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Abstract: Optical printed circuit board (OPCB) waveguide materials and fabrication methods have
advanced considerably over the past 15 years, giving rise to two classes of embedded planar graded
index waveguide based on polymer and glass. We consider the performance of these two emerging
waveguide classes in view of the anticipated deployment in data center environments of optical
transceivers based on directly modulated multimode short wavelength VCSELs against those based
on longer wavelength single-mode photonic integrated circuits. We describe the fabrication of graded
index polymer waveguides, using the Mosquito and photo-addressing methods, and graded index
glass waveguides, using ion diffusion on thin glass foils. A comparative characterization was carried
out on the waveguide classes to show a clear reciprocal dependence of the performance of different
waveguide classes on wavelength. Furthermore, the different waveguide types were connected into
an optically disaggregated data switch and storage system to evaluate and validate their suitability
for deployment in future data center environments.

Keywords: optical printed circuit board (OPCB); graded index waveguides; polymer waveguides;
planar glass waveguides

1. Introduction

In order to accommodate spiraling digital data consumption and maximize resource utilization,
data centers need to embrace more flexible and scalable topologies, which allow greater disaggregation
of compute, storage and memory resources. As a consequence of the resulting need for ubiquitous,
distance-agnostic, communication links, future data center systems will increasingly need to
accommodate a wider range of different optical communication profiles associated with the different
optical interconnect tiers in the data center. At the higher switching tiers of the data center, investment
in single-mode fiber infrastructures is increasing, as it is considered future-proof and aligns well with
emerging silicon photonic integrated circuit based single-mode optical transceiver and switching
technologies. A parallel movement is underway at the sub-rack level with low-cost, commodity
transceivers enabling a rack or pod-localized multimode infrastructure to emerge. The proliferation of
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low-cost multimode midboard transceivers now offers the renewed prospect of optical links migrating
into traditionally cost sensitive data center sub-system enclosures. Although, in the early stages of their
deployment, these transceivers would be internally connected by commercial fiber jumpers, they will
set the crucial precedent for system-embedded optical interconnect in high volume commercial systems.
This, in turn, will be expected to provide a fresh entry point for electro-optical printed circuit board
(OPCB) technologies whereby optical signals may be conveyed along waveguides embedded within the
PCB itself. However, the optimal choice of waveguide type will vary depending on the characteristics
of the optical communication signal in question, in particular the wavelength and data rate.

OPCB technology has advanced considerably over the past 15 years with new optical waveguide
materials and fabrication techniques providing enhanced performance including reduced signal
dispersion through graded refractive index profiles and lower material absorption in different
wavelength bands. In particular, two distinct classes of planar graded index multimode waveguide
have recently emerged based on polymer [1,2] and glass [3] materials.

This paper provides a review the state of the art in planar graded index waveguides. We report
on the fabrication of planar graded index polymer waveguides using the Mosquito method [1] devised
by Keio University and the photo-addressing method devised by Sumitomo Bakelite [2], and the
fabrication of planar graded index glass waveguides using ion diffusion on thin glass foils as developed
by Fraunhofer IZM [4]. We comparatively characterize their insertion loss at both 850 nm and 1310 nm
and signal integrity at 10.3 Gb/s to assess their suitability with respect to two emerging transceiver
classes based on directly modulated multimode 850 nm VCSELs and single-mode 1310 nm silicon
photonic integrated circuits.

The different classes of waveguide were temporarily inserted into an optically disaggregated data
storage system using the Serial Attached SCSI protocol and the system performance was characterized
to assess their suitability within real future data center environments.

Early comparative research between polymer and glass planar waveguides was reported in [5],
and is taken further in this paper to include all leading varieties of embedded planar graded
index waveguide.

2. Fabrication of Graded Index Polymer Waveguides

2.1. Mosquito Fabrication Method (Keio University)

An innovative method of fabricating polymer waveguides with circular cores was developed by
Keio University [1]. According to the “Mosquito method”, core monomer is dispensed directly into
a layer of cladding monomer. The core and cladding monomers are then both cured simultaneously,
which simplifies the fabrication process. The fabrication process steps are outlined in Figure 1:
A cladding monomer liquid with a given refractive index is first coated onto the substrate. A core
monomer with a higher refractive index than that of the cladding monomer is placed into a syringe,
which is mounted on a robotic arm. The tip of the syringe needle is then inserted into the liquid
cladding monomer layer to the desired depth at which the waveguide is to be deposited. The robotic
arm then moves the syringe tip in the plane of the substrate, while injecting the core monomer out of
it at a constant pressure along the entire path of the planned waveguide. Once expelled and drawn
out by the moving needle tip, the liquid core monomer coalesces into a cylindrical form suspended
within the bulk liquid cladding monomer. This form is maintained along the entire path of the
planned waveguide, but as both core and cladding monomers are in a liquid state, they continue to
diffuse slightly into each other, giving rise to a graduated concentration distribution of core monomer
from the center of the cylindrical construct into the cladding monomer. This in turn is reflected by
a corresponding graduated decrease in refractive index from that of the core monomer in the center of
the cylindrical construct to that of the cladding monomer at the edges. The robotic arm then repeats
the process for subsequent waveguides. Once all cylindrical structures have been dispensed in their
liquid form, then the whole substrate is exposed to UV light and the graduated cylindrical forms of
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liquid core monomer are partially cured into place to form the waveguides. The substrate is then
baked to complete the curing process.

The refractive index profile is determined by the amount of time core and cladding monomers are
allowed to diffuse into each other. Therefore, by careful choice of the time between dispensing the core
monomer and the curing step, one can tune the refractive index profile of the resulting waveguides
to achieve a parabolic graded index profile. Greater control of the refractive index profiles can be
achieved by altering other configurable parameters including choice of core and cladding materials,
core monomer dispensing pressure and amending the scanning programme. It has been demonstrated
that the graded index circular waveguides produced through this method outperform step index
waveguides of similar size [6].

Various types of UV curable resins have been used to produce Mosquito waveguides reported in this
paper including silicone resin FX-712 (core) and FX-712 (cladding) from ADEKA Corp. (Tokyo, Japan) [7]
and an organic–inorganic hybrid resins from Nissan Chemical Ind., Ltd. (Tokyo, Japan), NP-005 (core)
and NP-208 (clad) [8].

Figure 1. Procedures in the Mosquito method.

Figure 2 shows various cross-sections of the Mosquito waveguides characterized in this paper.
The scanning trails of the needle are clearly visible under the circular graded index core.

Figure 2. Cross-section of Mosquito GI waveguides.
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2.2. Photo-Addressing Fabrication Method (Sumitomo Bakelite)

Sumitomo Bakelite developed a fabrication process for graded index polymer waveguides,
which is based on the photo-addressing method. The details of the photo addressing method are
outlined in Figure 3.

Figure 3. Graded index waveguide fabrication.

A special varnish is prepared for the polymer core and cladding layers and coated onto a substrate.
Special refractive index modifiers and photo initiators are incorporated into the varnish prior to use.
These refractive index modifiers and initiators catalyze the production of graded refractive index profiles
in the fabricated waveguides. The coated layers are then pre-baked, exposed to UV light through
a photo-mask and heated to a certain temperature to obtain graded index polymer waveguide [9].
After heat treatment, the waveguide is laminated with polyimide film to protect it from the outer
environment. Figure 4 shows the cross-sectional image of GI core waveguide after fabrication.

Figure 4. Cross section of addressed GI waveguides.

Sumitomo Bakelite have developed a method of terminating polymer waveguides with a parallel
optical ferrule, which is compliant with a single row 12 channel MT ferrule. The Polymer MT or
PMT ferrule is currently being deployed in various commercial products by Sumitomo Bakelite
(Tokyo, Japan) (Figure 5).
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Figure 5. Photo-addressed waveguide termination of photo-addressed waveguides with PMT
connector (left side) and out-of-plane coupling array (right end) Source: Sumitomo Bakelite.

2.3. Waveguide Crossovers

One limitation of the Mosquito waveguides compared to the photo-addressed waveguides is
that the Mosquito waveguides cannot be crossed through each other directly as is common with most
planar embedded polymer waveguides including the photo-addressed waveguides. Figure 6 shows
a photo of a photo-addressed waveguide layout with multiple waveguide cross-overs at multiple
angles. The Mosquito waveguides can however be made to cross past each other as this method allows
waveguide heights to be changed over the course of the waveguide.

Figure 6. Photo-addressed waveguides with waveguide layout showing multiple cross-overs at varied
crossing angles (Source: Sumitomo Bakelite).

3. Fabrication of Graded Index Glass Waveguides (Fraunhofer IZM)

3.1. Two-Step Ion Diffusion Fabrication Process

The glass waveguide fabrication consists of a two-step thermal ion-exchange process between
salt-melt and display glass suitable for large panel and batch processing. The glass waveguide panel
processing line at Fraunhofer IZM (Berlin, Germany) is shown in Figure 7. Process steps like sputtering
(PVD), lithography (Dip-Coater, LDI, etc.) and glass panel separation (Laser-Cutter) are suitable for
board formats of up to 610 × 457 mm2. The glass panel areas that can be processed this way are limited
to 305 × 457 mm2. Fraunhofer IZM have already processed waveguide panels with a maximum size
of 305 × 440 mm2.

Figure 7. Fraunhofer IZM glass panel waveguide process line.
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The test waveguides produced for this research were patterned on chemically untreated
Corning Gorilla Glass 1 (distributed by Schröder Spezialglas, Ellerau, Germany), which was only
available in a thickness of 550 µm. The glass waveguides were fabricated as follows. An aluminum
layer of 400 nm thickness was deposited on both the top and bottom surfaces of the glass foil
through DC-sputtering by Creavac Creamet 600 physical vapor deposition (PVD) equipment (Creavac,
Dresden, Germany). The glass panel was then dip coated to deposit photoresist on both sides of
the panel and the top surface patterned by an Orbotec Paragon Ultra 200 laser direct imaging (LDI)
system (Orbotec, Tokyo, Japan), which transferred the waveguide layout and alignment mark patterns
to the photoresist layer, the uncured areas subsequently being developed away. Then, the exposed
aluminum layer on the top-surface was etched through an acid treatment and the photoresist removed
completely. The glass panel was vertically lowered into a furnace containing a hot salt melt. The salt
melt for the first diffusion step comprised a diluted AgNO3 mixture. During this step, sodium ions
in the glass matrix were exchanged with silver ions in the salt mixture, giving rise to a localized
graduated increase in the refractive index of the glass. The concentration gradient of the silver ions into
the bulk glass was proportional to the resulting refractive index gradient with the highest refractive
index change occurring at the exposed glass surface interface to the mixture and the refractive index
decreasing in a graduated manner to that of the bulk glass. This gave rise to an isotropic refractive
index profile emanating from the exposed glass panel section. The aluminum mask layers were
subsequently removed from the top and bottom glass surfaces by wet chemical etching. A single step
ion diffusion process of glass waveguide fabrication was reported by Karabchevsky [10] for sensing
applications, whereby the refractive index maxima was on the top surface of the glass, however for
optical communication applications a second ion diffusion step is required to generate a graded index
profile with the index maxima buried in the glass. In order, therefore, to “round off” the waveguide
profile and shift the refractive index maximum to a certain depth below the glass surface, a second
ion diffusion step was implemented whereby salt ions were leached back out of the glass matrix into
a second solution. Following this two-step ion diffusion process, an MDI LD600-H system CO2-laser
scribing system (Mainz, Germany) was used to score the glass panel into smaller sections with identical
waveguide layouts. The individual sections were then manually snapped off along the score lines,
producing very high-quality facets. This process is described in more detail in the next section. The test
waveguides had a length of 190 mm and each glass section contained one group of 12 parallel straight
waveguides with a center-to-center channel pitch of 250 µm. By varying the process parameters,
one can vary the characteristics of the waveguide including the waveguide dimension, NA and
distance of the maximum refractive index point from the glass surface, which in turn will affect the
coupling and propagation losses of the waveguide.

To this end, two different sets of test waveguide samples were produced with different diffusion
times and silver salt melt concentration. These sets were given the internal designations “set 1” and
“set 7” as the intervening five sample set processes were not completed. In particular the diffusion time
from parameter set 7 was longer than that of set 1. Refractive near field (RNF) scans were conducted
on both sets of waveguides to determine their cross-sectional refractive index profiles. Figure 8a,b
respectively show the horizontal refractive index profiles of set 1 and set 7. Waveguides fabricated
according to parameter set 1 showed a refractive index maximum shifted to a depth of around 15 µm
below the glass surface, while for waveguides fabricated according to parameter set 7, the index
maximum was shifted to a depth of 30 µm. The refractive index differences measured between core
center and cladding were 0.025 for set 1 and 0.029 for set 7 with corresponding NAs of 0.27 and
0.3 respectively, and the size of the set 1 waveguides are smaller than that of the set 7 waveguides.
These relative waveguide characteristics are an expected consequence of the longer diffusion time
in set 7.
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Figure 8. Refractive index profiles of selected glass waveguides with fabrication parameter sets 1 and
7: (a) Refractive index near field (RNF) scan of waveguide cross-section from parameter set 1, (b) RNF
scan of waveguide from parameter set 7, (c) refractive index profiles along the horizontal axis of sets
1 and 7, (d) refractive index profiles along the vertical axis of sets 1 and 7.

3.2. End Facet Quality Analysis on Glass Waveguides

The quality of the processed end facets depends on several aspects including layout and process
parameters. As mentioned above, the method used by Fraunhofer IZM to cleanly dissect the glass
was laser dicing by CO2-laser and a cooling nozzle, whereby the glass panel was scored with the
laser and subsequently cooled so it could be cleanly snapped, providing optical quality surface finish
without subsequent polishing. This process was developed for display glasses with a homogeneous
glass matrix, however since the glass matrix is selectively changed by the ion exchange process,
a non-homogeneous material profile is created at the cut-line and this must be considered. In order to
mitigate any deleterious effects of direct laser exposure to the waveguides themselves, the laser scoring
process takes place on the opposite surface of the glass panel to the surface where the glass waveguides
were formed. The laser dicing process was followed by manual glass separation, which comprised
snapping the glass at the interface using a scoring and snapping principle. This method, however, is not
only dependent on the cut- and waveguide-process, but also on the operator. Therefore, repeatability
of the process would be variable.

To investigate this issue, IZM followed the well-known cut-back procedure to comparatively
characterize the end-facet coupling loss performance on both glass waveguide sample sets under test.
The cut-back measurement results are shown in Figure 9 and the derivation of propagation loss is
shown in Table 1. Measurements were made in accordance with IEC measurement standard [11].

These results indicate a strong dependence of the coupling and propagation losses of ion-diffused
glass waveguides on the NA and core size.

Unneglectable are also the comparatively large error bars for most of the measurements. Even for
set 7 with lower errors, measurements at 1310 nm are only meaningful because of the measurement
at the shortest length. Nevertheless, a conclusion can be drawn that the cut-back procedure gave
good insight into the value of the measurement data on IZM’s straight waveguides. Besides this
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investigation, another issue should be investigated in the future: Due to the change of the ion-radius
during the thermal diffusion step, small sodium ions (Na+) are replaced by much larger silver ions
(Ag+). This results in tension due to higher mechanical stresses within the waveguide vicinities.
These tensions are not a reliability issue, but pose a risk for varying pitch densities. The crack during
manual breaking, after the laser dicing process, propagates from one side of the glass interface to
the other as required. This crack, however, will be disturbed by high changes of density. Thus, high
amounts of silver, e.g., due to a small pitch, a large array or several small arrays can give rise to a larger
variation in end facet quality during the breaking process. This influence was discovered during
processing of the glass used in this paper and is currently undergoing further investigation.
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Figure 9. Cut-back measurements on both glass waveguide samples under test to compare end facet
coupling losses at both 1310 nm and 850 nm with a standard fiber launch and 1310 nm only with a large
core fiber (200 µm) launch in accordance with IEC measurement standard [11].

Table 1. Derivation of Insertion Loss (IL) and Propagation Loss (PL) from cut-back measurements.

Wavelength Set 1 Set 7

GI 50 launch fiber PL (dB/cm) IL (dB) PL (dB/cm) IL (dB)
850 nm 0.11 ± 0.01 1.71 ± 0.19 0.05 ± 0.01 2.29 ± 0.14

1310 nm 0.07 ± 0.008 0.41 ± 0.12 0.04 ± 0.008 0.25 ± 0.1
Large Core Fiber Set 1 Set 7

850 nm 0.04 ± 0.014 2.17 ± 0.24 0.03 ± 0.004 1.87 ± 0.06

4. Optical Measurement Process

4.1. Optical Waveguide Measurement Set-Up

Insertion loss measurements on the test waveguides were carried out at Seagate by both Seagate
and Keio University staff using the measurement set-up shown in Figure 10. This is one of the principal
multimode fiber launch configurations recommended in the optical circuit board measurement
standard: “IEC 62496-2—General guidance for definition of measurement conditions for optical
characteristics of optical circuit boards” [11]. The continuous wave optical output from a commercial
850 nm source was conveyed along 50/125 µm OM3 graded-index multimode fiber (GI-MMF) through
an Arden Photonics Modcon mode conditioner to produce an encircled flux (EF) profile at the fiber
launch facet, which complies with the EF profile defined in the international standard IEC 61280-4-1 [12].
The output of the waveguide under test was collected by an integrated sphere photodetector through
an OM2 GI-MMF fiber. The reference power for the insertion loss measurements was obtained by
butt-coupling the input and output fibers together and measured to be −8.87 dBm. Both input and
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output fibers were end-fire coupled to the input and output waveguide facets respectively with no
refractive index matching oil applied. The input and output fibers were held in a brace on an x–y–z
translation stage to provide accurate mechanical alignment.
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Figure 10. Measurement schematic of the multimode fiber launch.

4.2. Comparative Insertion Loss Measurements at 850 nm and 1310 nm

The parameters for the different waveguides under test are shown in Table 2.

Table 2. Polymer and glass waveguide parameters.

Parameters Mosquito Waveguides Sumitomo Waveguides Glass Waveguides

Set 1 Set 7
Core, n1 (NP-005), 1.597 - 1.523 1.527

Cladding, n2 (NP-208), 1.569 - 1.498 1.498
Index difference 0.028 0.025 0.029
Sample length 5 cm 17.6 cm 19 cm 19 cm

Optical layer thickness 0.5 mm 0.1 mm 0.55 mm 0.55 mm
Core size ~50 µm ~50 µm ~50 µm ~50 µm

Channel Pitch 250 µm 250 µm 250 µm 250 µm
Fab. method Mosquito Photo addressing Ion diffusion Ion diffusion
Index Profile GI GI Elliptical GI Elliptical GI

Table 3 shows the average insertion losses measured on the planar graded index polymer Mosquito
and photo-addressed waveguides, and the planar graded index glass waveguides at wavelengths of
850 nm and 1310 nm. Unfortunately, due to damage of the photo-addressed sample, measurements
of the photo-addressed waveguides at 1310 nm could not be completed, so are excluded from the
results presented.

Table 3. Average insertion loss measured at 850 nm and 1310 nm on glass and polymer waveguides
under test.

Input Wavelength (nm) Insertion Loss (dB)

Mosquito Waveguide Photo-addressed Waveguide Glass Waveguide
Set 1 Set 7

850 2.73 ± 0.69 3.32 ± 0.31 4.90 ± 0.32 4.23 ± 0.20
1310 4.32 ± 0.67 Not available 2.81 ± 0.13 3.00 ± 0.21

The insertion loss per cm is shown in Figure 11 and the insertion loss results are shown in Figure 12.
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Figure 12. Insertion loss measurements at 850 nm and 1310 nm on glass and polymer waveguide
samples, (a) Fraunhofer IZM glass waveguide sample set 1, (b) Fraunhofer IZM glass waveguide
sample set 7 and (c) Keio University polymer Mosquito waveguides, (d) Sumitomo Bakelite polymer
waveguide (850 nm measurements only).

4.3. Loss Analysis of the Waveguides Fabricated Using the Mosquito Method

In the measured results of the insertion loss of polymer waveguide shown in Figure 12,
the uniformity of the loss over the whole parallel cores is a concern. The results in Figure 12c show the
loss variation from 2 to 4 dB in a 5-cm long waveguide at 850 nm. In the Mosquito method, the parallel
cores are dispensed one by one in order, and the core dispensed first has longer interim time than the
last one after being dispensed to start UV cure. This interim time difference among the channel could
lead to the difference of the index profile, core diameter, and NA, which could cause the variation
of the insertion loss. Hence, the interim time dependence of the insertion loss is analyzed in more
detail. Figure 13 shows the interim time dependence of the insertion loss. In Figure 13, two different
measurement conditions are employed by Keio University in accordance with the IEC measurement
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requirements [11]: OM3 GI-MMF is used for both launch and capturing fibers (50GI–50GI) and
a standard single-mode fiber is used for the launch fiber (SMF–50GI). Meanwhile, Figure 14 shows the
interim time dependence of the output Near Field Pattern (NFP) from the waveguide. From Figure 14,
the insertion loss monotonically decreases with respect to the interim time from 0 to 270 s under both
conditions. Then, once the minimum insertion loss is observed at 300- to 430-s interim time, a gradual
increase is observed with increasing the interim time. From Figure 14, it is found that the core-cladding
boundary in the cross-section becomes blurred with increasing interim time, which means the refractive
index gradation is gradually formed. By comparing the NFP image to the scale bar of 50 µm in
Figure 14, it is also found that originally the output optical field of the NFP is slightly larger than the
designed core diameter (50 µm). Since the core has a profile close to an SI when the interim time is
short, the NFP is widely spread to the whole core in the first two cores, even if the core is launched
with a small beam spot via an SMF. Therefore, the insertion losses are as high as 1.8 to 3 dB when
the interim time is shorter than 105 s, due to the core size and optical field mismatching between
the cores of waveguide and GI-MMF (50GI, capturing fiber). Meanwhile, after an interim time of
longer than 205 s, the size of output NFPs are almost the same and smaller than 50 µm under 50GI
and SMF launch conditions, respectively, although the actual core diameter observed from the cross
section is much larger than 50 µm due to the monomer diffusion. The small spot of the output NFP is
a well-known feature of the GI core, which leads to a high efficiency coupling to the GI-MMF capturing
fiber. Hence, the low insertion loss is observed after an interim time longer than 205 s, as shown in
Figure 14. Here, the insertion loss slightly increases when the interim time is long enough (longer than
500 s). The excess diffusion of the core and cladding monomers contributes to the decrease of the NA
of the core, resulting in lowering the light confinement effect. From the NFPs of the last two cores in
Figure 14, a gradual spot size increment is visually observed.
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From the above investigation, it is revealed that the insertion loss of the GI core polymer
waveguides fabricated using the Mosquito method is sensitive to the index profile, namely the
diffusion time for core and cladding monomers. The loss result in Figure 12 shows the similar tendency:
Ch. 1 and 2, and Ch. 11 and 12 show higher insertion loss, corresponding to long and short interim
times, respectively. (The high loss in Ch. 6 could be accidental.) Therefore, in order to maintain the low
insertion loss for all the parallel cores, control of the monomer diffusion is a key issue. The group of
Keio University is currently investigating how to manage the diffusion from both material and process
points of view.

The insertion loss variations measured on the photo-addressed waveguides however are,
on average, lower than those of Mosquito waveguides with the exception that photo-addressed
waveguide 4 was damaged so no result was recorded. On the glass waveguides under test,
the waveguides fabricated according to parameter set 1 exhibited lower loss at 1310 nm than those
fabricated by parameter set 7. However, the set 7 waveguides exhibited lower loss at 850 nm than
the set 1 waveguides. This implies that the glass waveguide fabrication parameters can be tuned to
a given operational wavelength.

The planar polymer Mosquito waveguides under test consistently showed lower insertion loss at
850 nm than at 1310 nm, while the planar glass waveguides under test consistently showed a lower
insertion loss at 1310 nm than at 850 nm.

In glass waveguides, the insertion losses at 850 nm are higher than at 1310 nm, due to the
formation of silver ion clusters in the glass matrix, which induce stronger intrinsic scattering at 850 nm
than at 1310 nm. This effect can be mitigated by changing the glass composition and improving the
waveguide process.

In polymer waveguides, the insertion losses at 1310 nm are higher than at 850 nm due to the
intrinsic absorption profile of the polymer material, which is particularly affected by the vibration
frequency of the C–H bonds in the polymer material [13].

4.4. Signal Integrity Characterization

The signal integrity characterization set-up shown in Figure 15 is described as follows.
A 10.3125 Gb/s PRBS 231-1 test pattern was generated by an Anritsu MT1810 pulse pattern generator
(PPG) and used to drive either a commercial 850 nm or 1310 nm XFP transceiver. As with the insertion
loss measurements, a mode conditioner was used to ensure the near field modal distribution at the fiber
launch complied with the EF requirements set out in IEC 61280-4-113. The output from the waveguide
was conveyed by an OM2 fiber through a variable optical attenuator into a Tektronix CSA8000B
communications signal analyzer (CSA). By selection of either the 850 nm or 1310 nm XFP transceiver,
signal integrity measurements were carried out at 850 nm for polymer and 1310 nm for glass
waveguides. Back-to-back signal integrity reference measurements were carried out for each
wavelength, whereby a variable optical attenuator (VOA) was used to adjust the signal power
amplitude received at the CSA to be equal to the measured power for each given waveguide
measurement in order to compensate for any jitter dependence of the CSA on received power levels.
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Figure 16 shows eye diagrams of the waveguides under test at their respective best operating
wavelength (1310 nm for glass waveguides, 850 nm for both types of polymer waveguides) with
minimal added signal distortion apparent.
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signal analyzer (CSA), (b) Mosquito waveguide channel 5 at 850 nm, (c) 1310 nm reference eye
diagram with direct fiber coupled to a CSA, (d) IZM glass waveguide set 7 channel 12 at 1310 nm;
(e) Photo-addressed waveguide channel 7 at 850 nm.

Bit Error Rate testing was also carried out on the waveguides at their respective best operational
wavelengths using an Anritsu MT1810 signal analyzer (Anritsu Corporation, Tokyo, Japan). A bit
error rate of less than 10−12 was measured on all waveguides.

5. Validation of Different Waveguide Classes in an Optically Enabled Data Center System

Figure 17 shows an optically enabled data storage array system, which was designed and
developed on the PhoxTroT project. The PhoxTest03.01 platform (Seagate, Havant, UK) was based on
an existing 2U (89 mm) high, 19” wide Seagate OneStor™ system enclosure.

PhoxTest03.01 includes two optically enabled 12 G SAS switch controller modules, an electro-optical
midplane based on a 192 fiber flexplane and 24 optically enabled 2.5” Small Form Factor hard disk drives.
All devices and links in the system are 12 G capable and have been fully characterized and validated using
appropriate SAS device detection and soak test regimes as reported in a previous paper [14].
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5.1. System Level Measurement Set-Up

The PhoxTest03.01 platform allows the suitability of different waveguide types to be assessed,
when incorporated in an optically disaggregated data center environment. The measurement set-up is
shown in Figure 18. The optical fiber under test connected from the board mounted optical transceiver
is passed to the same mechanical brace and alignment stage used in the measurement set-ups described
in Figures 10 and 15 to align accurately to one end of the waveguide under test. The optical fiber from
the standard midplane connector is passed to the other end of the waveguide under test and mounted
in a mechanical brace and alignment stage, allowing it to be aligned accurately to the waveguide facet.
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5.2. System Level Measurement Results

Each waveguide under test was connected between the 850 nm optical interface of a Finisar BOA
midboard optical transceiver (Finisar, Wuxi, China) connected directly to a Serial Attached SCSI (SAS)
expander switch (Microsemi, Aliso Viejo, CA, USA) via the electro-optical midplane connection to one
optically enabled 6 Gb/s SAS disk drive. The performance of the system with the connected drive
was characterised using IOmeter (Open Source Development Labs, San Francisco, CA, USA), an open
source I/O subsystem measurement and characterization tool for single and clustered systems [15].
The waveguide channels with the lowest insertion loss were chosen for the Mosquito (channel 5) and
glass waveguide (set 7, channel 12). On the photo-addressed waveguide test board, a waveguide with
a median insertion loss (channel 1) was chosen. The IOmeter system performance graphs in Figure 19
show the number of error-free data transfers in MB/s per data block size. Negligible difference in
system performance is observed by inserting the waveguide section into the system. Although, this is
expected given the short waveguide lengths and relatively low losses, it demonstrates that system
level performance as a whole is not adversely affected, providing system level validation, in addition
to channel level validation of at least short lengths of optical waveguide.
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6. Conclusions

In this paper, we have reported on the comparative characterization between two leading classes of
multimode planar optical waveguide, namely graded index polymer waveguides produced using the
Mosquito and Photo-addressing methods, and planar graded index glass waveguides produced using
an ion diffusion method. The insertion loss measurements at the key communications wavelengths
of 850 nm and 1310 nm showed a consistent reciprocal relationship between the two waveguide
material types with respect to wavelength, with polymer waveguides showing lower insertion loss
at 850 nm than at 1310 nm, and glass waveguides showing lower insertion loss at 1310 nm than
at 850 nm. Signal integrity and bit error rate measurements on both waveguide classes indicated
low added signal distortion at their respective optimal wavelengths and a bit error rate of less than
10−12. The waveguides were incorporated into an optically enabled data center platform and system
level characterization was carried out showing negligible performance disruption from any of the
waveguides at 850 nm. The fact that the state-of-the-art in embedded graded index waveguides of
both classes has been validated in the prototype platform paves the way for widespread deployment
of both emerging classes of embedded graded index waveguide in future optically enabled data
center systems.
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