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Abstract: In practice, it is usually difficult to obtain the physical model of nonlinear, rotor-bearing
systems due to uncertain nonlinearities. In order to solve this issue to conduct the analysis and design
of nonlinear, rotor-bearing systems, in this study, a data driven NARX (Nonlinear Auto-Regressive
with exogenous inputs) model is identified. Due to the lack of the random input signal which
is required in the identification of a system′s NARX model, for nonlinear, rotor-bearing systems,
a new multi-harmonic input based model identification approach is introduced. Moreover, the
identification results of NARX models on the nonlinear, rotor-bearing systems are validated under
different conditions (such as: low speed, critical speed, and over critical speed), illustrating the
applicability of the proposed approach. Finally, an experimental test is conducted to identify the
NARX model of the nonlinear rotor test rig, showing that the NARX model can be used to reproduce
the characteristics of the underlying system accurately, which provides a reliable model for dynamic
analysis, control, and fault diagnosis of the nonlinear, rotor-bearing system.

Keywords: NARX model; nonlinear, rotor-bearing systems; system identification;
multi-harmonic excitation

1. Introduction

The rotor-bearing system is the main component of large-scale, rotatable equipment such as,
e.g., aircraft engines and gas turbines, etc., and most of the rotor-bearing systems are significantly
affected by nonlinearities [1]. In order to investigate the properties of nonlinear, rotor-bearing systems,
mathematical models are important [2]. The mathematical models can generally be divided into two
categories: the numerical model and the physical model [3]. For nonlinear, rotor-bearing systems,
the systems are usually simplified into physical models based on mechanical or electrical-related
theories [4,5]. For example, Hu et al. [6] established a 5 degree of freedom (5DOF) physical model
about the aircraft engine spindle dual-rotor system. Zhou and Chen [7] introduced a dual rotor-ball
and bearing-stator coupling dynamic system. However, those physical models are relatively simple
to describe complex, nonlinear, rotor-bearing systems such as, e.g., large centrifugal compressors
and steam turbines, etc., where strong nonlinearities have to be taken into account [8]. Moreover, in
practice, it is also difficult to establish the physical model of a system due to its complexity and the lack
of physical knowledge [9]. Fortunately, it is possible to build a data-driven model by using only input
and output signals, which is widely applied in system analysis, design, and control for the advantages
of efficiency and the capacity of tracking changes of the system [10].
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In 1980s, the NARX (Nonlinear Auto-Regressive with Exogenous Inputs) model was introduced
by Billings as a new representation for a wide class of discrete, nonlinear systems [11]. The Volterra
series model [12], the block-structured model [13], and many neural network architectures [14] can all
be considered as subsets of the NARX model [15]. In practice, many systems have been investigated by
using the NARX model [16–18]. For example, Peng et al. [19] established a NARX model of aluminum
plate with structure damage and then detected the location of damage by frequency domain analysis,
which provided a theoretical support for structural damage detection in practical engineering. Besides,
the NARX model can also be used in other industrial scenarios such as modeling the large horizontal
axis wind turbine [20] and large horizontal lathes [21]. Considering the nonlinear, rotor-bearing system,
Tang et al. [22] established a Volterra series model by using date sets of the vibration response under
different positions; based on this model, the fault modes were identified. Jiang et al. [23] developed
the Volterra series model to detect the crack of the two discs in the rotor-bearing system.

In general, a random signal is selected as the system input in the traditional NARX modeling
process. This is because the random signal contains different frequency and amplitude characteristics,
and by using this, different properties of the system can be tested when the knowledge about system
parameters and model structures is absent [24]. However, in practice, it is impossible to produce
random input excitations when identifying rotor-bearing systems [25]. To address the aforementioned
issue, in this study, a multi-harmonic signal generated by a speed-up process is applied as the system
input to establish the NARX model. Moreover, a new approach to determine the NARX model by using
the speed-up harmonic signal is introduced. Many researchers have analyzed the rotor-bearing system
based on the speed-up process. For example, Li et al. [26] and Zhu et al. [27] extracted fault features
of the rotor-bearing system by using the speed-up process, based on which the fault modes were
identified. In this paper, the approach of identifying the NARX model of the nonlinear, rotor-bearing
system is proposed by using the speed-up harmonic signal. The accuracy of the identified model is
validated by using both numerical and experimental methods, and the results indicate that the NARX
model of the nonlinear, rotor-bearing system can be used to represent different system characteristics,
which contribute to the analysis, design, and fault diagnosis of the rotor-bearing system.

This paper is organized as follows. In Section 2, a typical nonlinear, rotor-bearing system is
established and the inherent characteristics of the system are revealed. Section 3 introduces a new
approach of identifying the NARX model of nonlinear systems based on a multi-harmonic input, which
is discussed under different working conditions (such as: low speed, critical speed, and over critical
speed). The NARX model is evaluated by two different validation methods and an error criterion.
An experimental validation is discussed in Section 4, in which a test rig connected with the Labview
test system and two eddy current displacement sensors are used. Finally, the three main conclusions
are presented in Section 5, which provide an efficient method for numerical modeling of nonlinear,
rotor-bearing system.

2. Nonlinear, Rotor-Bearing System Structure

2.1. System Structure

Considering the nonlinear contact force, the rotor-bearing system, placed horizontally with an
unbalanced disc, is simplified (as the rotor is rigid) and supported by two symmetrical rolling bearings
with the same parameters.

A simplified dynamic model of the rotor system is shown in Figure 1a, while the schematic of
the rolling bearing is shown in Figure 1b. In Figure 1a, x-axis is the horizontal direction, and y-axis is
the vertical direction; and in Figure 1b, ds, and dr are the diameters of the outer race and inner race,
respectively, and ψi is the angle location of the ith ball.
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Figure 1. Rotor-bearing dynamic model.

The dynamic differential equation of the rotor-bearing system in Figure 1 can be defined as:{
m

..
x + C

.
x + Fx = meω2 sin(ωt)

m
..
y + C

.
y + Fy = meω2 cos(ωt) + F′

(1)

where m is the equivalent mass of the rotor and the inner race at the disc; C is the damping coefficient
of the rotor at the disc and rolling bearing; ω is the rotor angular velocity; F′ is the sum of the radial
external force and the gravity of the rotor; e is the rotor eccentricity distance; and Fx, Fy are the
supporting force components in the x and y directions, respectively. According to Hertzian contact
theory, the forces generated from the rolling bearing are defined as [28]:

Fx = Kb

Nb
∑

i=1
(y cos ϕi + x sin ϕi − γ0)

1.5 sin ϕi

Fy = Kb

Nb
∑

i=1
(y cos ϕi + x sin ϕi − γ0)

1.5 cos ϕi

(2)

where Kb represents the Hertzian contact stiffness; γ0 is the rolling bearing radial clearance; and
y cos ϕi + x sin ϕi − γ0 is the contact deformation between the ith ball and the races. Also, the ith ball
angle location ϕi is:

ϕi =
2π

Nb
(i− 1) +

dr

dr + ds
ωt (3)

where Nb is the number of balls of the rolling bearing.

2.2. System Inherent Characteristics

In system (1), given m = 1 kg, C = 200 Ns/m, Kb = 7.055 × 105 N/m, Nb = 9, e = 2 mm,
ds = 28.262 mm, dr = 18.783 mm, λ0 = 3 × 10−4 m. The first-order critical speed of the system
can be obtained as ω0 = 320 rad/s, which is shown in Figure 2.
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Three cases of the low speed (  = 100 rad/s), the critical speed (  = 320 rad/s), and the over 
critical speed (  = 500 rad/s) are discussed separately, as follows. The time domain and frequency 
domain responses of the rotor-bearing system are shown in Figures 3–5, respectively. 
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As can be seen from Figures 3–5, the second harmonics is the significant component under the
three cases due to the effect of the nonlinear bearing force. Therefore, in the following section, the
NARX model to the second order is identified based on the nonlinear, rotor-bearing system.

3. NARX Model on the Rotor-Bearing System

3.1. Identification of the NARX Model

A broad range of nonlinear systems can be described using NARX models, which can be
expressed as [29]:

y(k) = F
[
y(k− 1) · · · , y

(
k− ny

)
, u(k− 1), · · · u(k− nu)

]
(4)

where F[ ] is some nonlinear function, ny and nu are the maximum time lag for the system output and
input, respectively, and y(k) and u(k) are the output and input sequence of the system, respectively.

The NARX model has several forms, among which the power polynomial representation is
most commonly used in nonlinear system identification. Function F in equation (4) is defined as the
following polynomial expression:

y(k) = θ0 +
n
∑

i1=1
θi1 xi1(k) +

n
∑

i1=1

n
∑

i2=i1
θi1 θi2 xi1(k)xi2(k) + · · ·+

n
∑

i1=1
· · ·

n
∑

il=l−1
θi1i2···il xi1(k)xi2(k) · · · xil (k) (5)

where:

xm(k) =

{
y(k−m) 1 ≤ m ≤ ny

u
(
k−

(
m− ny

))
ny + 1 ≤ m ≤ ny + nu

(6)

where θi are model coefficients; L is the degree of polynomial nonlinearity; n = nu + ny.
Consider a generic linear-in-parameters representation of model (5) as:

y(k) =
M

∑
m=1

θm pm(k) (7)

where θm is the model coefficient of the mth term; M is the number of all possible model
terms, M = (n + l)!/(n!l!); pm(k) is the regression which is formed by some combinations
of the predetermined model variables, which are orderly chosen from the following vector
x(k) =

[
1, y(k− 1), L, y

(
k− ny

)
, u(k− 1), L, u(k− nu)

]
.

The NARX model can be obtained by using FROLS (Forward Regression Orthogonal Least
Squares) algorithm [30], which is a recursive algorithm based on ERR (Error Reduction Ratio) criterion
to select significant model terms. The steps of FROLS are as follows:
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• Step 1: Orthogonalization of model:

The NARX model (7) can be rewritten into a matrix form:

y = Pθ (8)

where P = [p1, p2, L, pM] is the regression matrix with the column vectors
pm = [pm(1), L, pm(N)]T , (m = 1, L, M) which consist of the values pm(k), (m = 1, K, N) over
the time history; N is the number of sampling observations; θ = [θ1, θ2, L, θM]T is the coefficient vector.

Based on the Schmidt′s orthogonalization, the model (8) can be orthogonalized into [15]:

y = Pθ = WG (9)

where W = [w1, w2, L, wM] is the orthogonalized matrix of P, G = [g1, g2, L, gM]T is the corresponding
coefficients vector, where:

wm = pm −
m−1

∑
i=1

< pm, wi >

< wi, wi >
wi (10)

gm =
< y, wm >

< wm, wm >
(11)

• Step 2: Model term selection:

A. Given w(1)
m = pm, where the superscript (1) represents the first selecting step. g(1)m can be

calculated based on Equation (11).

The ERR value of the mth model term is given as [31]:

ERR(1)
m =

(g(1)m )
2
< w(1)

m , w(1)
m >

< y, y >
× 100% (12)

Then obtain the column S1, which has the largest ERR value:

s1 = argmax
{

ERR(1)
m

}
, 1 ≤ m ≤ M (13)

where argmax{ } represents the value of the argument when the function reaches the maximum.

Given the corresponding term vector as the first model term vector of the orthogonalized matrix
in (9), which means w1 = w(1)

S1
, and given β1 = pS1 .

B. When the selection goes to step l, define m 6= S1 ∩ m 6= S2 ∩ L ∩ m 6= Sl−1, and based on
the selected orthogonalized model term vectors w̃1, w̃2, · · · w̃l−1, the lth model term vector is
given as:

w(l)
m = pm −

l−1

∑
i=1

< pm, w̃i >

< w̃i, w̃i >
w̃i (14)

The ERR value of each vector and the one with maximum ERR value are obtained as:

ERR(l)
m =

(g(l)m )
2
< w(l)

m , w(l)
m >

< y, y >
× 100% (15)

sl = argmax
{

ERR(l)
m

}
(16)
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Based on (16), one obtains the lth model term vector of the orthogonalized matrix in (9), which
means wl = w(l)

Sl
, and given βl = pSl .

C. The algorithm will stop selecting at the M’th step when the model structure satisfies the
following condition:

1−
M′

∑
i=1

{
ERR(i)

li

}
≤ ρ (17)

where ρ is the threshold; M’ represents the total number of the selected model terms.

Based on (15)–(17), the M’th selected model term is given as wM′ = w(M′)
SM′

.

The orthogonalized NARX model is given as:

y =
M′

∑
i=1

w̃i g̃i (18)

• Step 3: Calculation of model coefficients:

Based on (18), the final NARX model can be written as [15]:

y =
M′

∑
i=1

βi θ̃i (19)

where:

θ̃i = g̃i −
M′

∑
n=i+1

< βn, w̃i >

< w̃i, w̃i >
θ̃n, 1 ≤ i ≤ M′, i + 1 ≤ n ≤ M′ (20)

As for model validation, there are two different methods, defined as OSA (One Step Ahead) and
MPO (Model Predicted Output). It is difficult to give a general conclusion as to method should be
used in a specific situation [32].

The concept of OSA validation can be explained by using a simple second-order NARX model:

y(k) = ay(k− 1) + by(k− 2) + cu(k− 1)y(k− 1) (21)

Assume that a number of values if system input u(k) and y(k) are available. The OSA validation
processes, starting from step 3, are then given as:

ŷ(3) = ay(2) + by(1) + cu(2)y(2)
...

ŷ(k) = ay(k− 1) + by(k− 2) + cu(k− 1)y(k− 1)

(22)

By comparison, the calculation of model output by the MPO method is completely different from
the OSA method. Consider again the NARX model (21), for which the MPO can be defined as:

ŷ(1) = y(1)
ŷ(2) = y(2)

...
ŷ(k) = aŷ(k− 1) + bŷ(k− 2) + cu(k− 1)ŷ(k− 1)

(23)
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In this paper, the results are evaluated by time domain and spectrum graph, as well as RMSE
(root mean square error (RMSE). The RMSE is given as:

RMSE =
√∑N

i=1(ŷi − yi)
2

N
(24)

where ŷi and yi are the predicted output and actual output, respectively; N is the number of
sampling observations.

3.2. NARX Model Subjected to Multi-Harmonic Excitation

NARX approach is used in the system identification of the rotor-bearing system which is shown
in Figure 1, where the system is subjected to unbalanced force meω2 sin(ωt) in the horizontal direction.
Considering the advantages of the speed-up process which have been discussed in the introduction,
the multi-harmonic signal sin(ωt), ω ∈ [1, 450] rad/s is defined as the system input excitation, and
the output of the system is defined as the horizontal vibration response of the unbalanced disc.

The NARX model for the rotor-bearing system in Figure 1 is identified as:

y(k) =
15
∑

i=1
βi(k)θ̃i

= 1.5806y(k− 1)− 0.4635y(k− 2) + 2.9713× 10−4u(k− 2) + · · ·
−8.0035× 10−4u(k− 9)u(k− 9)

(25)

The 15 selected model terms, ranked in order of significance, are shown in Table 1.

Table 1. Identification result of the example.

Step Term Coefficient ERR%

1 y(k− 1) 1.5806 89.2521
2 y(k− 2) −0.4635 10.3201
3 u(k− 2) 2.9713 × 10−4 0.0963
4 y(k− 6) 0.0931 0.0349
5 u(k− 7) −2.2028 × 10−4 0.0227
6 u(k− 1) −3.7178 × 10−4 0.0158
7 y(k− 1)y(k− 5) −5.3027 0.0119
8 y(k− 3) −0.2637 0.0052
9 y(k− 9) −0.0418 0.0078

10 u(k− 3) 3.2374 × 10−4 0.0021
11 u(k− 9) 1.8632 × 10−4 0.0023
12 y(k− 2)u(k− 1) −0.0091 0.0008
13 y(k− 5)u(k− 7) 0.0301 0.0009
14 u(k− 8) −1.7955 × 10−4 0.0004
15 u(k− 9)u(k− 9) −8.0035 × 10−4 0.0004

Total - - 99.7728

In the following study, the NARX model (25) is validated under the excitations of the low
speed (ω = 100 rad/s), the critical speed (ω = 320 rad/s), and the over critical speed (ω = 500 rad/s),
respectively. The predicted output responses by the NARX model are compared with the simulation
results in both the time and the frequency domain. Moreover, the OSA and the MPO methods are also
discussed. The results are shown in Figures 6–8. Also, the model is also evaluated by RMSE, which is
shown in Table 2.

Figures 6–8 and Table 2 indicate that the NARX model over a wide frequency range can be
accurately predicted by using the OSA method. However, by using the MPO method, the output
predictions have significant errors over the whole frequency range. Therefore, in practice, the NARX



Appl. Sci. 2017, 7, 911 9 of 15

model identified over a wide frequency range cannot be used to reproduce the structure of the
nonlinear, rotor-bearing system.

To address this issue, in the following study, NARX models are separately identified under, a more
narrow frequency range, such as the low frequency range, the natural frequency range, or the high
frequency range, respectively.Appl. Sci. 2017, 7, 911  9 of 15 
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Table 2. Root square mean error (RMSE) of MPO and OSA method in a large frequency range 
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Table 2. Root square mean error (RMSE) of MPO and OSA method in a large frequency range.

Frequency Range (rad/s) RMSE of MPO Method (m) RMSE of OSA Method (m)

Low speed 3.1582 × 10−6 2.9461 × 10−7

Critical speed 5.2704 × 10−6 4.7590 × 10−7

Over critical speed 1.4032 × 10−6 2.0754 × 10−6

3.3. NARX Model under Different Frequency Ranges

In this section, three different NARX models are separately established by using the speed-up
input signal over different frequency ranges, and the results are validated by using the MPO method,
which indicates that the NARX model of the rotor-bearing system covering a relatively narrow
frequency range can reflect the system characteristic accurately.

3.3.1. Under the Low-Speed Condition

When the input signal contains the frequency of ωlow ∈ [1, 200] rad/s, the NARX model can be
identified as:

y(k) =
15
∑

i=1
βi(k)θ̃i

= 1.36296y(k− 1)− 0.1352y(k− 3) + 4.5869× 10−5u(k− 3)
+ · · · − 8.0035× 10−4u(k− 9)u(k− 9)

(26)

where the harmonic input with ω = 100 rad/s is used to test the model in both the time and the
frequency domain, shown in Figure 9. Also, the RMSE is 9.0925 × 10−7 m.

Figure 9 indicates that the NARX model identified in the low frequency range provides a more
accurate prediction result than that of (25). Also, the RMSE is better than 3.1582 × 10−6 m, which is
presented in Table 2.
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3.3.2. Under the Critical Speed Condition

When the input signal contains the frequency of ωcritical ∈ [200, 350] rad/s, the NARX model can
be identified as:

y(k) =
15
∑

i=1
βi(k)θ̃i

= 6.8641× 10−6u(k− 6)
+1.2448y(k− 1)
+0.1446y(k− 3) · · ·+ 6.3439× y(k− 7)y(k− 7)

(27)

where the harmonic input with ω = 320 rad/s is used to test the model in both the time and the
frequency domain, shown in Figure 10. Also, the RMES is 2.4703 × 10−6 m.

Figure 10 indicates that the NARX model identified in the low frequency range provides a more
accurate prediction result than that of (25). Also, the RMSE is smaller than 5.2704 × 10−6 m, which is
shown in Table 2.
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3.3.3. Under the Over-Critical Speed Condition

When the input signal contains the frequency of ωover critical ∈ [350, 450] rad/s, the NARX model
can be identified as:

y(k) =
10
∑

i=1
βi(k)θ̃i

= −2.7421× 10−5u(k− 6)
+1.3522y(k− 1) + 2.3854×10−5u(k− 6) + · · · 0.0190y(k− 8)

(28)
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where the harmonic input with ω = 500 rad/s is used to test the model in both the time and the
frequency domain, presenting in Figure 11. And the RMES is 6.4411 × 10−6 m.

Figure 11 indicates that the NARX model identified in the low frequency range provides a more
accurate prediction result than that of (25). Also, the RMSE is better than 1.4032 × 10−5 m, as shown
in Table 2.
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As the above three sections indicate, both the graphs and the values of RMSE show a better
accuracy than that of Section 3.2. That is, from both a qualitative and quantitative point of view, the
method of narrowing the frequency range of input excitations can optimize the NARX model and
make the model perform better.

4. Experimental Verification

In order to validate the proposed identification method of the nonlinear, rotor-bearing system,
a rotor test rig is taken for verification, where the eddy current displacement sensor is arranged to
measure the response, and the added bolt is expected to reinforce unbalanced force, as shown in
Figure 12a. The test rig is connected with the Labview test system, as shown in Figure 12b.

Concerned with safeness, the test rig, which has a critical speed of 229 rad/s, is operated under
low speed case. Define the multi-harmonic sin(ωt), ω ∈ [84, 89] rad/s as the system input excitation,
and the output of the system is considered as the horizontal vibration response.
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The NARX model of the rotor test rig is established with the test data of 84, 85, 86, 87, and 88 rad/s.
Based on FROLS algorithm, a 3 order NARX model is identified as follow (Table 3):
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Table 3. Identification result of the test.

Step Term Coefficient ERR%

1 y(k− 1) 1.8444 99.4393
2 y(k− 2) −0.8595 0.5177
3 u(k− 2)u(k− 2) 0.1788 0.0027
4 u(k− 1)u(k− 2) −0.2439 0.0017
5 u(k− 1)u(k− 1) 0.0642 0.0138
6 y(k− 2)y(k− 2) 0.6580 0.0003
7 y(k− 1)u(k− 1) 0.1268 0.0006
8 y(k− 1)y(k− 2)y(k− 2) −0.5515 0.0003
9 u(k− 2) −0.0243 0.0003

10 y(k− 1)y(k− 2) −0.7159 0.0001
11 y(k− 1)u(k− 2) −0.1019 0.0001
12 u(k− 1) 0.0250 0.0001
13 u(k− 2)u(k− 2) −0.0020 0.0001
14 y(k− 1)u(k− 1)u(k− 1) 0.1688 0.0002
15 y(k− 2)u(k− 1)u(k− 2) −0.1482 0.0005

Total - - 99.9778

The input excitation ω = 89 rad/s is used to verify the identified NARX model in both the time
and frequency domains by using the MPO method, and the results are shown in Figure 13. At the
same time, the RMSE is calculated as 8.2272 × 10−6 m.

As Figure 13 implies, the NARX model shows satisfying accuracy. It indicates that the NARX
model of the rotor test rig can predict the system output and reflect the system dynamic characteristics.
Therefore, the NARX model provides a theoretical basis for analysis, design, and fault diagnosis of the
nonlinear, rotor-bearing system.
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5. Conclusions

1. Mathematical models are important in the analysis, design, and fault diagnose of rotor-bearing
systems. However, due to the complex structure and other factors, it is impossible to establish
an accurate physical model. Thus, in this paper, an identification method of the nonlinear,
rotor-bearing system based on NARX model is proposed.

2. The experimental results indicate that the NARX model can reproduce the underlying nonlinear,
rotor-bearing system accurately. Furthermore, the method enriches the nonlinear, rotor-bearing
modeling theory and provides a reliable model for dynamic analysis, design, and fault diagnosis
of the rotor-bearing system, which is of practical significance.

3. The NARX model under multi-harmonic excitation can reflect a broad range of system
characteristics. The MPO and OSA methods are used in model validation. The results indicate that
it is inappropriate to use the OSA method when establishing the nonlinear, rotor-bearing system.
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