ignatenko presented a metallic
3D-printed K-band horn as the feeder for a Luneberg lens [14].

The aforementioned dielectric, 3D-printed, corrugated horn antennas are usually printed in split
pieces, then metal plated and assembled, which brings in complexities process-wise. The metallic,
3D-printed corrugated horn antenna was printed in a whole piece in one run [13], however, the surface
finishing of roughness Ra = 125 um was far from satisfactory. In this paper, taking advantage of an
optimized 3D printing technology, we propose two K-band-stepped, double-ridged horn antennas in
aluminum alloy (89.5% aluminum, 10% silicon, and 0.5% magnesium) and copper (85% copper and
15% stannum). This paper is organized as follows. Section 2 explains the design and fabrication of the
antennas. Section 3 introduces the characterization of the antennas. Section 4 concludes the paper.

2. Design and Fabrication of the Antennas

The corrugated horn is used either as a single radiator or as the feed for a parabolic reflector
for its symmetric pattern, low side lobe level and low cross-polarization. The corrugations are
designed to excite high order modes such that the field distribution on the aperture demonstrates
a hybrid HE11 mode. To achieve acceptable matching across the whole K-band of the horn, ridges are
designed to extend the impedance bandwidth toward the lower side band. From the perspective
of electromagnetics, the ridges form a parallel-plate structure that supports the propagation of the
transverse electro-magnetic (TEM) mode, which has a zero cut-off frequency. As a result, the impedance
bandwidth of the horn is extended downwards. To model the ridges in an equivalent circuit,
they function as a shunt capacitor that is generally a low-pass device. Hence, the impedance bandwidth
is also extended toward the low frequency.

Figure 1 shows the geometries of the K-band, corrugated, ridged, square horn antenna. It is
composed of a WR-42 rectangular waveguide (10.7 mm × 4.3 mm) interface, a standard UBR 220 type
flange, a rectangular-to-square waveguide taper and the stepped double ridged horn. In Figure 1a,
the horn is laid referring to the coordinate origins on the flange. The H-plane of the horn is on x-o-z
as in Figure 1b, while the E-plane is on y-o-z in Figure 1c. Since the horn is designed as a linearly
polarized horn, as well as for the ease of fabrication, only two ridges were applied on the E-plane to
support the propagation of the TEM mode. Table 1 lists the geometries of the horn.
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Figure 1. Geometries of the 3D-printed, K-band-stepped, double-ridged square horn antenna: (a) three 
dimensional view; (b) E-plane view; (c) H-plane view. 
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using aluminum alloy and copper, respectively. They were printed along the z-direction in a whole 
piece in one run, which eliminates the necessity for post electro-plating and assembly compared with 
the dielectric 3D printed horns. The outer surface of the horns were polished by post processes. The 
inner surface of the horn, which was indeed the functional surface, was left untouched to maintain 
the sound structure of the steps and ridges. Outperforming the 125 um surface roughness of the 
reported powder bed fusion (PBF) technology in [13], the SLM technology used in this paper turned 
out to be 6 um and 3 um for the aluminum alloy and copper horns respectively on the inner surface. 
The flange interface is milled for a tight connection with the vector network analyzer (VNA) extender. 
Figure 2a,b show the horns from the outlook; the post-polishing endows them with a shiny 
appearance. Figure 2c,d present the horns from the aperture, in which the corrugations and ridges 
are seen. However, for the unprocessed inner surface, the roughness is much worse than the outer 
surface. The milled flanges are shown in Figure 2e,f. The roughness on the waveguide opening in 
both cases gives alternative views on the process tolerance. The roughness on the waveguide interface 
may give rise to increased reflection, unwanted passive intermodulation (PIM) and conductor loss. 

Figure 1. Geometries of the 3D-printed, K-band-stepped, double-ridged square horn antenna: (a) three
dimensional view; (b) E-plane view; (c) H-plane view.

Table 1. Geometries of the horn.

Parameters (mm) Parameters (mm) Parameters (mm) Parameters (mm)

d1 9 d2 17 l1 4.83 l2 13.73
l3 18.87 ld1 4 ld2 2 rl1 4
rl2 2 rl3 2 rl4 2 rl5 2
rl6 2 rl7 2 rl8 2 rl9 2
rt1 0.5 rt2 0.5 rt3 0.5 rt4 0.5
rt5 0.5 rt6 1.5 rt7 0.5 rt8 0.5
rt9 0.5 sl1 2 sl2 2 sl3 2
sl4 2 sl5 2 sl6 2 sl7 2
st1 0.5 st2 0.5 st3 0.5 st4 0.5
st5 0.5 st6 0.5 st7 0.5 t 2
wr 1

To verify the design, the horn was printed with the selective laser melting (SLM) technology using
aluminum alloy and copper, respectively. They were printed along the z-direction in a whole piece
in one run, which eliminates the necessity for post electro-plating and assembly compared with the
dielectric 3D printed horns. The outer surface of the horns were polished by post processes. The inner
surface of the horn, which was indeed the functional surface, was left untouched to maintain the sound
structure of the steps and ridges. Outperforming the 125 um surface roughness of the reported powder
bed fusion (PBF) technology in [13], the SLM technology used in this paper turned out to be 6 um and
3 um for the aluminum alloy and copper horns respectively on the inner surface. The flange interface
is milled for a tight connection with the vector network analyzer (VNA) extender. Figure 2a,b show
the horns from the outlook; the post-polishing endows them with a shiny appearance. Figure 2c,d
present the horns from the aperture, in which the corrugations and ridges are seen. However, for the
unprocessed inner surface, the roughness is much worse than the outer surface. The milled flanges
are shown in Figure 2e,f. The roughness on the waveguide opening in both cases gives alternative
views on the process tolerance. The roughness on the waveguide interface may give rise to increased
reflection, unwanted passive intermodulation (PIM) and conductor loss.
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Figure 2. Photographs of the 3D-printed, K-band-stepped, double-ridged square horns. The aluminium 
alloy horn: (a) outlook; (c) aperture view; (e) flange view. The copper horn: (b) outlook; (d) aperture 
view; (f) flange view. 
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The input impedance of the printed antennas were measured using a Rohde & Schwarz ZVA 50 
VNA. The directivity and radiation patterns were measured in a far-field setup in an anechoic 
chamber. Figure 3a compares the simulated and measured |S11| of the 3D-printed antennas. The 
impedance bandwidth of the horn covers the whole K-band in simulation for |S11|<−10 dB. In the 
measurement, both the copper and aluminum alloy horns show an impedance bandwidth from 18 GHz 
to 26 GHz. Behavioral agreement is observed between simulation and measurement in the |S11|. 
Figure 3b shows the gain of the horn. The simulated gain is >10 dBi across the K-band with a 
maximum gain of 13.17 dBi @ 24 GHz. In measurement, the aluminum alloy horn has ~2 dB less in 
gain than in the simulation, with a maximum gain of 13.23 dBi @ 25 GHz, while the copper horn 
shows similar behavior as the aluminum alloy horn, with a maximum gain of 13.5 dBi @ 24 GHz. The 
discrepancies are caused by the conductivity difference and the surface roughness. The antennas are 
printed by different partners. The different surface roughness is caused by the skills of different 

Figure 2. Photographs of the 3D-printed, K-band-stepped, double-ridged square horns. The aluminium
alloy horn: (a) outlook; (c) aperture view; (e) flange view. The copper horn: (b) outlook; (d) aperture
view; (f) flange view.

3. Characterization of the Antenna

The input impedance of the printed antennas were measured using a Rohde & Schwarz ZVA
50 VNA. The directivity and radiation patterns were measured in a far-field setup in an anechoic
chamber. Figure 3a compares the simulated and measured |S11| of the 3D-printed antennas.
The impedance bandwidth of the horn covers the whole K-band in simulation for |S11|<−10 dB.
In the measurement, both the copper and aluminum alloy horns show an impedance bandwidth from
18 GHz to 26 GHz. Behavioral agreement is observed between simulation and measurement in the
|S11|. Figure 3b shows the gain of the horn. The simulated gain is >10 dBi across the K-band with
a maximum gain of 13.17 dBi @ 24 GHz. In measurement, the aluminum alloy horn has ~2 dB less
in gain than in the simulation, with a maximum gain of 13.23 dBi @ 25 GHz, while the copper horn
shows similar behavior as the aluminum alloy horn, with a maximum gain of 13.5 dBi @ 24 GHz.
The discrepancies are caused by the conductivity difference and the surface roughness. The antennas
are printed by different partners. The different surface roughness is caused by the skills of different
technician in post processes. Since the conductivity of the aluminum alloy is lower than that of copper,
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and the aluminum alloy antenna has a rougher surface finishing than the counterpart, a larger gain
decrement is observed in the aluminum horn. Figure 3c–f reveal that both of the aluminum alloy
and copper horns have very low side lobe levels in the boresight across the K-band. The measured
radiation patterns agree well with the simulation. The increased cross-polarization and deteriorated
front-to-back ratio in measurement are caused by diffraction due to the roughness on the inner surface
and on the aperture of the horn.
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Figure 3. Measured performance of the 3D-printed, K-band-stepped, double-ridged square horns: (a) 
|S11|; (b) gain; (c) radiation patterns on phi = 0° @ 18 GHz; (d) radiation patterns on phi = 90° @ 18 
GHz; (e) radiaiton patterns on phi = 0° @ 26 GHz; (f) radiation patterns on phi = 90° @26 GHz.  

4. Conclusions 

We demonstrated the design and fabrication of metallic, 3D-printed, K-band-stepped, double-
ridged square horn antennas in this paper. The antenna was printed by SLM technology using 

Figure 3. Measured performance of the 3D-printed, K-band-stepped, double-ridged square horns:
(a) |S11|; (b) gain; (c) radiation patterns on phi = 0◦ @ 18 GHz; (d) radiation patterns on phi = 90◦ @ 18 GHz;
(e) radiaiton patterns on phi = 0◦ @ 26 GHz; (f) radiation patterns on phi = 90◦ @ 26 GHz.
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4. Conclusions

We demonstrated the design and fabrication of metallic, 3D-printed, K-band-stepped, double-ridged
square horn antennas in this paper. The antenna was printed by SLM technology using aluminum alloy
and copper. Compared with the popular dielectric, 3D-printed corrugated horns, the metallic counterparts
have process simplicity. The measured and simulated antenna performance agreed well. Future work lies
in the integration of the antenna with other microwave passive devices into a radio frontend.
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