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Abstract: This paper aims to provide an experimental support on seismic performance evaluation of
the steel braced truss-RC (reinforced concrete) column hybrid structure, which could be applied as
the air-cooled supporting structural system in large-capacity thermal power plants located in strong
earthquake prone regions. A series of pseudo-dynamic tests (PDTs) and quasi-static tests (QSTs) were
performed on a 1/8-scaled sub-structure. The dynamic characteristics, lateral deformation patterns,
deterioration behavior, hysteretic behavior and failure mechanisms were investigated. Test results
showed that the first vibration mode is torsion, which is caused by the small torsional stiffness of
this kind of hybrid structure. The lateral deformation shape is shear mode, and the drift ratio of the
structure above the corbel is significantly less than that of the column below the corbel. Earthquake
energy is mainly dissipated by the RC pipe columns where cracks mainly occurred at the bottom of
column and lower part of corbel. The failure mechanisms were identified indicating that the steel
braces improved the global stiffness and modified the load transfer mechanism. This study affirms
that the steel braced truss-RC column hybrid structure has the sufficient ductility and good energy
dissipation capacity to satisfy the design requirements in high seismic regions.

Keywords: steel-concrete hybrid structure; steel diagonal brace; pseudo-dynamic test; quasi-static
test; seismic behavior

1. Introduction

Steel-concrete hybrid structures obtained through the combination of structural components
made of reinforced concrete, steel and composite steel-concrete have been investigated much in the
past two decades [1–3]. Through scientific hybridization with different components, more efficient,
economical and flexible seismic resistant structural systems can be created. This paper focuses on a
peculiar steel-concrete hybrid structure, namely steel truss-RC column hybrid structure, which is a
supporting structure to house air-cooled condenser (ACC) in the thermal power plant (TPP). It has
been identified as a type of structure suitable for the application of water-saving ACC technology
to TPPs. For this kind of structure, the lower parts are an array of large-scale thin-walled RC pipe
columns, used to support the upper sub-structures and industrial facilities. The height of column is
about 40 ~ 50 m, the diameter is about 4 m, while the thickness of the column is only about 0.4 m. A
space steel truss about 4 ~ 8 m-height is supported by the columns, and a range of large-diameter

Appl. Sci. 2018, 8, 131; doi:10.3390/app8010131 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-0726-9593
http://dx.doi.org/10.3390/app8010131
http://www.mdpi.com/journal/applsci


Appl. Sci. 2018, 8, 131 2 of 16

(about 9 m) draught fans are installed inside the space steel truss. On the steel truss platform, a series
of metal A-shaped brackets above 10 m-height rest to support the huge-mass industrial units (e.g.,
air-cooled condensers, exhaust ducts) with approximately 10,000 tons in weight. Despite more or less
symmetric floor planning in both horizontal directions, the stiffness and mass are usually unevenly
distributed in the vertical direction due to the peculiar characteristics of structural components and
industrial requirements. Past studies mainly focused on the ACC technology including experimental
investigation, numerical simulation and optimization [4–9]. However, the supporting structure of the
ACC system was addressed rarely.

In order to apply ACC technology in China, it is necessary to investigate the seismic behavior
of the supporting structure for ACC systems because most of the coal-rich but water-shortage areas
in China are often located in high seismic regions. In recent years, experimental and numerical
investigations on the seismic performance of this supporting structure has been conducted, and the
research results showed that the steel truss-RC column hybrid structure is a seismic resistant structural
system which can be applied in earthquake prone zones [10,11]. However, with the increasing of unit
capacity of TPPs, the height and span of platform will be much larger, and the load gets much heavier.
The traditional structural type barely satisfy the seismic demand in high intensity seismic regions. It is
urgent to propose a new supporting structure for the ACC system which should have more ductile
seismic capacity.

Steel braces have been identified as one kind of effective components to improve the seismic
capacity of steel, RC and some other structures [12–15]. In these references, a new supporting structure
consisting of steel truss-RC column with steel diagonal braces referred to be as steel braced truss-RC
column hybrid structure is proposed, as shown in Figure 1. In this study, a range of pseudo-dynamic
tests (PDTs) and quasi-static tests (QSTs) on a 1/8 scaled sub-structure were conducted to evaluate the
seismic performance of the steel braced truss-RC column hybrid structural system. The influences of
steel diagonal braces on failure mechanisms were also investigated. This study is expected to explicitly
support the seismic design of the steel truss-RC column hybrid structure with steel diagonal braces.
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2. Experimental Program

2.1. Prototype Building and Scaled Sub-Structure

The prototype building is assumed to be located in a high seismic zone with a 8-degree seismic
design intensity in China. The corresponding design peak ground acceleration (PGA) value of the
design earthquake with a 10% probability of exceedance in 50 years equals to 0.20 g. The site condition
is site-class 2. According to the China seismic design code [16], the structure should satisfy the
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seismic demands under three seismic hazard levels, namely, minor earthquake with 63.3% probability
of exceedance in 50 years (Level 1), moderate earthquake with 10% probability of exceedance in
50 years (Level 2) and major earthquake with 2% probability of exceedance in 50 years (Level 3).
The structure should keep elastic under the minor earthquake (Level 1), should not collapse under the
major earthquake (Level 3), and should be in use after repairment under the moderate earthquake
(Level 2). The corresponding peak ground acceleration (PGA) values of the minor earthquake and
major earthquake are 0.10 g and 0.40 g, respectively. The main dimensions of the building are shown
in Table 1.

Table 1. Main dimensions of components.

Component Quantity Value

RC pipe column

Column grid 22.78 m × 22.36 m
Number 25
Height 50 m

External diameter 4 m
Wall thickness 0.4 m

Steel truss
Length 11.39 m
Width 11.18 m
Height 5 m

A-shaped bracket Height 11 m

A sub-structure was selected from the prototype building to fabricate the scaled specimen,
as shown in Figure 2. Due to restraint of the laboratory space, the scale factor for length was determined
as 1/8. Table 2 shows the typical scale factors for the specimen, which were obtained by the principle
of dimensional analysis [17]. Additional masses were added on the A-type brackets by 12 pieces of
concrete slabs to accommodate the vertical loads which were generated by the large industrial facilities.
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Table 2. Typical scale factors of the model structure.

Variable Equation Scale Factor

Length SL 1/8
Mass (SL)2 1/64
Time (SL)1/2 1/

√
8

Force (SL)2 1/64
Displacement SL 1/8
Acceleration SF/SM 1

Stiffness SL 1/8
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2.2. Test Specimen and Setup

Figure 3 shows the column layout, fabricated specimen and elevation view of the specimen with
loading facilities, respectively. As shown in Figure 3c, two hydraulic actuators were fixed to the
reaction wall at the middle part of steel truss platform (6.563 m) and the top of A-shaped bracket
(8.106 m), respectively. Displacement meters (e.g., DM-1) were laterally installed at the top of A-shaped
bracket, middle part of steel truss, corbel, middle part of column and ground beam to record the
lateral displacements.
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Figure 3. Specimen and loading facilities: (a) column layout; (b) fabricated specimen and (c) elevation
view of the specimen with loading facilities.

Figure 4 shows sketches of construction measures of the brace-to-truss connection and the
brace-to-column connection. Figure 5 shows the sectional properties and reinforcements of RC pipe
columns. Fifteen 10-mm diameter longitudinal steel rebar evenly distributed in the annular section of
column. 8-mm diameter steel rebar was selected as stirrups and they were distributed along the full
height of column with 150-mm spacing. In order to avoid the failure of corbel ahead of the column
body, reinforcement cage with a large amount of steel rebar was used to strengthen the corbel, as
shown in Figure 5d.
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2.3. Material Properties

The section dimensions and actual strengths of materials including the steel rebar, steel tubes and
concrete are provided in Table 3. Q235 grade steel with the nominal yield strength of 235 MPa was
used for the steel truss, A-shaped brackets and diagonal braces. C45 grade concrete with the nominal
compressive cube strength of 45 MPa was used for the pipe columns. The average compressive strength
of concrete was obtained through compressive test of concrete cubes with 150 mm in side length.

Table 3. Material strength test results.

Material Position of Sampling Section (mm) Fy (MPa) Fu (MPa)

Steel rebar Pipe column Stirrup φ8 325 435
Longitudinal rebar φ10 532 656

Steel tubes (square
hollow section)

Truss

Diagonal web member Top of column 40 × 2.5 432 463
Other parts 40 × 2.0 380 445

Vertical web member
Top of column 50 × 2.5 400 430

Other parts 50 × 2.0 382 453

Chord member 50 × 2.5 400 430

A-shaped bracket Horizontal internal member 30 × 1.5 323 403
Diagonal external member 40 × 1.5 375 480

Diagonal brace 70 × 3.5 365 420

Concrete Pipe column f cm = 42.3

Note: Top of column: represents the locations of web members which are on the top of column; Other parts:
represent the locations of web members which are not on the top of column.
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2.4. PDT and QST Programs

PDT method has been widely used to predict the seismic resistant capacity of structures subjected
to earthquake waves. During the online PDT procedure, the Newmark-β method was adopted to
calculate the input force provided by electro-hydraulic actuators. The dynamic equation can be
expressed as follows:

M
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Dynamic characteristics tests were carried out through free vibrations before connecting the 
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where ag is the input earthquake acceleration, M is the mass matric, C is the damping matrix,
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where VB is the base shear force, Fi is the exterior force applied at i-th floor, ui is the modal displacement
at i-th floor. Figure 6 shows the schematic configuration on the framework employed in the PDTs.
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The initial 8 s of El-Centro (NS) record was selected as the input ground motion for its ample
spectral components and adaptability to the sites. The scaled duration and time interval of the ground
motion were respectively 2.8 s and 0.0035 s, which were obtained by a time scaling factor of 1/
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for the original record. The specimen was subjected to a sequence of seven PGAs of 0.05, 0.10, 0.20,
0.30, 0.40, 0.60 and 0.80 g to simulate different seismic intensities. Besides, in order to investigate the
changing rules of dynamic characteristics with the increase of PGA, free vibration with duration of
1.75 s was added for each loading case. Finally, each PGA level was loaded by 1300 steps (2.8 s) and
subsequent 500 steps (1.75 s).

The loading capacities of the two actuators at top of A-shaped bracket and middle part of steel
truss are both 1000 kN. The mass matrix of specimen at each position of the load actuator was derived
as follows:

M =

(
m1

m2

)
=

(
12470

16800

)
kg. (3)

Dynamic characteristics tests were carried out through free vibrations before connecting the
hydraulic actuators to the specimen. And the obtained first mode of natural vibration was used as the
basic displacement mode as follows:

φ1 =
{

1 0.955
}T

(4)
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The lower actuator located in the middle part of steel truss was set as the main control point,
since the stiffness is larger than other positions. The loading ratio between the two actuators was set
based on the first fundamental mode of specimen. It was derived by the first mode vibration and mass
matrix as follows:

F = {F1 : F2} = M× φ = {1 : 1.28} (5)

After the final PDT case with PGA of 0.8 g, cyclic QST was conducted by controlling the amplitude
of the roof displacements in cooperation with China specification for seismic test of building [18].
The loading ratio between the two actuators was same with PDTs. Figure 7 shows the cyclic loading
protocol. First, each displacement level has one cycle at amplitude of 10, 20, 30, 40, 50, 60, 70 mm. Then,
each displacement cycle was repeated three times at amplitude of 80, 90, 110, 130, 150, 170, 190 mm.
The test is terminated when the lateral force decreased below 85% of the maximum load.

Appl. Sci. 2018, 8, 131 7 of 16 

{ }T955.011 =φ  (4) 

The lower actuator located in the middle part of steel truss was set as the main control point, 
since the stiffness is larger than other positions. The loading ratio between the two actuators was set 
based on the first fundamental mode of specimen. It was derived by the first mode vibration and 
mass matrix as follows: 

{ } { }28.1:1: 21 =×== φMFFF  (5) 

After the final PDT case with PGA of 0.8 g, cyclic QST was conducted by controlling the 
amplitude of the roof displacements in cooperation with China specification for seismic test of 
building [18]. The loading ratio between the two actuators was same with PDTs. Figure 7 shows the 
cyclic loading protocol. First, each displacement level has one cycle at amplitude of 10, 20, 30, 40, 50, 
60, 70 mm. Then, each displacement cycle was repeated three times at amplitude of 80, 90, 110, 130, 
150, 170, 190 mm. The test is terminated when the lateral force decreased below 85% of the maximum 
load. 

 

Figure 7. Cyclic loading protocol of quasi-static tests (QST). 

3. Experimental Results 

3.1. Dynamic Characteristics 

Dynamic characteristics were tested through free vibrations excited by the artificial pulse 
method. Table 4 provides the natural periods and the associated vibration modes. The first 
fundamental period was 0.319 s and the corresponding vibration mode was torsion, as shown in 
Figure 8. This was due to the special structural pattern, resulting in the small torsional stiffness. For 
this kind of hybrid structure, although the plan layouts are rather regular and symmetric, as shown 
in Figure 2, the stiffness and mass mainly distribute on the upper part of the structure in the vertical 
direction, easily generate the torsional effect. In addition, it was found that the torsion-translation 
period ratio (the ratio for the period of first torsion mode to that of first translation mode) is about 
1.003, which was larger than 0.85. According to the Chinese seismic design code [16], the period ratio 
between the first torsional mode and the first translation mode should not be larger than 0.85 so as to 
prevent excessive structural torsion. This indicated that the torsion effect should not be neglected in 
the design of this kind of hybrid structure. 

  

-200

-150

-100

-50

0

50

100

150

200

Cycle number

R
oo

f 
di

sp
la

ce
m

en
t (

m
m

)

-3

-2

-1

0

1

2

3

3 at 
170mm

3 at 
150mm

3 at 
130mm

3 at 
110mm

3 at 
90mm

R
oof drift ratio(%

)

1 at 10, 20, 30, 
40, 50, 60, 70mm

3 at 
80mm

3 at displacement with 
increment of 20mm

Figure 7. Cyclic loading protocol of quasi-static tests (QST).

3. Experimental Results

3.1. Dynamic Characteristics

Dynamic characteristics were tested through free vibrations excited by the artificial pulse method.
Table 4 provides the natural periods and the associated vibration modes. The first fundamental period
was 0.319 s and the corresponding vibration mode was torsion, as shown in Figure 8. This was due to
the special structural pattern, resulting in the small torsional stiffness. For this kind of hybrid structure,
although the plan layouts are rather regular and symmetric, as shown in Figure 2, the stiffness and
mass mainly distribute on the upper part of the structure in the vertical direction, easily generate the
torsional effect. In addition, it was found that the torsion-translation period ratio (the ratio for the
period of first torsion mode to that of first translation mode) is about 1.003, which was larger than
0.85. According to the Chinese seismic design code [16], the period ratio between the first torsional
mode and the first translation mode should not be larger than 0.85 so as to prevent excessive structural
torsion. This indicated that the torsion effect should not be neglected in the design of this kind of
hybrid structure.
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Table 4. Dynamic properties of the specimen.

Mode Period (s) Vibration Mode

First mode 0.319 Torsion
Second mode 0.318 Y-direction translation
Third mode 0.306 X-direction translation
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3.2. PDT Results

3.2.1. Hysteretic Curves and Drift Time History Responses

Figure 9 presents the hysteretic curves for the base shear force versus the roof drift ratio
subjected to incremental PGAs. Figure 10 presents the roof drift ratio time-histories of the specimen
subjected to the incremental PGAs. As shown in Figure 9, the initial and unloading stiffness of the
specimen progressively decreased with the increase of PGA. Correspondingly, as shown in Figure 10,
the occurring moment of peak drift response was delayed with the increase of PGA due to the
stiffness deterioration.
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3.2.2. Characteristic of Lateral Deformation

The overall lateral deformation mode and distribution characteristics of drift ratio along the
structural height are important to the seismic behavior of the structural system. Figure 11a shows
the maximum lateral displacement curves under different excitation. It can be found that the lateral
deformation pattern of the specimen belongs to shear mode. Moreover, the figure clearly shows that
the lateral displacement curve was divided into two significant part at the corbel (5.125 m). This was
due to the rigid-upper-flexible-bottom characteristics of the vertical stiffness distribution condition
that the stiffness of the upper part of the corbel is much larger that of the pipe columns.
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and (b) maximum drift ratio.

Figure 11b shows the maximum drift ratio versus the specimen height. It was found that drift
concentration of the specimen occurred on the column, where the peak of maximum drift ratio occurred
at the height of corbel (5.125 m) after PGA came up to 0.30 g.
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3.2.3. Deterioration Behavior

Strength and stiffness deterioration has fatal influence on the seismic capacity and collapse
behavior of structural systems [19]. The secant stiffness Ki used to indicate the overall stiffness of the
specimen is calculated by the following formula [20]:

Ki =
|+Fi|+ |−Fi|
|+Xi|+ |−Xi|

(6)

where +Fi and −Fi are respectively the peak load under the i-th loading case of the PDTs in two
opposite directions; +Xi and −Xi are respectively the displacement corresponding to the peak load
under the i-th loading case of the PDTs in two opposite directions.

In order to evaluate the stiffness deterioration of the specimen with the increase of PGA,
the relative stiffness ratio kre is defined as:

kre =
Ki
K1
× 100% (7)

where Ki is the secant stiffness of the specimen under each loading case of the PDTs calculated by
Equation (6); K1 is the secant stiffness of the specimen under the first loading case when PGA equaled
to 0.05 g. Specially, when PGA is 0.05 g, the relative stiffness ratio kre is 100%.

Figure 12a shows the stiffness and relative stiffness ratio of the specimen under different loading
cases of the PDTs. It can be found that the specimen had obvious stiffness deterioration characteristics,
occurring mainly within the PGA of 0.20 g. It resulted from the macro-cracks occurring and propagation
on RC pipe columns. The experimental phenomenon indicated that when the PGA was equal to 0.20 g,
the cracks firstly occurred on the bottom of RC pipe columns, and then with the increase of loading
steps, cracks occurred on the lower part of the corbel of column. Compared with the specimen under
the PGA of 0.05 g, the stiffness decreased about 32.8% when PGA equaled to 0.20 g. When PGA was
greater than 0.20 g, the speed of stiffness deterioration then slowed. It was probably accounted for
the crack propagation of the specimen. When the PGA came up 0.40 g which referred to the major
earthquake having 2% probability in 50 years, the stiffness was about 60% of the initial stiffness. After
PGA equaled to 0.80 g, the stiffness was about 41% of the initial stiffness. This indicated that this
structure had a rather good stiffness performance.

In addition, test results showed that steel diagonal braces nearly kept elastic during the loading
process, correspondingly, the buckling of steel rebar, concrete crushing and slip are the key factors
related to the stiffness deterioration for this kind of steel-concrete hybrid structure. This phenomenon
coincided with the design expect, that is, most of earthquake energy would be dissipated by the
columns while the steel diagonal braces should not failure or sustain severe damage ahead of the
column. Because the steel diagonal braces are the key components to strengthen the structural integrity
and improve the overall stiffness as the connection between the upper steel truss and the lower
RC columns.

Figure 12b shows the changing situation of the fundamental period of specimen with increase
of PGA. It was observed that inflection point where PGA was equal to 0.20 g occurred, due to the
stiffness deterioration characteristics.

In order to investigate the deterioration characteristics of the specimen more comprehensively,
a coefficient kdet was defined as [21]:

kdet =
∆(PGA)

∆(θr, Fb)
(8)

where ∆(PGA) is the increment of PGA, which is used to represent the intensity measure increment;
θr and Fb are the maximum roof drift ratio and maximum base shear force, respectively; ∆(θr) and
∆(Fb) are respectively the increment of θr and Fb with the increase of PGA, which are used to represent
the response measure increment.
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Figure 12c,d shows the relationship between the maximum roof drift ratio and PGA, the relationship
between the base shear force and PGA, respectively. The coefficient kdet can be reflected by the slope of
the relationship curves. As shown in Figure 12c,d, three phases including linearity, slight hardening
and softening were observed. The softening branch occurred when PGA was larger than 0.60 g, where
the stiffness reduced to 51.7% of its initial value.Appl. Sci. 2018, 8, 131 11 of 16 
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Figure 12. Deterioration behavior of the specimen under PDTs: (a) relative stiffness ratio and stiffness
versus peak ground acceleration (PGA); (b) fundamental period versus PGA; (c) maximum roof drift
ratio versus PGA and (d) maximum base shear force versus PGA.

3.2.4. Cumulated Hysteresis Dissipated Energy

The cumulated hysteresis dissipated energy of the specimen is calculated by the formula as follows:

Eh =
n

∑
0

1
2
(Fi+1 + Fi)(Xi+1 − Xi) (9)

where Fi+1 and Fi are the restoring force of the i+1th and i-th time point, respectively; Xi+1 and Xi
are the corresponding displacements, respectively.

To reflect the energy dissipating degree of the specimen with the increase of PGA, the relative
dissipated energy ratio is defined as the ratio between the cumulated hysteresis dissipated energy
of the specimen under different loading cases of the PDTs calculated by Equation (9), equivalently
the corresponding PGA is 0.05, 0.10, 0.20, 0.30, 0.40, 0.60, and 0.80 g, and the cumulated hysteresis
dissipated energy of the specimen under the final loading case of PDTs (PGA = 0.8 g). Figure 13
shows the cumulated hysteresis dissipated energy (Eh) and the relative dissipated energy ratio of the
specimen under different loading cases. It can be observed that the cumulated hysteresis dissipated
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energy Eh gradually increased along with the increase of PGA. And the growth rate of the cumulated
hysteresis dissipated energy Eh increased significantly when PGA came up to 0.40 g, due to the
more deterioration in stiffness and the larger plastic deformation. Before the PGA came up to 0.40 g,
the relative dissipated energy ratio was only 19%.Appl. Sci. 2018, 8, 131 12 of 16 
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Table 5. Summary of QST results. 

Yield Drift Ratio 
(%) 

Yield Load  
(kN) 

Peak Load 
(kN) 

Peak Drift Ratio 
(%) 

Ultimate Drift Ratio 
(%) 

Ductility Factor 

0.65 170.65 223.71 1.61 2.33 3.60 
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3.3. QST Results

Through QSTs, hysteretic curves and skeleton curve for the base shear force versus roof lateral
displacement (roof drift ratio) were obtained, as shown in Figure 14a. Figure 14b compares the
hysteretic loops for three different drift levels. The hysteretic curves presented significant reversed
S shape pattern with increase of drift. Ultimate load at the last cycle was 189.68 kN, decreasing to
approximately 85% of peak load (223.71 kN). Table 5 lists the hysteretic characteristics of the specimen.
The yield load and yield drift ratio of the specimen was determined using the general yield bending
moment method [22]. The ductility factor is the fraction of ultimate drift to the yield drift. It can be
found that the ductility factor could reach a value of 3.6. This ductility comes mostly from the RC pipe
columns as a result of yielding in the reinforcing steel.
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Figure 14. Hysteretic behavior of specimen: (a) hysteretic curves of base shear force versus roof
displacement (drift ratio) and envelope response and (b) hysteretic loops at various displacement levels.
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Table 5. Summary of QST results.

Yield Drift Ratio (%) Yield Load (kN) Peak Load (kN) Peak Drift Ratio (%) Ultimate Drift Ratio (%) Ductility Factor

0.65 170.65 223.71 1.61 2.33 3.60

4. Failure Mechanisms and Design Recommendations

4.1. Damage Observation

During the PDTs, the specimen sustained slowly accumulative damage when subjected to the
seven PGA levels. The initial cracks were observed on the bottom of column when PGA equaled
to 0.20 g. During the same PGA condition but later loading steps (311th step), new cracks formed
firstly on the lower part of corbel. When PGA increased to 0.60 g, new cracks were observed on the
upper part of corbel. In general, cracks mainly concentrated on the columns while no damage was
observed on the steel truss, A-type bracket and diagonal braces during the PDTs. And with increase of
PGA, cracks formed and developed on the bottom of column, lower part of corbel and upper part of
corbel gradually.

During the following QSTs, cracks on the columns further propagated and extended. Specimen
yielded when the amplitude of control displacement added up to 50 mm. Spalling of concrete was
observed on the base of column when the amplitude of control displacement equaled to 110 mm. When
the amplitude of control displacement increased to 130 mm, the concrete at the base of column crushed
severely and the welding slag of truss-to-column connection began to spall, as shown in Figure 15.
Finally, after the first displacement cycle at the amplitude of 190 mm, the lateral load decreased to
about 85% of the peak load, test was terminated. Figure 16 shows the crack distribution patterns of
column after the tests. It was found that the cracks mainly occurred on the bottom of the column and
lower part of the corbel. Besides, some cracks were observed on the upper part of the corbel.
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4.2. Effect of the Steel Diagonal Braces

This section aims to reveal the mechanism of the cracks distribution patterns observed from
the experiments and to discuss the efficiency of steel diagonal braces. For this kind of hybrid
structure, due to the technological requirements in TPPs, steel truss and A-shaped brackets bear
the important equipment and facilities directly, are expected to suffer negligible damage subjected to
the earthquake. Accordingly, RC columns are expected to dissipate most of the earthquake energy.
Figure 17a,b show the simplified analysis models of the structure without and with diagonal braces,
respectively. As shown in Figure 17, the equivalent lateral loads to the experimental loading actions
can be represented by F1 and F2. The bending moment distribution patterns of the column without and
with diagonal braces under the lateral loads are presented in Figure 17a,b, respectively. Mb, Mc and Mt

represent the bending moment of the base column, corbel and top column, respectively. It can be found
that the moment distribution of the column was changed after setting the diagonal braces due to the
change of action transfer mode. For the structure with diagonal braces, the moment mainly distributed
in three areas including the bottom of column, lower part of the corbel and upper part of the corbel,
which were same with the cracks distribution areas observed from the experiments. However, for the
structure without diagonal braces, the moment mainly distributed in the bottom of column and the
upper part of column. Accordingly, the increase of energy dissipating areas for the column by setting
diagonal braces might improve the energy dissipation capacity of this hybrid structure. Furthermore,
in order to avoid the sudden decrease of the overall stiffness and loss of the structural integrity might
be caused by the failure of steel diagonal braces, the braces should be designed strong enough. On this
basis, the seismic performance of this kind of hybrid structure can be improved effectively by the steel
diagonal braces.
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4.3. Design Recommendations

4.3.1. Calculation Method of Earthquake Action

As analysis above, the torsional stiffness of the structure is rather small, which is adverse to
the seismic design. Besides, the periods of first three vibration modes are close with each other.
Accordingly, the equivalent base shear method is not suitable to calculate the earthquake action of
the steel truss-RC column hybrid structure. And the translation-torsion coupling earthquake action
calculation method was recommended. In addition, in order to consider the adverse influence of the
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torsion, the calculated earthquake actions were suggested to be enlarged. Further analysis is, however,
needed in order to obtain the specific amplified coefficient of the earthquake action.

4.3.2. Construction Measures

As analysis above, RC pipe column is the main energy dissipated component. In order to improve
the energy dissipation capacity of columns, stirrup densification were recommended based on the
cracks distribution areas of the columns, as shown in Table 6.

Table 6. Stirrup densification recommendation.

Location Encryption Height Stirrup Diameter Stirrup Spacing

Base of column 3.0d
≥12 mm ≤150 mmLower part of corbel 1.0d

Upper part of corbel 1.0d

Note: d is the external diameter of pipe column.

5. Conclusions

This paper investigated the seismic behavior and failure mechanism of a peculiar hybrid structure
consisting of steel truss and RC pipe columns with steel diagonal braces through a series of PDTs and
QSTs on a scaled specimen. The main findings can be summarized as follows:

(1) Due to the special structural composition, resulting in the lower torsional stiffness, the first
vibration mode was torsion and the corresponding fundamental period was 0.319 s. Besides,
the periods of first three vibration modes are close with each other. The equivalent base shear
method is not suitable to calculate the earthquake action. And the translation-torsion coupling
earthquake action calculation method was recommended. In addition, in order to consider the
adverse influence of the torsion, the calculated earthquake actions were suggested to be enlarged.

(2) The lateral deformation mode of the steel truss-RC column hybrid structure with steel diagonal
braces belongs to shear-type and the lateral displacement curve was divided into two significant
part at the corbel because of the rigid-upper-flexible-bottom characteristics of vertical stiffness
distribution condition that the stiffness of the upper part above the corbel is much larger than
that of the pipe columns. The drift concentration mainly occurred on the column, where the peak
of maximum drift ratio occurred at the height of corbel after PGA came up to 0.30 g.

(3) Analysis of the stiffness deterioration demonstrated that the steel truss-RC column hybrid
structure with steel diagonal braces had a rather good stiffness performance. When the PGA
came up 0.40 g which referred to the major earthquake having 2% probability in 50 years,
the stiffness was about 60% of the initial stiffness. After PGA equaled to 0.80 g, the stiffness was
about 41% of the initial stiffness.

(4) Damage observation showed that cracks mainly occurred two parts of columns including the
bottom of column and the lower part of corbel. This was due to the setting of diagonal braces,
resulting in the change of bending moment distribution pattern along the height of column.
Overall, the new supporting structure consists of steel truss, RC pipes column with steel diagonal
braces can satisfy the seismic demand under severe earthquakes.
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