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Featured Application: The proposed estimators can be applied in many vehicle active safety
systems. They are capable of estimating vehicle states that are normally not measurable or that
are too complicated to measure directly using additional expensive sensors.

Abstract: The effect of vehicle active safety systems is subject to the accurate knowledge of vehicle
states. Therefore, it is of great importance to develop a precise and robust estimation approach so as to
deal with nonlinear vehicle dynamics systems. In this paper, a planar vehicle model with a simplified
tire model is established first. Two advanced model-based estimation algorithms, an unscented
Kalman filter and a moving horizon estimation, are developed for distributed drive electric vehicles.
Using the proposed algorithms, vehicle longitudinal velocity, lateral velocity, yaw rate as well as
lateral tire forces are estimated based on information fusion of standard sensors in today’s typical
vehicle and feedback signals from electric motors. Computer simulations are implemented in the
environment of CarSim combined with Matlab/Simulink. The performance of both estimators
regarding convergence, accuracy, and robustness against an incorrect initial estimate of longitudinal
velocity is compared in detail. The comparison results demonstrate that both estimation approaches
have favourable coincidence with the corresponding reference values, while the moving horizon
estimation is more accurate and robust, and owns faster convergence.

Keywords: unscented Kalman filter; moving horizon estimation; vehicle state estimation; distributed
drive electric vehicle

1. Introduction

Safety and energy conservation are two eternal themes for automotive design [1]. Over the
past few decades, active safety control has become one of the most effective accident avoidance
technologies [2]. Anti-lock braking system (ABS), traction control system (TCS) and electronic stability
program (ESP), etc., all key components of the active safety control system [3], rely heavily on accurate
knowledge of vehicle states such as vehicle velocity, yaw rate, side-slip angle, tire forces and so
on. Furthermore, vehicle state information is crucial not only for safety but also for the energy
management system of electric vehicles [4]. Generally speaking, vehicles with standard stability control
systems are normally equipped with a steering wheel angle sensor and inertial sensors (INS, including
longitudinal and lateral acceleration sensor, yaw rate sensor). As the research subject in this article,
distributed drive electric vehicle (DDEV) is an electric vehicle with four independently controllable
motorized wheels. This kind of power configuration provides us with many remarkable advantages,
such as short transmission chain and high transmission efficiency, precise torque generation, and easy
implementation of torque vectoring. More importantly, for our study, DDEV is able to provide us
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with the accurate torque and rotational speed information of each wheel from the feedback signals of
four individual motors [5]. However, the other vehicle dynamics states are still difficult to measure or
cannot be measured economically [6].

Notable attempts have been made to work out different estimation approaches. Currently,
existing state estimation algorithms are classified into three categories: “non-model-based”,
“kinematic-model-based” (KMB) and “dynamic-model-based” (DMB) approaches. “Non-model-based”
approaches mainly include fuzzy logic, support vector machine and artificial neural network,
etc. [7–10], where a vehicle is regarded as a black box and the nonlinear relationship between inputs and
outputs is mapped based on a mass of training data. The accuracy of these methods strongly depends
on the quality and quantity of the training data. Meanwhile, without vehicle models, this method is
difficult to give out a convincing mathematical explanation of the mapping relationship [11]. As for the
KMB approach, it does not contain the physical parameters of the vehicle, and therefore this kinematic
approach is not affected by parametric uncertainties. Hac and Simpson [12] developed a preliminary
estimation of the yaw rate using kinematic relationships, and subsequently fed this initial estimate into
a nonlinear observer to generate the final estimate of yaw rate. Farrelly and Wellstead [13] proposed a
vehicle lateral velocity estimator using both physical and kinematic modeling. As for the kinematic
part, the estimator has been shown to provide satisfactory performance. However, the drawbacks
of the KMB approaches are also apparent. This method only works when the yaw rate is non-zero,
because the kinematic model is unobservable when the yaw rate is zero. Additionally, the estimates
produced by the kinematic approach are more noisy than those produced by the dynamic-model-based
approach [13].

Unlike the aforementioned methods, DMB approaches include specific and detailed vehicle
mathematical models as well as physical parameters such as mass, yaw moment inertia, COG (center
of gravity) position and so on. The DMB estimation design can be carried out using sliding mode
observer [14–16], Luenberger observer [17,18], Kalman filter (KF) and its extensions, and moving
horizon estimation (MHE), etc. We will provide a more detailed review of the latter two approaches.

The Kalman filter [19] is widely applied for linear system estimation under the assumption
of Gaussian-distributed state and measurement noise. In the nonlinear case of automobile field,
the extended Kalman filter (EKF) [20–22] and unscented Kalman filter (UKF) [23–26] take up a large
percentage. Pengov [20] compared EKF and a higher gain observer, the results of which demonstrated
that EKF has more robustness and accuracy. Wenzel et al. [21] proposed the dual EKF, which has two
Kalman filters running in parallel to estimate vehicle states and parameters simultaneously. However,
the main drawback of the EKF is Jacobian matrices calculation, which requires costly computation.
Moreover, EKF only employs the first-order Taylor expansion on a nonlinear system, which may
lead to great error or even divergence of the filter if the model is seriously nonlinear. Addressing
these issues, the UKF utilizes a deterministic sampling technique known as the unscented transform
(UT) to pick a minimal set of sample points (called sigma points) around the mean, which is a
derivative-free alternative to EKF and avoids the expensive update of the Jacobian matrix on each
iteration. Meanwhile, UKF is able to achieve higher-order Taylor series expansion accuracy [27,28].
Thus, UKF should be more suitable for vehicle state estimation application in consideration of the high
nonlinearity of vehicle dynamics, particularly during critical conditions. Hamann and Hedrich [23]
developed a robust method to estimate the tire forces using UKF. Simulation results demonstrated
a high convergence rate and good stability properties of the UKF estimator. Based on the piecewise
linear tire model, Ren et al. [24] achieved vehicle state estimation with UKF. Antonov et al. [25]
constructed an UKF observer for the vehicle state using an advanced vertical tire load calculation
method. Apart from the Kalman filter methods, MHE is another powerful method able to provide
a good solution to nonlinear estimation systems. At each sampling time, MHE estimates the states
or parameters by minimizing a cost function over the previous finite time horizon. In addition,
constraints can be added to this optimization problem in a very natural way, which makes it possible
for MHE to handle constrained processes very well [29]. Zanon [30] estimated the friction coefficient
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in autonomous driving using MHE. Kraus [31] proposed an MHE-nonlinear model predictive control
(NMPC) framework to control field vehicles using an adaptive nonlinear kinematic model.

In this study, to further explore the potential application of UKF and MHE, we compare their
performance regarding to convergence, accuracy as well as robustness, for the DDEV state estimation.
First of all, a 3-DOFs vehicle model is presented serving for the state estimation. The longitudinal tire
force is calculated based on the wheel rotational equation, while the lateral tire force is obtained from a
semi-empirical tire model. After that, the estimator designing based on UKF and MHE is described in
detail. Simulations are carried out using a 27-DOFs high-fidelity CarSim vehicle model equipped with
vehicle stability controller (VSC), which is believed to be accurate enough to inspect the precision of
the presented approaches. Furthermore, the accidental error of estimated results is taken into account
to test the robustness of the two estimation algorithms. Finally, simulation results are analyzed in
terms of tracking accuracy and convergence behavior.

The rest of this paper proceeds as follows. Section 2 gives the measurement, control and state
vectors of a DDEV followed by a detailed modeling of a 3-DOFs vehicle state estimation model.
Estimation algorithms and the implemented procedures are described in Section 3. The computer
simulation is conducted under a double lane change (DLC) maneuver, the results of which are
compared and analyzed in Section 4. Section 5 concludes the paper.

2. Vehicle Modeling for State Estimation

A planar two-track vehicle model is presented in this section. It is a 3-DOFs vehicle model, which
contains the longitudinal velocity u, the lateral velocity v, and the yaw rate r. Figure 1 shows the vehicle
model and coordinate systems. The wheel positions are numbered with the subscript ij = fl,rl,fr,rr
denoting front left, rear left, front right and rear right, respectively.
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The following assumptions are made before the modeling work:

(a) Vehicle is moving on a flat horizontal plane;
(b) Vertical, roll and pitch dynamics are omitted;
(c) longitudinal acceleration, lateral acceleration and the yaw rate is measured with white Gauss noise;
(d) INS sensors are mounted on the vehicle COG.

2.1. Measurement, Control Input, and State Vectors

As for the DDEV equipped with the standard active safety sensors suit, the signals that can be
directly measured consist of the steering wheel angle δsw, the longitudinal acceleration ax, the lateral
acceleration ay, yaw rate r, torque output Tm_ij and rotational speed wm_ij of each motor.

As the reduction ratio i between motor and wheel is known, the wheel speed is simply obtained,

ωij = ωm_ij·i. (1)

Therefore, the measurement vector is given as

y =
[

ax ay r ω f l ωrl ω f r ωrr

]T
.

Additionally, the longitudinal tire force can be calculated by the rotational dynamic equation
instead of complicated tire models, which is shown below:

Ft_ij =
Tm_ij·i− Jw·

.
ωij

R
, ij = f l, f r, rl, rr, (2)

where Jw is the wheel rotational inertia; R is the tire radius and in this study it is assumed to be
a constant.

These four forces and steering wheel angle form the control input vector as follows:

u =
[

δsw Ft_ f l Ft_ f r Ft_rl Ft_rr

]T
.

Finally, the vehicle states that need to be estimated include the longitudinal velocity, the lateral
velocity, yaw rate and the lateral force of each tire.

x =
[

u v r Fs f l Fs f r Fsrl Fsrr

]T

2.2. Planar Vehicle Model

According to Newton’s second law, the 3-DOFs vehicle body motion equations can be expressed
as follows. Longitudinal and lateral motions along the x and y-axis:

m·ax = ∑ Fx_ij −
1
2

Cd Aρu2 (3)

m·ay = ∑ Fy_ij. (4)

Rotational motions of yaw about z-axis:

Iz·
.
r = a

(
Fy_ f l + Fy_ f r

)
− b
(

Fy_rl + Fy_rr

)
− T/2

(
Fx_ f l + Fx_rl

)
+ T/2

(
Fx_ f r + Fx_rr

)
, (5)
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where ax is the longitudinal acceleration; ay is the lateral acceleration, r is the yaw rate and T is the
vehicle wheel track; Cd, A, and ρ denote the air resistance coefficient, the frontal projected area, and the
air density, respectively. Moreover, the acceleration terms are defined as

ax =
.
u− vr (6)

ay =
.
v + ur. (7)

In Equations (3)–(5), Fx_ij and Fy_ij represent the resultant force of the longitudinal and lateral
tire forces along the x and y axis in the vehicle coordinate system, which could be expressed by the
following equations:

Fx_ij = Ft_ij·cos δT_ij − Fs_ij·sin δT_ij (8)

Fy_ij = Ft_ij·sin δT_ij + Fs_ij·cos δT_ij. (9)

As seen in Figure 1, Ft_ij and Fs_ij are the longitudinal and lateral tire force in the wheel coordinate
system. Without regard to the roll motion, the steering angle of each wheel is simplified as{

δT_ f l = δT_ f r = δsw/is

δT_rl = δT_rr = 0
, (10)

where is is the transmission ratio from the hand wheel to front wheels.

2.3. Load Transfer

Due to both longitudinal and lateral acceleration, quasi-static load transfer is formulated in the
vehicle model. The normal load expression for each wheel is written as

Fz_ f l = mg
b
2l
−max

h
2l
−may

b
l

h
T

(11)

Fz_rl = mg
b
2l

+ max
h
2l
−may

a
l

h
T

(12)

Fz_ f r = mg
b
2l
−max

h
2l

+ may
b
l

h
T

(13)

Fz_rr = mg
b
2l

+ max
h
2l

+ may
a
l

h
T

. (14)

2.4. Tire Force Calculation

Thanks to the advantages of the DDEV, the longitudinal tire force can be calculated based on the
wheel dynamic in Equation (2).

Therefore, in this study, the well-known semi-empirical “Pacejka 2002” tire model [32] is only
employed for lateral tire force calculation, which is helpful to reduce the computational effort. Lateral
tire force is formulated by “Pacejka 2002” in two steps. Firstly, for the pure slip condition [32]:

Fs0 = Dysin
{

Cyarctan
{

Byα− Ey
[
Byα− arctan

(
Byα

)]}}
+ SVy. (15)

Subsequently, for the combined slip condition [32]:

Fs = GyFs0 + SVyk, (16)
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where Gy is the weighting function, which always has a value between 0 and 1. The lateral and
longitudinal slip ratio of each tire are given as

αij = δT_ij − arctan

(
v + ar

u± 1
2 Tr

)
, ij = f l, f r (17)

αij = −arctan

(
v− br

u± 1
2 Tr

)
, ij = rl, rr (18)

λij = −
uw_ij − R·ωij

uw_ij
, ij = f l, f r, rl, rr. (19)

The wheel center speed uw_ij is given by

uw_ij =

(
u± 1

2
Tr
)

cos δT_ij + (v + ar)sinδT_ij, ij = f l, f r (20)

uw_ij = u± 1
2

Tr, ij = rl, rr. (21)

For the sake of simplicity, the wheel camber is neglected as a low-effect parameter.

2.5. System Discretization

Discretization must be accomplished before the observer design. The forward Euler difference
method is applied to discretize the continuous system described in Section 2.2. Then the nonlinear
estimation system in the form of discretization is rewritten as

x(k + 1) = f (x(k), u(k)) + w(k)

y(k) = h(x(k), u(k)) + v(k),
(22)

where x(k), y(k), and u(k) are the system state, measurement input and control input, respectively,
at the k − 1 step. Besides, w and v are the process noise and measurement noise vectors.

3. Estimation Algorithms Design for Vehicle State Estimation

Two closed-loop estimation algorithms, UKF and MHE, are designed to implement vehicle
state estimation.

3.1. Unscented Kalman Filter

Addressing the main drawbacks of the EKF, Jacobian matrices calculation and the first order
Taylor expansion on nonlinear system, the UKF utilizes a deterministic sampling technique known
as the unscented transform (UT) to pick a minimal set of sample points (called sigma points) around
the mean, which is a derivative-free alternative to EKF and meanwhile avoids the expensive update
of the Jacobian matrix on each iteration [33]. Additionally, UKF achieves higher-order Taylor series
expansion accuracy [27,28]. Considering a nonlinear time-discrete y = g(x) with mean x and covariance
Px, to calculate the statistics of y, 2L + 1 sigma points χi with its corresponding weighting factors is
formulated via the following equations:

χ0 = x i = 0
χi = x +

√
(L + λ)Pxi i = 1, . . . . . . , L

χi = x−
√
(L + λ)Pxi−L i = L + 1, . . . . . . , 2L

W(m)
0 = λ/(L + λ)

W(c)
0 = λ/(L + λ) + 1− α2 + β

W(m)
i = W(c)

i = 0.5/(L + λ) i = 1, 2, . . . , 2L

(23)
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where L is the dimension of x; λ = α2(L + κ)− L is a scaling parameter. α determines the spread of
the sigma points around x and is usually set to a small positive value (e.g., 10−3). κ is a secondary
scaling parameter that is normally set to a non-negative value to ensure that the covariance matrix is
positive definite. β is used to incorporate prior knowledge of the distribution of x, which affects the
weighting of the zeroth sigma point for the calculation of the covariance. For Gaussian distribution,
β = 2 is optimal [28]. These sigma vectors are propagated through a nonlinear function, yi = g(χi),
i = 0, 1, . . . , 2L. The mean and covariance of y are estimated using the weighted sample mean and
covariance of the posterior sigma points as follows:

y =
2L

∑
i=0

W(m)
i yi (24)

Py = ∑2L
i=0 W(c)

i (yi − y)(yi − y)T . (25)

On the basis of unscented transform, the main steps of UKF are as in Figure 2 and put forward in
the following:

(a) Initialize vehicle state and covariance matrix at time step k = 0 with

x̂0 = E[x0] (26)

Px0 = E
[
(x0 − x̂0)·(x0 − x̂0)

T
]
. (27)

(b) For time step k = 1, 2 . . . , calculate sigma points in sigma vector:

χ(k− 1) =

 x̂(k− 1)
x̂(k− 1) +

√
(L + λ)P(k− 1)

x̂(k− 1)−
√
(L + λ)P(k− 1)


T

. (28)

(c) Time update

• Propagate the sigma points through Equation (22):

χ(k|k− 1) = f (χ(k− 1), u(k− 1), w(k− 1)). (29)

• The propagated mean calculation:

x̂(k|k− 1) = ∑2L
i=0 W(m)

i ·χi(k|k− 1). (30)

• The propagated covariance calculation:

Px(k|k− 1) = ∑2L
i=0 W(c)

i ·[χi(k|k− 1)− x̂(k|k− 1)]· [χi (k|k− 1)− x̂(k|k− 1)] T +Qk. (31)

(d) Measurement update

• Propagate sigma points through measurement function:

y(k|k− 1) = h(χ(k− 1), u(k− 1), v(k− 1)) (32)

• The propagated mean calculation:

ŷ(k|k− 1) = ∑2L
i=0 W(m)

i ·yi(k|k− 1). (33)
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• The propagated covariance and the Kalman gain calculation:

Py(k|k− 1) =
2n

∑
i=0

W(c)
i ·[yi(k|k− 1)− ŷ(k|k− 1)]· [yi (k|k− 1)− ŷ(k|k− 1)] T + Rk (34)

Pxy(k|k− 1) =
2n

∑
i=0

W(c)
i ·[χi(k|k− 1)− x̂(k|k− 1)]· [yi (k|k− 1)− ŷ(k|k− 1)] T (35)

K(k) = Pxy(k|k− 1)·Pyy(k|k− 1)−1, (36)

where K(k) is the Kalman gain matrix.
• Update the vehicle state estimation and state covariance:

x̂(k|k) = x̂(k|k− 1) + K(k)·[y(k)− ŷ(k|k− 1)] (37)

Pxx(k|k) = Px(k|k− 1)−K(k)·Py·K(k)T . (38)
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Figure 2. The schematic of an unscented Kalman filter.

3.2. Moving Horizon Estimation

The MHE algorithm is able to solve the estimation problem of constrained linear or nonlinear
systems, using a horizon covering the prior measurement information. In the same manner as UKF,
MHE is also based on the least-squares objective function. UKF employs sigma point sampling to
estimate the covariance matrices within linear update derived from the objective function via the
maximum likelihood estimation [34], while MHE solves the objective function as a mathematical
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programming problem. Additionally, both MHE Sequential Quadratic Programming (SQP) and UKF
algorithm, employ second-order estimates at each iteration; however, the SQP solver continues to
iterate until the convergence tolerance is satisfied, which leads to a robust means of guaranteeing local
optimality without tuning.

From the Bayesian theory point of view, the constrained state estimation problem can be
formulated as the solution of a full information estimation (FIE) problem [35]. Therefore, the FIE
objective function for Equation (22) is written as:

min
x0,{wk,T−1

k=0 }
ΦT{x0, {wk}} = min

x0,{wk,T−1
k=0 }

{
∑T−1

k=0 ‖ wk ‖2
Q−1 +∑T

k=0 ‖ vk ‖2
R−1 + ‖ x0 − x̃0 ‖2

P0
−1

}
, (39)

subject to
x(k + 1) = f (x(k), u(k)) + w(k)

y(k) = h(x(k), u(k)) + v(k),

where ‖ ∗ ‖2
A= ∗TA∗; {wk}k=T−1

k=0 is the state disturbance sequence from time k = 0 to k = T − 1; and x̃0

is the initial estimate of vehicle states with corresponding covariance matrix P0.
Additionally, it is worth noting that, in practice, the vehicle speed should be less than max

(
ωij
)
·R

on driving conditions and greater than min
(
ωij
)
·R on braking conditions. However, measurement

noise or some other reasons may occasionally result in accidental error, which affects the accuracy
of the subsequent estimation. Thus, the following additional constraints for the vehicle longitudinal
velocity are given and applied to reduce this effect:

u =

{
≤ max

(
ωij
)
·R, driving conditions

≥ min
(
ωij
)
·R, braking conditions

. (40)

However, real-time implementations of FIE are computationally infeasible due to the infinite
growth of the number of sampling points. To make the objective function tractable, the estimation size
needs to be bounded. One common strategy to estimate the {xk, wk}T−1

k=T−N instead of the full-state
sequence {xk, wk}T−1

k=0 , where N is the fixed time horizon of Equation (39), just like a moving “sampling
window”. Therefore, Equation (39) is rewritten as,

min
xT−N ,{wk,T−1

k=T−N}
ΦT{xT−N, {wk}} =‖ x0 − x̂0 ‖2

P0−1 +∑T−N−1
k=0 ‖ wk ‖2

Q−1 +∑T−N−1
k=0 ‖ vk ‖2

R−1 +

∑T−1
k=T−N ‖ wk ‖2

Q−1 +∑T
k=T−N ‖ vk ‖2

R−1= ΨT−N + ∑T−1
k=T−N ‖ wk ‖2

Q−1 +∑T
k=T−N ‖ vk ‖2

R−1 ,
(41)

where ΨT−N is the arrival cost that incorporates estimate information prior to the horizon, namely from
time k = 0 to time k = T − N − 1. Therefore, the arrival cost is indeed necessary for the application of
MHE. For nonlinear systems like Equation (22), however, general analytical expressions of the arrival
cost are unavailable. Methods for formulating the arrival cost include EKF, UKF, or even discarding
the arrival cost by taking it as a constant value. In this study, an UKF-based arrival cost calculation
approach [36] is applied. Differently from the UKF described in Section 3.1, for the constrained
problem, the selection of sigma points takes the parameter constraints into account so that none of the
selected sigma points violate the boundaries of the state variables:

W [m]
i =

{
λ

L+λ , i = 0
pri + q, i = 1, 2, . . . ., 2L

W [c]
0 = W [m]

0 +
(

1− α2 + β
)

W [c]
i = Wi[m] i = 1, 2, . . . , 2L,

(42)
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where p = 2λ−1
2(L+λ)(Sr−(2L+1)(

√
L+λ))

, q = 1
2(L+λ)

− 2λ−1
2(L+λ)(Sr−(2L+1)(

√
L+λ)

and Sr = ∑2L
i=1 ri. ri is the

step size in each direction of the set of sigma points with constraints, which is calculated as follows [36]:

rk,i = min
(√

L + λ,
xU,i − x̂k|k,i

Sk,i
,

xL,i − x̂k|k,i

Sk,i

)
Sk,i = ±(

√
Pk|k)i

, i = 1, . . . , L,
(43)

where xU,i, xL,i are the upper and lower bounds in the Sk,i direction.
As the sigma points are obtained, KT−N, x̃T−N and PT−N can be updated via the UKF equation

described in Section 3.1.
The arrival cost can be calculated as follows:

ΨT−N =‖ xT−N − x̃T−N ‖2
PT−N

−1 .

Finally, the whole process of MHE-based state estimation algorithm is shown in Figure 3 and
explained in the form of pseudocode in Algorithm 1.Appl. Sci. 2017, 7, 898 10 of 21 
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Algorithm 1. Pseudocode of moving horizon estimation algorithm
1. Initialization: set the initial values for x̃0, P0 and the horizon length N.
2. Prepare for estimation: increment T −→ T + 1 and obtain the current measurement input

y(T) and control input u(T).
3. Estimation: if T ≤ N

Solve Equation (39) as full information estimation;
else

Compute the UKF gain matrix KT−N and update x̃T−N, PT−N via UKF;
Compute the arrival cost ΨT−N ;
Solve Equation (41) with the obtained arrival cost ΨT−N .

end

4. Results output: compute states x̂k, {T−1
k=T−N+1

}
in the horizon, x̂T = f (x̂T−1, uT−1) + ŵT−1

5. End of estimation: go to Step 2.

4. Simulation Results and Analysis

In order to evaluate and compare the presented estimation algorithms, computer simulations are
implemented in the environment of CarSim combined with Matlab/Simulink, as shown in Figure 4.
CarSim is commercial vehicle dynamic software. The vehicle model in CarSim contains a steering
system, tires, and driver model, and is extensively validated and correlated to real-world results,
as measured and observed by many automotive OEMs around the world. Therefore, in this study,
the embedded vehicle model equipped with VSC in CarSim serves as a real vehicle, providing
control input, reference vehicle states and measured signals, while the estimation algorithms are
built in Matlab/Simulink. The vehicle parameters used in the simulation are listed in Table 1.
5% differences of these parameters are added to the UKF 3-DOFs vehicle model in the simulation to
imitate modeling uncertainties.Appl. Sci. 2017, 7, 898 11 of 20 
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horizon estimation.

Table 1. Vehicle parameters. COG: center of gravity.

Parameter Unit Value

Gross Mass m (kg) 1280
Height of sprung mass center of gravity h (m) 0.5

Distance from COG to front wheels a (m) 1.203
Distance from COG to rear wheels b (m) 1.217

Wheelbase l (m) 2.420
Wheel track T (m) 1.330

Wheel Radius R (m) 0.298
Vehicle rotational inertia about z-axis Iz (kg·m2) 2500

Transmission ratio from motor to wheel i (-) 4.5
Transmission ratio from the hand wheel to front wheels is (-) 20

Wheel rotational inertia Jw (kg·m2) 2.5
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4.1. Initial Settings of Simulations

In this section, an emergency double lane change (DLC) test (ISO3888-1:1999) is simulated with
a driver preview time of 0.5 s, which is a short but appropriate value for an emergency situation.
The desired longitudinal velocity is 100 km/h controlled and the tire/road friction coefficient is set as
0.8. Such a critical driving condition should be persuasive, since the lateral vehicle motion response
has a relatively large variation scale. VSC guarantees that the vehicle passes the DLC test successfully.

In the simulation process, the sensor signals are assumed to be obtained in real time. Furthermore,
Gaussian noise is added to the simulated measurements to realistically represent the real application.
The standard deviation of longitudinal acceleration sensor noise is 5 × 10−2 m/s2; the standard
deviation of lateral acceleration sensor noise is 5 × 10−2 m/s2; the standard deviation of yaw rate
sensor noise is 2.4◦/s; the standard deviation of wheel rotational velocity noise is 10−3 rad/s [37].

In addition, the parameters used in the UKF and MEH design are very important for the
performance of the proposed estimators. Some design principles have been well investigated [28,38,39].
According to the recommended options and our own tests, the parameters are given as follows:
α = 10−3, β = 2, κ = 0 and the fixed time horizon N = 10. Furthermore, the parameters used in the
UKF-based arrival cost calculation in MHE are the same as the UKF estimator’s parameters.

4.2. Results Analysis

Figure 5 shows the tracking performance of the targeted driving process. The CarSim vehicle
model equipped with VSC is able to accomplish the designed double lane change maneuver with
acceptable tracking accuracy.Appl. Sci. 2017, 7, 898 12 of 20 
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Figure 5. Tracking results on the desired trajectory.

Using the torque and rotational speed information directly acquired from CarSim, the longitudinal
force of each tire can be calculated according to Equation (2). These longitudinal forces combined with
the hand wheel steering angle signal comprise the control input, shown in Figure 6. Additionally, the
measurements from virtual sensors under DLC test are depicted in Figure 7.

UKF and MHE are implemented as two separate methods in order to directly compare the
estimation performance and robustness. Figures 8–11 show the estimated results and errors of
the longitudinal velocity, lateral velocity, yaw rate, and lateral tire forces, respectively, using these
two estimation methods,. Figure 8 shows that both MHE and UKF can estimate the longitudinal speed
satisfactorily. However, MHE shows a faster convergence and slightly higher accuracy compared
with UKF.
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Figure 8. Estimated results and errors of longitudinal velocity using UKF and MHE.
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Figure 10. Estimated results and errors of yaw rate using UKF and MHE.

During the lane changing interval around 4 s where the hand wheel input and lateral acceleration
vary greatly, it can be seen from Figure 9 that UKF and MHE perform differently; near 4 s the
estimated error of UKF is relatively larger and more fluctuating than that of MHE. Regarding the
yaw rate estimation, the overall performance of both algorithms is satisfactory, as seen in Figure 10.
Similar to the situation of lateral speed estimation, for the lateral tire force estimation in Figure 11,
MHE also shows better performance than UKF under the strong nonlinearity caused by the large
lateral acceleration.

Table 2 summarizes the quantitative analysis for both UKF and MHE algorithms, including ME
(maximum estimation) error, RMS (root mean square) error, and improvement percentage. Except that
the longitudinal speed ME error of MHE is a bit larger than that of UKF, MHE outperforms UKF in all
other cases. The ME errors of estimated states drop significantly when MHE is applied. Meanwhile,
compared with UKF, the RMS errors of these seven vehicle states are improved at least 10% by MHE.
For the longitudinal speed, the improvement even reaches 62%.
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Figure 11. Estimated results and errors of tire lateral forces using UKF and MHE. (a) Estimated lateral
tire force FL; (b) Estimated lateral tire force RL; (c) Estimated lateral tire force FR; (d) Estimated lateral
tire force RR.

Table 2. ME and RMS errors comparison of UKF and MHE on the DLC maneuver. ME: maximum
estimation; RMS: root mean square.

State
ME Error RMS Error

MHE UKF Improvement MHE UKF Improvement

u (m/s) 0.441 0.428 −3.037% 0.127 0.335 62.090%
v (m/s) 0.067 0.130 48.462% 0.024 0.029 17.241%

r (rad/s) 0.017 0.022 22.727% 0.006 0.007 14.286%
Fs_ f l (N) 98.429 156.903 37.268% 38.278 43.850 12.707%
Fs_ f r (N) 145.710 195.451 25.449% 44.730 49.941 10.434%
Fs_rl (N) 93.551 181.288 48.396% 37.152 43.084 13.768%
Fs_rr (N) 135.059 241.798 44.144% 44.949 55.750 19.374%

It is noteworthy that in real applications, measurement noise or other reasons may occasionally
result in a wrong initial state value, which affects the accuracy of the subsequent estimation. In order
to further evaluate the robustness of these two estimation algorithms, simulations with incorrect
initial longitudinal speed estimates of 120 km/h and 80 km/h are conducted, the results of which are
illustrated in Figures 12 and 13. Compared to UKF, MHE has the advantage of solving this kind of
constrained state estimation problem. In this study, the constraint is set as Equation (40) in Section 3.2.

In Figure 12a,c,e are the estimation with the initial value of 120 km/h and Figure 12b,d,f with the
initial value of 80 km/h. Due to Equation (40), the estimated longitudinal speed by MHE approach
converges to the reference value rapidly when the initial estimate equals 120 km/h. Even under an
initial estimate of 80 km/h, MHE still converges faster than UKF. The other vehicle states, such as
lateral speed, yaw rate, and lateral tire forces in Figure 13, are not affected too much by the wrong
initial longitudinal velocity estimate.

In Table 3 the ME error and RMS error of each state variable are listed. Combining Table 2 with
the calculated results, we find that, for both the MHE and UKF algorithms, the estimation with wrong
initial longitudinal velocity performs slightly worse than that with a correct initial estimate. Even so,
MHE still shows more robustness and a faster convergence ability than UKF.
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Figure 12. Estimation performance comparison using UKF and MHE with longitudinal velocity
incorrectly initialized. (The red dashed line is estimated by MHE; the black dotted line is estimated
by UKF; and the continuous blue line is the reference value). (a) Estimated longitudinal speed under
initial guess of longitudinal speed 120 km/h; (b) Estimated longitudinal speed under initial guess of
longitudinal speed 80 km/h; (c) Estimated lateral speed under initial guess of longitudinal speed 120
km/h; (d) Estimated lateral speed under initial guess of longitudinal speed 80 km/h; (e) Estimated
yaw rate under initial guess of longitudinal speed 120 km/h; (f) Estimated yaw rate under initial guess
of longitudinal speed 80 km/h.

Table 3. ME and RMS errors comparison of UKF and MHE on the DLC maneuver with an incorrect
initial estimate of longitudinal velocity.

Initial Velocity u = 120 km/h u = 80 km/h

State
ME Error RMS Error ME Error RMS Error

MHE UKF MHE UKF MHE UKF MHE UKF

u (m/s) 5.555 5.547 0.264 1.408 5.556 5.546 0.752 1.703
v (m/s) 0.205 0.279 0.050 0.101 0.084 0.287 0.032 0.090

r (rad/s) 0.031 0.046 0.012 0.013 0.025 0.029 0.011 0.013
Fs_ f l (N) 219.867 240.493 49.126 88.098 147.926 292.768 47.576 106.835
Fs_ f r (N) 235.481 299.550 54.423 105.462 201.060 231.921 58.604 83.239
Fs_rl (N) 263.167 275.681 63.004 89.418 214.612 356.536 50.953 111.919
Fs_rr (N) 297.239 366.145 59.385 111.808 182.882 275.438 56.724 87.101
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Figure 13. Estimation performance comparison using UKF and MHE with longitudinal velocity
incorrectly initialized. (The red dashed line is estimated by MHE; the black dotted line is estimated
by UKF; and the continuous blue line is the reference value). (a) Estimated lateral tire force FL under
initial guess of longitudinal speed 120 km/h; (b) Estimated lateral tire force FL under initial guess
of longitudinal speed 80 km/h; (c) Estimated lateral tire force RL under initial guess of longitudinal
speed 120 km/h; (d) Estimated lateral tire force RL under initial guess of longitudinal speed 80 km/h;
(e) Estimated lateral tire force FR under initial guess of longitudinal speed 120 km/h; (f) Estimated
lateral tire force FR under initial guess of longitudinal speed 80 km/h; (g) Estimated lateral tire force
RR under initial guess of longitudinal speed 120 km/h; (h) Estimated lateral tire force RR under initial
guess of longitudinal speed 80 km/h.

5. Conclusions and Future Work

This study presented and compared two algorithms, UKF and MHE, for the vehicle longitudinal
velocity, lateral velocity, yaw rate, and tire lateral force estimating of DDEVs. Even though today some
of these vehicle states can be directly measured by optical sensors or GPS sensors, some practical
issues such as cost, accuracy, and reliability inhibit production vehicles from using these sensors at
present or in the near future. In contrast, our proposed estimation algorithms are designed based on
the information fusion combining feedback signals of electric motors and the existing standard sensor
unit equipped in today’s typical vehicles. In some vehicle stability controller studies such as [40–43],
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it can replace expensive optical or GPS sensors as a cost-efficient way of providing accurate vehicle
state information including velocities, yaw rate, sideslip angle, and tire lateral forces.

In this article, the mathematical vehicle model was established based on 3-DOFs planar vehicle
model with a simplified “Pacejka 2002” tire model. Computer simulations are conducted under the
emergency DLC test in the co-environment of CarSim and Simulink to evaluate the performance of
designed estimators. It is supposed to be persuasive, since during this maneuver vehicle states show
large variation. Based on the analysis of the simulation results, our findings are summarized as follows.

(1) The estimation results for vehicle states including the longitudinal velocity, lateral velocity, yaw
rate, and lateral tire forces, by both UKF and MHE, are satisfactory.

(2) Compared with UKF, MHE has better estimation accuracy, especially under serious
nonlinear situations.

(3) MHE has faster convergence ability and is more robust against an incorrect initial estimate of the
longitudinal velocity.

As a future research topic, estimation on rolling movement will be taken into consideration,
which is of great significance for the rollover prevention control. Furthermore, our prototype vehicle
is currently in the design and manufacturing stage. Field tests need to be carried out in the future to
verify the proposed estimation algorithms.
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Nomenclature

a Distance from center of gravity (COG) to front wheels
ax Longitudinal acceleration
ay Lateral acceleration
A Frontal projected area
b Distance from COG to rear wheels
Cd Air resistance coefficient
Fs_ij Lateral tire force
Ft_ij Longitudinal tire force
Fx_ij Resultant tire force alone x-axis
Fy_ij Resultant tire force alone y-axis
Fz_ij Tire normal load
h Height of sprung mass center of gravity
i Transmission ratio from motor to wheel
is Transmission ratio from the hand wheel to front wheels
Iz Vehicle rotational inertia about z-axis
Jw Wheel rotational inertia
l Wheelbase
m Gross mass
r Yaw rate
R Wheel radius
T Wheel track
Tm_ij Motor torque output
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Nomenclature

u Longitudinal vehicle velocity
uw_ij Wheel center speed
v Lateral vehicle velocity
ωij Wheel rotational speed
ωm_ij Motor rotational speed
αij Tire side slip angle
λij Tire slip ratio
ρ Air density
δsw Steering wheel angle
δT_ij Steering angle of each wheel
ij = fl,rl,fr,rr The wheel position: front left, rear left, front right, and rear right
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