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Abstract: Nowadays, there are several meta-heuristics algorithms which offer solutions for
multi-variate optimization problems. These algorithms use a population of candidate solutions
which explore the search space, where the leadership plays a big role in the exploration-exploitation
equilibrium. In this work, we propose to use a Germinal Center Optimization algorithm (GCO) which
implements temporal leadership through modeling a non-uniform competitive-based distribution for
particle selection. GCO is used to find an optimal set of parameters for a neural inverse optimal control
applied to all-terrain tracked robot. In the Neural Inverse Optimal Control (NIOC) scheme, a neural
identifier, based on Recurrent High Orden Neural Network (RHONN) trained with an extended
kalman filter algorithm, is used to obtain a model of the system, then, a control law is design using
such model with the inverse optimal control approach. The RHONN identifier is developed without
knowledge of the plant model or its parameters, on the other hand, the inverse optimal control is
designed for tracking velocity references. Applicability of the proposed scheme is illustrated using
simulations results as well as real-time experimental results with an all-terrain tracked robot.

Keywords: Germinal Center Optimization; Artificial Immune Systems; Evolutionary Computing;
neural identification; inverse optimal control; extended kalman filter

1. Introduction

Nowadays, in computer science research is important to offer optimal techniques for a variety of
problems, nevertheless, for most of these problems are difficult to formalize a mathematical model
to optimize. Soft-computing optimization techniques, such as Evolutionary Computing (EC) [1],
Artificial Neural Networks (ANN) [2] and Artificial Immune Systems (AIS) [3–5], approach these
kinds of problems by offering good approximate solutions in an affordable time. EC algorithms
offer an analogy of the competitive process in natural selection applied to multi-agent search for
multi-variate problems, in the same way, AIS are based on the adaptive properties of the vertebrates
immune system.

The vertebrates immune system has been developed through time by natural selection to overcome
many diseases, although some of this protection mechanisms are inheritable, the immune system is
capable of adapting to a new variety of Antigens (AGs) (foreign particles) in order to acquire specific
protection [6]. This specific protection is given by Antibodies (ABs) that attach to AGs with certain
affinity in the so-called humoral immunity. ABs are produced by the differentiation of the lymphocyte
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B (B-cell). In the case that the body does not have a specific AB for an AG, the B-cells compete for
producing a better affinity AB with the help of lymphocyte T CD4+ (Th-cell), this competition is the
inspiration of the Clonal Selection algorithm [7], which has many variants and improvements [8,9].

When an infection prevails, the innate immune response is not capable of managing it. In this
case, the adaptive immune response starts a process called clonal expansion of B-cells, looking for
a B-cell with high-affinity ABs [6]. The highest affinity of ABs is achieved by a biological process called
Germinal Center reaction. The Germinal Centers are temporal sites in the secondary lymph nodes
histologically recognizable, where inactive B-cell enclose active B-cells, Follicular Dendritic Cells (FDC)
and Th-cells with the objective of maturating the affinity through a competitive process. For a better
understanding of the biological phenomenon, we refer the interested readers to [10].

In this paper, we use Germinal Center Optimization (GCO), a new multi-variate optimization
algorithm, inspired by the germinal center reaction, that hybridizes some concepts of EC and AIS,
for optimization of an inverse optimal controller applied to an all-terrain tracked robot. The principal
feature of GCO is that the particle selection for crossover is guided by a competitive-based non-uniform
distribution, this embedded the idea of temporal leadership, as we explain in Section 2.3.

On the other hand, most of the modern control techniques need the knowledge of a mathematical
model of the system to be controlled. This model can be obtained using system identification in
which the model is obtained using a set of data obtained from practical experiments with the system.
Even when the system identification technique does not obtain an exact model, satisfactory models
can be obtained with reasonable effort. There is a number of system identification techniques, to name
a few: neural networks, fuzzy logic, auxiliary model, hierarchical identification. Among these system
identification techniques, system identification using neural networks stands out, especially using
recurrent neural networks which have a dynamic behavior [2,11,12].

The Recurrent High Order Neural Networks (RHONNs) are a generalization of the first order
Hopfield network [11,12]. The presence of recurrent and high order connections gives the RHONN
compared to a first order feedforward neural networks [11–13]: strong approximation capabilities,
a faster convergence, greater storage capacity, a Higher fault tolerance, robustness against noise and
dynamic behavior. Also, the RHONNs have the following characteristics [11,12,14]:

• They allow an efficient modeling o complex dynamic systems, even those with time-delays.
• They are good candidates for identification, state estimation, and control.
• Easy implementation.
• A priori information of the system to be identified can be added to the RHONN model.
• On-line or off-line training is possible.

The goal of the inverse optimal control is to determine a control law which forces the system
to satisfy some restrictions and at the same time to minimize a cost functional. The difference with
the optimal control methodology is that the inverse optimal control avoids the need of solving the
associated Hamilton-Jacobi-Bellman (HJB) equation which is not an easy task and it has not been
solved for general nonlinear systems. Furthermore, for the inverse approach, a stabilizing feedback
control law, based on a priori knowledge of a Control Lyapunov Function (CLF), is designed first and
then it is established that this control law optimizes a cost functional [15].

The control scheme consisting of a neural identifier and an inverse optimal control technique
is named neural inverse optimal control (NIOC), this control scheme has shown good results in the
literature for trajectory tracking [15–17]. However, the designer has to tune the appropriate value
of some parameters of the controller discuss later in this work, the quality of the controller depends
directly on this selection.

In this work, the main contribution is the introduction of an optimization process using GCO,
in order to find the appropriate values for the controller parameters which minimize the tracking error
of the system to be controlled. Performance of the optimization is shown presenting simulation and
experimental tests comparing the results of the trajectory tracking using the NIOC with the parameters
selected by the designer and the results using the parameters given by the GCO algorithm.
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This work is organized as follows: In Section 2 the Germinal Center Optimization algorithm is
described. In Section 2.1 the vertebrates adaptive immune system is briefly explained, in Section 2.2 we
detail the germinal center reaction and in Section 2.3 the computation analogy of the germinal center
reaction is presented along with the algorithm description. Section 3 introduces the Neural Inverse
Optimal Control (NIOC) scheme for this work, where Section 3.1 presents the RHONN identifier and
the extended kalman filter (EKF) training, and in Section 3.1.2 the design of the inverse optimal control
law is discussed. Section 4 unveils comparative simulations (Section 4.2) and experimental (Section 4.3)
results between the selection of the parameter of the controller using the GCO algorithm and the classic
way which is let completely to the designer for an application of the NIOC to an All-Terrain Tracked
Robot. Conclusions of this work are included in Section 5.

2. Germinal Center Optimization

In this section, we briefly overview the principal processes in the vertebrates immune system,
and we detail the germinal center reaction. After that, we propose the computational analogy for
multi-variate optimization, with the proper algorithm description.

2.1. Adaptive Immune System

The vertebrates immune system (VIS) is the biological mechanism for protecting the body from
AG. There are two types of immunities, the innate immunity, and the adaptive one. The innate
immunity is conformed by epithelial barriers that prevent the entrance of AG, phagocytes that swallow
AG, FDCs that capture antigen and lymphocytes NKs (Natural Killers) that destroy any non-self cell.

The innate immunity is an inheritable protection that has been developed through natural
selection, but if a new type of AG gets inside the body could overcome this basic protections, in this
case, the adaptive immunity takes place. The adaptive immunity is conformed by B-cells whose
main functions are to internalize AG for presentation and generate ABs, Th-cells that give a life
signal to high-affinity B-cells and cytotoxic T-cells that kills own cells that are already infected or kills
carcinogenic cells [6].

The affinity of the innate immunity is not diverse because it is coded in the germinal line, in the
other hand the adaptive immunity has a high-affinity diversity because the receptors are produced for
somatic recombination and variate with somatic hyper-mutation [6,18].

There are two types of adaptive immune response, the humoral immunity, and the cellular
immunity. The first one is based on ABs that travel in the bloodstream, attaching to every compatible
particle. The B-cells compete for antigen internalization and presentation to the Th-cell, whose reward
them with a life signal, then the B-cell proliferates by clonal expansion and differentiates into plasmatic
cells, releasing higher affinity ABs in the bloodstream.

There are some AGs that infect the owner cells and hide inside them, these cells are destroyed
by the cellular immunity with the cytotoxic T-cell. The adaptive immune response has the following
features, as is shown in [6]:

• Specificity: Ensure to produce a specific AB for a specific AG
• Diversity: The immune system is capable of responding to a great variety of AGs
• Memory: Using memory B-cells, the immune system is capable of fighting repeated infections
• Clonal expansion: Increase the number of lymphocytes with high affinity of certain AGs
• Homeostasis: The immune system recover from an infection by itself
• No self-reactivity: The immune system does not attack the host body in the present of AGs

2.2. Germinal Center

When the body does not have a specific AB for an infection, the body starts the process of affinity
maturation with the germinal center reaction. Germinal centers are micro-anatomical regions in the
secondary lymph nodes, that form in the present of antigen [10]. The AGs that survive the other
immunity mechanism arrives at the secondary lymph nodes, where are capture for the FDCs. The FDCs
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activate near B-cells. The active B-cells end up being enclosed by the inactive ones forming a natural
barrier that allow the active cells to proliferate, mutate and be selected.

The B-cells start to proliferate inside the GC, and compete for the antigen, this competition
polarizes the GC in two distinct zones, the dark zone and the light zone. The dark zone is where B-cells
proliferate through clonal expansion and somatic hyper-mutation, this process ensures the diversity of
ABs. On the other hand, the light zone is where the B-cells are selected in accordance with their affinity.

On the light zone, the B-cells must find AG and internalize it, with the final purpose of digest
the AG and expose their peptides to the Th-cell. The Th-cell gives a life signal allowing B-cells high
affinity to live more time and therefore, proliferate and mutate with higher success.

In Figure 1, we show a schematic summary of the process. The GC reaction ensures the diversity
through clonal expansion and somatic hyper-mutation in the dark zone, while in the light zone is
a competitive process that reward the more adapted B-cells. The B-cells reentry to dark zone making
this process an iterative refinement of the affinity [19,20].

Figure 1. Germinal Center reaction.

Finally, when the GC generates high affinity B-cells for certain AG, some B-cells differentiate into
plasmatic cells and release their ABs. A few B-cells become Memory B-cells that could live a long time
and keeps information about this particular AG. Then, the GCs are capable of generating specific AB
for a specific AG, and keep this information in Memory B-cells for future infections [21].

2.3. Algorithm Description

In this section, we explain the GCO algorithm. In Table 1, we present the computational analogy
between germinal center and the optimization problem.

Table 1. Computational analogy between Germinal Center (GC) and Optimization.

Germinal Center Optimization Problem

Antigen Objective function
Antibody and B-cell Candidate solution

Affinity Objective function evaluation
T-help cell binding Incrementation of life-signal
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The GC reaction has multiple competitive processes, the GCO algorithm does not try to simulate
GC reaction per se but to use some of its competitive mechanisms. A key factor in the GC reaction is the
distinction between the dark zone and the light zone. The dark zone represents the diversification of
the solutions that could be understood like a mutation process, many algorithms, such as Differential
evolution and Genetic algorithms [1], already have the idea of mutation, but the dark zone includes
not only a mutation process (somatic hyper-mutation), but also the clonal expansion. This clonal
expansion is guided by the life signal of the B-cell, denoted by L ∈ [0, 100]. The B-cells with greater life
signal are more likely to clone, increasing the B-cell multiplicity.

In the light zone, B-cells with the best affinity are rewarded and the other cells age (lower their
life signal). Then, the affinity-based selection in the light zone changes the probability of clone or death
of a B-cell. In Figure 2, we present the GCO algorithm flowchart, where “For each B-cell” indicates
that the process is applied in every candidate solution.
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Figure 2. Germinal Center Optimization (GCO) algorithm flowchart.

As we are dealing with a population-based algorithm [1], there is a particular interest in the
cells mutation and which information we use for crossover particles. In the GCO algorithm, we use
the distribution of the cells multiplicity, denoted with C, to select three individuals for crossover.
It is important to note that initially, all the cells have a multiplicity of one, then the individuals are
uniformly selected, but this distribution changes through iterations modeled by the competitive
process. This kind of distribution offers different types of leadership behaviors in the collective
intelligence, for example, initially the GCO algorithm behaves like Differential Evolution in the
DE/rand/1 strategy [1], and when a particle wins for many iterations, the algorithm behaves like
Particle Swarm optimization [1]. However, the leadership in GCO is not only dynamic, but it also
includes temporal leadership, this is implemented when a particle mutates to a better solution, this new
candidate substitutes the actual particle resetting the cell multiplicity to one.

Then, GCO algorithm offers a bio-inspired technique of adaptive leadership in collective
intelligence algorithms for multivariate optimization problems. In Algorithm 1, we include an explicit
pseudocode, where Bi is the i-esim B-cell, M is a mutant B-cell and a new candidate solution, F ∈ [0, 2]
is the mutation factor and CR ∈ [0, 1] is the cross-ratio, C is the distribution of cells multiplicity, and L
is the life signal.
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Algorithm 1: GCO algorithm

Initialize B-cells (Bi)
foreach k ∈ {1, · · · , Iterations} do

/* Dark-zone process */
foreach i ∈ {1, · · · , N} do

if rl ∼ U[0, 100] < L of Bi then
/* B-cell Duplication */
Add one to GC cells counter
Add one to Bi cells counter

else
/* B-cell Death */
if Cells in Bi > 1 then

Rest one to GC cells counter
Rest one to Bi cells counter

end
end
/* B-cell mutation */
Calculate distribution C
Using r1, r2, r3 ∼ C choose 3 different B-cells: Br1 , Br2 and Br3

Create new Mutant M
foreach j ∈ {1, · · · , D} do

if r ∼ U[0, 1] < CR then
M(j)← Br1(j) + F(Br2(j)− Br3(j))

else
M(j)← Bi(j)

end
end
Evaluate objective function for M
if M is better than Bi then

Substitute Bi for M
if M is the best then

Save i index
end

end
end
/* Light-zone process */
Add 10 units to L of the Best B-cell
foreach i ∈ {1, · · · , N} do

Rest 10 units to L of Bi
end

end

3. Neural Inverse Optimal Control

In this section, we introduced the neural identifier based on a RHONN and its EKF training,
and the inverse optimal control law designed. Consider the following affine discrete-time
nonlinear system

x(k) = f (x(k) + g(x(k))u(k) (1)

where x ∈ <n is the state vector of the system, u ∈ <m is the control input vector, f ∈ <n → <n and
g ∈ <n → <n×m are smooth maps.
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3.1. Neural Identification with Recurrent High Order Neural Networks (RHONN)

To identify the system (1), we used the following RHONN identifier based on a RHONN in
series-parallel model:

χ̂i(k + 1) = ω>i (k)zi(x(k− l), u(k))

i = 1, 2, · · · , n (2)

with

zi(x(k), u(k)) =


zi1
zi2
...

ziLi

 =



Πj∈I1 ξ
di j(1)
ij

Πj∈I2 ξ
di j(2)
ij

...

Πj∈ILi
ξ

di j(Li)

ij


, ξ i =



ξi1
...

ξin
ξin+1

...
ξin+m


=



S(x1(k− l))
...

S(xn(k− l))
u1(k)

...
um(k)


(3)

where S(v) = 1/(1 + exp(−βv)), β > 0, n is the state dimension, χ̂ is state vector of the neural
network, ω is the weight vector x is the plant state vector, and u = [u1, u2, . . . , um]> is the input vector
to the neural network.

The neural identifier (2) is presented in [14]. This neural identifier does not need previous
knowledge of the model of the system, also, it does not need information of the disturbances and
delays. Moreover, this model is semi-globally uniformly ultimately bounded (SGUUB) and the proof
can be found in [14].

3.1.1. Training of RHONN with Extended Kalman Filter

The extended kalman filter estimates the state of a system with additive white noise in the input
and in the output using a recursive solution in which each update of the state is estimated from the
previous estimated state and the new input data [11,22].

For the case of neural networks the extended kalman filter training goal is to find the optimal
weight vector which minimizes the prediction error. Due to the fact that the neural network mapping
is non-lineal the extended kalman filter (EKF) is required. The EKF-based training algorithm [11] is (4):

ωi(k + 1) = ωi(k) + ηiKi(k)ei(k) (4)

Ki(k) = Pi(k)Hi(k)[Ri(k) + H>i (k)Pi(k)Hi(k)]−1 (5)

Pi(k + 1) = Pi(k)−Ki(k)H>i (k)Pi(k) + Qi(k) (6)

with
ei(k) = xi(k)− χ̂i(k) (7)

Hij =

[
∂χ̂i(k)
∂ωij(k)

]>
(8)

where i = 1 · · · n, ωi ∈ <Li is the on-line adapted weight vector, Ki ∈ <Li is the Kalman gain vector,
ei ∈ < is the identification error, Pi ∈ <Li×Li is the weight estimation error covariance matrix, χi is the
i-th state variable of the neural network, Qi ∈ <Li×Li is the estimation noise covariance matrix, Ri ∈ <
is the error noise covariance matrix and Hi ∈ <Li is a vector in which each entry Hij is the derivative
of the neural network state (χ̂i) with respect to one neural network weight (ωij) and it is given by (8).
Pi and Qi are initialized as diagonal matrices with entries Pi(0) and Qi(0), respectively. It is important
to remark that Hi(k), Ki(k) and Pi(k) for the EKF are bounded.
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3.1.2. Inverse Optimal Control

Optimal control finds a control law for a system such that a performance criterion is minimized.
The criterion is a cost functional based on the state and control variables. The solution of the optimal
control leads to the HJB equation which solution is not an easy task. Inverse optimal control is
an alternative to optimal control, avoiding the HJB equation solution. For the inverse optimal control
approach a stabilizing feedback control law based on a priori knowledge of a control Lyapunov
function (CLF), is designed first, and then it is established that this control law optimizes a cost
functional, then, the CLF is modified in order to achieve asymptotic tracking for given trajectory
references [15]. The existence of a CLF implies stability and every CLF can be considered as a cost
functional. The CLF approach for control synthesis has been applied successfully to systems for which
a CLF can be established, such as feedback linearizable, strict feedback and feed-forward ones [15].

The system (1) is supposed to have an equilibrium point x(0) = 0. Moreover, the full state x(k) is
assumed to be available. In order to ensure stability of the system (1) the following control Lyapunov
fuction is proposed:

V(x(k)) =
1
2

x(k)>Px(k), P = P> > 0 (9)

The inverse optimal control law for the system (1) with (9) is:

u(k) = −1
2
R−1(x(k))g>(x(k))

∂V(x(k))
∂x(k + 1)

= −1
2
(R(x(k)) +

1
2

g>(x(k))Pg(x(k)))−1g>(x(k))P f (x(k)) (10)

where R(x(k)) = R(x(k))> > 0 is a matrix whose elements can be functions of the system state or can
be fixed. P is a matrix such that the inequality (11) holds.

Vf (x(k))−
1
4
P>1 (x(k))(RP(x(k)))

−1P1(x(k)) ≤ −x>(k)Qx(k) (11)

with

RP(x(k)) = R(x(k)) +P2(x(k)) (12)

Vf (x(k)) =
1
2

f>(x(k))P f (x(k))−V(x(k)) (13)

P1(x(k)) = g>(x(k))P f (x(k)) (14)

P2(x(k)) =
1
2

g>(x(k))Pg(x(k)) (15)

Q = Q> > 0 (16)

In [15], it is demonstrated that control law (10) is globally asymptotically stable. Moreover, (10) is
inverse optimal in the sense that minimizes a cost functional [15].

4. Results

In this section, we briefly describe how GCO is applied to improve NIOC performance, we also
show simulation results and real-time experimental results. The all-terrain tracked robot is a modified
HD2 R© (HD2 is a registered trademark of SuperDroid Robots), shown in Figure 3. The changes of the
modified HD2 R© are (Figure 4): the replacement of the original board for a system based on Arduino R©

(Arduino is a registered trademark of Arduino LLC), and an attachment of a wireless router. Chassis,
tracks, batteries, and motors remained without modifications.
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Figure 3. Modified HD2 R© Treaded All-Terrain Tracked Robot (ATR) Tank Robot Platform with
wireless communication.

Figure 4. The interior of the Modified HD2 R© Treaded ATR Tank Robot.

4.1. Application to All-Terrain Tracked Robot Control

Considered as the most important type of mobile robots, a tracked robot runs on continuous
tracks instead of wheels which develop a thrust higher than a wheeled robot. This kind of robots is
ideal for working in tasks under rough terrains. Among the applications tracked robots can achieve are
urban reconnaissance, forestry, mining, agriculture, rescue mission scenarios, autonomous planetary
explorations [23–25].

A tracked robot consists of the following state variables [17,26,27] position x, position y, position
θ, velocity 1, velocity 2, current 1 and current 2. In this work, we focus on the controller tracking
performance for x, y and θ (Figure 5) for given references xr, yr and θr. The objective is to improve
the NIOC results presented in [17] by using GCO to find the optimal parameters of the controller.
These parameters are included in the matrices P1 and P2 defined in (11) and (12) respectively.
The P1 and P2 are symmetric positive definite matrices, therefore we can define the set of variables
{ψ1, ψ2, ψ3, ψ4, ψ5} for the optimization problem with the definition in (17).

P1 =

 ψ1 ψ2 ψ3

ψ2 ψ1 ψ4

ψ3 ψ4 ψ1

 P2 =

[
ψ5 0
0 ψ5

]
(17)
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x

y

θ

P0

Figure 5. Schematic representation of a tracked robot, where x and y are the coordinates of P0 and θ is
the heading angle.

The lower bound of the search space is given by {1, 1, 1, 1, 1} and the upper bound is given by
{4× 107, 4× 107, 4× 107, 4× 107, 4× 104}. Next, the objective of the optimization is to get a better
control tracking, in order to achieve this, we minimize the sum of the Root Mean Square Error
(RMSE) in every state. This idea is described by (18), where n is the number of samples of the
reference and estimated functions, we are using n = 3335 for real-time experiments and n = 5000 for
simulation experiments.

f = min
ψ1,ψ2,ψ3,ψ4,ψ5

√
∑n

i=1(x̂− x)2

n
+

√
∑n

i=1(ŷ− y)2

n
+

√
∑n

i=1(θ̂ − θ)2

n
(18)

Then, the GCO algorithm will find optimal values that minimize (18). For the following
experiments we use a GCO algorithm in five dimension running 150 iterations using 30 B-cells
(4500 executions) for a test of 10 seconds; we set the parameters F = 1.25 and CR = 0.7. We include
graphics for one simulation test using the all-terrain robot model presented in [17], and the results
of one experimental test using the modified HD2 R© Treaded ATR Tank Robot Platform with wireless
communication (Figure 3) presented in [17].

4.2. Simulation Results

In [17], P1 and P2 are defined as shown in (19) for simulation. We show in (20) P∗1 and P∗2 ,
which contain the parameters found by the GCO algorithm.

P1 = 14400

 162 1 2
1 162 3
2 3 162

 P2 = 20

[
20 0
0 20

]
(19)

P∗1 = 1× 106

 5.7564 0 0
0 5.7564 0
0 0 5.7564

 P∗2 =

[
40000 0

0 40000

]
(20)

Figures 6–8 show the tracking performance and the error comparison for the position x, position y
and position θ of the simulation test. For each figure, the graph on the left side shows the obtained
signals for reference, the identified signal using NIOC [17], and the identified signal using the optimized
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NIOC for its respective state variable. The graph on the right side shows the obtained the error signals
for the NIOC [17] and the optimized NIOC for its respective state variable. This arrangement is
maintained for all the following figures in this section.
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Figure 6. Tracking of x position (left) and error comparison (right) for the simulation test.
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Figure 7. Tracking of y position (left) and error comparison (right) for the simulation test.
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Figure 8. Tracking of θ (left) and error comparison (right) for the simulation test.
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Table 2 shows the RMSE of each state variable and their total which is the evaluation of
Equation (18) for this simulation test. Total does not have a physical meaning, it is the minimum found
in the objective function in (18).

Table 2. Root Mean Squared Error (RMSE) in states for second simulation. Bold values highlight the
best result.

Control RMSE x (m) RMSE y (m) RMSE θ (rad) Total

NIOC [17] 0.0073 0.0043 0.0064 0.0180
NIOC with GCO 0.0073 0.0025 0.0049 0.0147

A second simulation test was made resulting in the tracking errors shown in Table 3.

Table 3. Root Mean Squared Error (RMSE) in states for first simulation. Bold values highlight the
best result.

Control RMSE x (m) RMSE y (m) RMSE θ (rad) Total

NIOC [17] 0.0077 0.0055 0.0064 0.0195
NIOC with GCO 0.0079 0.0041 0.0049 0.0169

Additionally to the presented results, in [17] it was demonstrated via simulations that the NIOC
has a better performance than a super twisting scheme for a tracked robot model. The tracking
comparison results shown in Table 4 are reported in [17].

Table 4. Tracking error comparison of NIOC [17] and a Super Twisting controller. Bold values highlight
the best result.

RMSE x (m) y (m) θ (rad)

NIOC [17] 0.0260 0.0362 0.0158
Super Twisting 0.0317 0.0036 0.0652

4.3. Real-Time Results

The work [17] presents a NOIC for the Modified HD2 R© Treaded ATR Tank Robot Platform with
wireless communication (Figure 3), this implementation uses an RHONN identifier as (2) to identify
the unknown model of the HD2 R©. The obtained model is then used as the based to synthesize the
control law using the inverse optimal control approach. In [17] the values of P1 and P2 are defined
in (21) for real-time operation. The following results show a comparison obtained with the values
from [17] and P∗1 and P∗2 in (22) found by the GCO algorithm. In this section, there are presented
two experiments named as “test 1” and “test 2”, respectively.

P1 = 72000

 162 1 2
1 162 3
2 3 162

 P2 = 10000

[
20 0
0 20

]
(21)

P∗1 = 1× 107

 3.2039 0 4
0 3.2039 0
4 0 3.2039

 P∗2 = 1× 104

[
2.4128 0

0 2.4128

]
(22)

Figures 9–11 show the tracking performance and the error comparison for the position x, position y
and position θ of the experimental test 1.
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Figure 9. Tracking of x position (left) and error comparison (right) for the experimental test 1.

0 2 4 6 8 10

Time (s)

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

m

Identified Position y

Reference yr

Identified Position y

Identified Position y with Optimization

0 2 4 6 8 10

Time (s)

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01
m

Position y tracking error

Tracking error

Optimized tracking error

Figure 10. Tracking of y position (left) and error comparison (right) for the experimental test 1.
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Figure 11. Tracking of θ (left) and error comparison (right) for the experimental test 1.

Table 5 shows the RMSE of each state variable and their total which is the evaluation of
Equation (18) for the experimental test 1.
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Table 5. Root Mean Squared Error in states for Real-Time experimental test 1. Bold values highlight
the best result.

Control RMSE x (m) RMSE y (m) RMSE θ (rad) Total

NIOC [17] 0.0238 0.0109 0.0267 0.0614
NIOC with GCO 0.0152 0.0043 0.0270 0.0465

Figures 12–14 show the tracking performance and the error comparison for the position x,
position y and position θ of the experimental test 2.
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Figure 12. Tracking of x position (left) and error comparison (right) for the experimental test 2.
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Figure 13. Tracking of y position (left) and error comparison (right) for the experimental test 2.
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Figure 14. Tracking of θ (left) and error comparison (right) for the experimental test 2.

Table 6 shows the RMSE of each state variable and their total which is the evaluation of
Equation (18) for the experimental test 2.



Appl. Sci. 2018, 8, 31 15 of 16

Table 6. Root Mean Squared Error (RMSE) in states for Real-Time experimental test 2. Bold values
highlight the best result.

Control RMSE x (m) RMSE y (m) RMSE θ (rad) Total

NIOC [17] 0.0153 0.0052 0.0101 0.0305
NIOC with GCO 0.0100 0.0021 0.0123 0.0244

5. Conclusions

GCO is a hybridization between Evolutionary Computing and Artificial Immune System based
on the Germinal Center reaction which is a biological process in vertebrates immune system that
maturates affinity of antibodies. GCO models a population of B-cells and the competitive process
in their proliferation, then, a dynamic distribution of the cells multiplicity is constructed over the
performance of the candidate solutions. This distribution allows to select B-cells for crossover with
an adaptive leadership. The adaptive leadership takes the advantage of both high leadership and none
leadership algorithms allowing it to find a better solution.

In this work, it is shown how GCO can help with the overall performance of a control technique
like inverse optimal control, which depends on a number of designed parameters. Our results reveal
a better performance of the controller version with the parameters obtained with GCO. It is also
important to mention that the found parameters by GCO for the NIOC are not unique for a reference,
those parameters can work for a number of references.
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