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Abstract: In thermal power plants equipped with air-cooled condensers (ACCs), axial cooling fans
operate under the influence of ambient flow fields. Under inlet cross-flow conditions, the resultant
asymmetric flow field is known to introduce additional harmonic forces to the fan blades. This effect
has previously only been studied numerically or by using blade-mounted strain gauges. For this
study, laser scanning vibrometry (LSV) was used to assess fan blade vibration under inlet cross-flow
conditions in an adapted fan test rig inside a wind tunnel test section. Two co-rotating laser beams
scanned a low-pressure axial fan, resulting in spectral, phase-resolved surface vibration patterns of
the fan blades. Two distinct operating points with flow coefficients of 0.17 and 0.28 were examined,
with and without inlet cross-flow influence. While almost identical fan vibration patterns were found
for both reference operating points, the overall blade vibration increased by 100% at the low fan
flow rate as a result of cross-flow, and by 20% at the high fan flow rate. While numerically predicted
natural frequency modes could be confirmed from experimental data as minor peaks in the vibration
amplitude spectrum, they were not excited significantly by cross-flow. Instead, primarily higher
rotation-rate harmonics were amplified; that is, a synchronous blade-tip flapping was strongly excited
at the blade-pass frequency.

Keywords: axial fan; inlet cross-flow; blade vibration; laser scanning vibrometry; tracking laser
Doppler vibrometry; wind tunnel

1. Introduction

In arid regions, ecologic and economic purposes increasingly demand the application of air-cooled
condensers (ACCs) in thermal power plants [1]. Traditional “A-frame” designs consist of large
diameter, low-pressure axial fans mounted horizontally below bundles of heat-exchanger tubes where
the condensate is cooled by the fans’ draft [2]. At the fans’ inlets, the influence of cross-flow induced
by neighboring fans and natural ambient winds, which typically reach magnitudes of 5 to 13 m/s or
greater [3,4], is a major issue; it reduces the volumetric effectiveness of the cooling fans discernibly [5–10].

In this work, cross-flow denotes a transverse inlet flow field perpendicular to the fan axis and
the main operating direction (γ = 90◦). The cross-flow introduces asymmetric effects in the inlet
flow field of the fans and causes an azimuthal dependence of the flow’s angle of attack at the fan
blades. This affects the pressure and velocity distribution at the rotor outlet, as well as the blade loads.
The strong asymmetry of the flow field was investigated early on for a wall-mounted fan by Thiart and
von Backström [11], who indicated the mechanisms behind the reduction of volumetric effectiveness.
For the shrouded peripheral fans in an array of cooling fans of an ACC, the inlet cross-draft additionally
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causes a flow detachment at the windward edge of the nozzle or condenser bank edge. This introduces
additional asymmetric effects to the inlet flow field, as shown by Meyer [12] using numerical
investigations, and shown from experimental and numerical data by van der Spuy et al. [13,14].

Along with its negative aerodynamic influence on fan cooling performance, inlet cross-flow is
also known to increase blade load and vibration. Depending on its lateral position, the relative blade
motion is advancing or retreating to the ambient cross-flow, which respectively results in a greater
or smaller angle of attack of the relative flow at the fan blade. This harmonic excitation can lead to
considerable stall effects [15] and can increase the overall blade load. In the direction of the cross-flow,
the upwind inlet shroud detachment can affect the load distribution decisively [16].

Hotchkiss et al. [15] found a strong azimuthal dependence of the blade load as a result of γ = 45◦

between the inflow angle and fan axis in a pipe-inlet free-outlet computation. Compared to an axial
pipe inlet (γ = 0◦), Hotchkiss et al. found variations in torque and thrust of more than 20% caused
by this inclined pipe-inlet flow. Maximum loads were detected around the blades’ upwind zenith,
and minima were detected around the downwind zenith.

Similar results were found from simulations performed by Bredell et al. [16], who computed
significant bending moment variations of ACC periphery fans under the influence of induced
inlet cross-flow. The azimuthal variation of the load distribution was similar to the findings of
Hotchkiss et al.; that is, the maximum bending moment was found at the upwind position, within
the last quarter of the blades’ advancing semicircle. It was shown that the nature and magnitude of
the amplification caused by induced cross-flow at the periphery fan depend strongly on the ACC
platform height and fan geometry. Despite being under smaller maximum stresses because of a shorter
blade span, larger hub-to-tip-ratio fans (νtip = 0.4 vs. 0.153) experienced similar relative bending
moment variations.

From measurements with strain gauges on an operating on-site periphery fan in a power
plant ACC, Muiyser et al. [17] computed the azimuthal load distribution. Their experimental findings
agreed with the computations mentioned above. The blade load was increased dominantly by
magnitudes of around 20% at the upwind side of the periphery fan; moderately higher loads were
observed at the advancing blade side compared to the retreating blade side. Earlier potential flow
computations by Muiyser et al. [18] had already identified the sensitivity of the blade vibration to
distorted inlet-flow conditions.

Inlet cross-flow can clearly cause great amplifications in fan vibration and respective blade loads.
As a result of blade-span leverage, this is more relevant to the effective maximum stress in the
large-diameter cantilever style fans used in conventional ACCs. Nevertheless, it may also be of
concern for larger hub-to-tip-ratio fans, especially when cross-flow excites the blade vibration in
proximity to natural frequencies of the blade.

Rather than determining the azimuthal load distribution, this study aims to gain more spatially
resolved information in the frequency domain and under the influence of inlet cross-flow on the blade
vibration of axial fans. For this, the blade motion was captured using laser scanning vibrometry (LSV)
in a wind tunnel fan test rig, as described below. Natural frequencies and mode shapes of the industrial
fan were computed using a finite element method (FEM), and the findings are used to assess the
motion patterns of peak amplitude frequencies from the measurements.

2. Materials and Methods

LSV measurements were performed on an axial fan, using a fan test rig mounted inside
a wind tunnel test section. Natural modes and frequencies were computed from a FEM eigenvalue
computation of the fan under centripetal load.
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2.1. Wind Tunnel Fan Test Rig

The influence of an inlet cross-flow on the fan blade vibration was measured using LSV inside
a customized fan test rig inside a Göttinger-type wind tunnel with a 2.80 m long open test section and
an exit nozzle of 1.87 · 1.40 m2. A commercial low-pressure axial fan (Dfan = 300 mm diameter) with
five forward-skewed blades and a hub-to-tip ratio of νhub = 0.342, operating with its axis perpendicular
to a uniform ambient velocity U0, was examined. Figure 1 shows the experimental setup, while the fan
design is illustrated in Figure 2.

Figure 1. Experimental setup in wind tunnel test section.

(a) Scan point distribution on rotor at inlet
as seen from front; anti-clockwise rotation.

(b) Finite element method (FEM) tessellation for
natural frequency computation as seen from outlet;
clockwise rotation.

Figure 2. Experimental subject axial fan with forward-skewed blades.
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The test fan was examined, operating in its standard shroud without a guard grille and held in
place by four thin struts with its outlet mounted to a square duct section, 1.5Dfan above the wind
tunnel test section’s floor. Behind a short flow-straightening device, the stagnation pressure pm,i was
captured relative to the wind tunnel ambient pressure with 81 Kiel-type stagnation pressure probes,
and was surface averaged to the total-to-total fan pressure ∆ptt = ∑81

i=1 pm,i/81. The equally spaced
9× 9 grid of pressure probes inside the square duct (Dduct × Dduct = 300× 300 mm2) is described
in [19]. The fan flow rate V̇ was computed from static pressure loss over five standard nozzles inside
a settling chamber at the end of the outlet duct, in accordance to the fan test rig standard ISO 5801
(not displayed in Figure 1). The experimental setup was previously used to investigate the integral
inlet flow field influence on the characteristic fan curve, as shown in [20].

To measure the fan rotation rate f0 and to synchronize the test fan with the co-rotating LSV’s
derotator, a rotary encoder was mounted directly to the fan axis at its center. With the wind tunnel
either turned off or operating at a U0 = 10 m/s wind velocity, the characteristic cross-flow coefficient

µ =
U0

πDfan f0
(1)

differed slightly around 0.25, depending on the rotation rate f0 of the commercial fan.
At one low flow rate (Φ ≈ 0.17) called operating point 1 (OP1), and at a higher flow rate,

OP2 (Φ ≈ 0.28), with similar flow-rate coefficients

Φ =
4 V̇

πD2
fan · (1− ν2

hub) · πDfan f0
(2)

a total of four operating points were measured with µ = 0 (OP10 and OP20) and µ ≈ 0.25
(OP11 and OP21), as listed in Table 1 along with the respective total fan pressure coefficients

Ψtt =
2 ∆ptt

ρ (πDfan f0)2 (3)

Table 1. Examined operating points (OP) with expanded combined uncertainties (non-dimensional).

µ Φ Ψtt

OP1 OP10 0.0 0.165± 0.005 0.148± 0.007
OP11 0.258± 0.009 0.172± 0.005 0.112± 0.006

OP2 OP20 0.0 0.277± 0.008 0.092± 0.006
OP21 0.246± 0.009 0.286± 0.008 0.015± 0.005

Tables 1 and 2 list the expanded combined uncertainties Uc(x) of the quantities x for a 95% level
of confidence, as defined by

Uc(x) =

√√√√∑
xi

(
∂x
∂xi
·U(xi)

)2
(4)

in [21] with the measured quantities xi and their expanded uncertainties U(xi). The measured
quantities xi were the pressure measurements of the total fan pressure ∆ptt, the wind tunnel velocity
stagnation pressure used for U0, and the multi-nozzle pressure loss for flow rate V̇; the density ρ,
the rotation rate f0, the fan dimensions Dfan and νhub, and the coefficient uncertainties for the
computation of V̇ with multi-nozzles listed in ISO 5801. Because the fan dimensions were a dominant
source of uncertainty in the computation of µ, Φ and Ψtt but did not change between data sets,
the combined uncertainties of Table 2 provide a better estimate of possible uncertainties caused by
random error.
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Table 2. Examined operating points with expanded combined uncertainties (dimensional).

U0 in m/s f 0 in Hz V̇ in m3/s ∆ptt in Pa

OP1 OP10 0.0 43.27± 0.04 0.412± 0.008 141.1± 2.2
OP11 10.0± 0.29 41.13± 0.04 0.408± 0.008 95.8± 2.0

OP2 OP20 0.0 44.18± 0.04 0.706± 0.013 90.8± 2.0
OP21 10.0± 0.29 43.42± 0.04 0.717± 0.013 14.8± 1.6

2.2. Laser Scanning Vibrometry

The axial blade-surface velocity distribution was captured using a PSV-500 Scanning Vibrometer
coupled with a PSV-A-400 derotator (Polytec GmbH, Waldbronn, Germany). The method is also
known as tracking laser (scanning) vibrometry, and has been applied to rotating machinery over
the recent years in helicopter or automotive research; see for example, [22,23]. The method
facilitates the comparatively fast capturing of a rotating object’s surface velocity at many probe
locations. In comparison to accelerometers, this non-intrusive method also has the advantage of not
imposing additional weight or aerodynamic obstacles in the form of sensors and wiring onto the
measuring object.

The fan blades were sprayed with a reflective coating, such that their local surface velocity could
be computed from the Doppler frequency shift of the reflection of a continuous-wave 633 nm HeNe
laser beam. Successively, equally distributed probe locations (NScPts = 400) with a typical spacing of
10 mm between them, as shown in Figure 2a, were measured by the co-rotating beam at a sampling
rate of 12.5 kHz. On each scanning point, 30 samples with 640 ms velocity signals (around 27 full fan
rotations) were successively captured and transferred to the frequency domain.

Hanning windows with 70% overlap were used to average the 30 samples, resulting in
frequency domain data sets with a bandwidth of B = 5 kHz resolved to discrete frequencies k · ∆ f ,
where ∆ f = 1.5625 Hz and integer values k are defined as in Equation (6). With the respective fan
rotation rate f0, discrete dimensionless frequency coefficients

nk = k · ∆ f / f0 (5)

result for n = f / f0. Plain kinematic effects were observed at rotation rate f0, caused by the uncertainty
in the parallel alignment of the laser beam and fan axis. To exclude such rigid-body rotation effects
from the blade vibration analysis, the frequency domain was filtered to a minimum integer k0 above
the second rotation-rate harmonic, such that

k ε {k0, k0 + 1, . . . , B/∆ f } , where k0 =

⌈
2.2 f0

∆ f

⌉
and B/∆ f = 3200 (6)

The scanning laser was accompanied by a reference beam signal vz,ref(nk), which remained
fixed on one probe location for phase reference to the individual measured velocities vz,i(nk)

(for i = 1 . . . NScPts scan points). Using the recorded cross-spectral density between the two
signals Gi,ref(nk), a phase offset of point i at nk,

θi,ref(nk) = tan−1
(

Im {Gi,ref(nk)}
Re {Gi,ref(nk)}

)
(7)

could be computed. This allowed for the reconstruction of a relative motion pattern:

ṽz,i(nk) = vz,i · cos (θi,ref(nk)) (8)
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The magnitude of total fan vibration was analyzed with the surface-averaged axial velocity as a
function of the frequency,

vz(nk) =
1

NScPts

NScPts

∑
i=1

vz,i(nk) (9)

Using this, the integral level of the overall fan blade vibration could be expressed by the root
mean square value over all the frequencies k0∆ f / f0 ≤ nk ≤ B/ f0, where k0 is from Equation (6); that
is,

vrms =

√√√√∆ f ·
B/∆ f

∑
k=k0

[vz(nk)]
2 =

√√√√∆ f ·
B/∆ f

∑
k=k0

[
1

NScPts

NScPts

∑
i=1

vz,i(nk)

]2

(10)

The velocity amplitude full-scale range was limited to a maximum of 2 m/s. For this range,
the manufacturer states the noise-limited resolution of 108 nm/(s

√
Hz), at which the signal

amplitude equals the noise level. Because this value depends strongly on the surface reflection
quality and ambient conditions, a higher noise level was expected for the measurement of
the rotating fan. As it will be shown below, the base noise level was vz,noise ≈ 0.56 mm/s;
that is, 20 · log10(vz,noise · 1 s/mm) ≈ −3.75.

2.3. Numerical Setup for Natural Frequency Computation

To interpret the measured vibration shapes at dominant frequencies, the natural frequencies fe,j
of the test fan were computed, along with the respective mode shapes. The finite element solver
ANSYS Mechanical (version R17.1, ANSYS Inc., Canonsburg, PA, USA) was used to perform the modal
analysis under typical centripetal loads.

Tetrahedral triangulation of the geometric fan model was performed with typical element sizes
of 10−3Dfan, resulting in 206 802 nodes. The resulting mesh is shown in Figure 2b. A centripetal load
was inflicted on the fan at f0 = 44.2 Hz, with rigid support in all degrees of freedom at the four bolt
locations marked by ~u = 0 in Figure 2b. This resulted in peak von Mises-equivalent stress levels of
269 MPa, located at the leading edge of the blades, at around one-third of the span between the hub
and tip. This pre-strain of the blades had a considerable influence on the fan’s natural frequencies and
mode shapes.

3. Results and Discussion

3.1. Reference Results and Computed Mode Shapes

3.1.1. Natural Frequencies

Natural frequency computation with the setup described above typically resulted in groups
of five distinct frequencies in great proximity. These referred to the same natural mode for
each individual blade, which differed numerically as a result of model and mesh asymmetries.
The arithmetic mean over these sets of joint frequencies resulted in the first eight natural frequencies fe,j
listed in Table 3, along with the respective frequency numbers ne,j, which differred for the different
rotation rates f0 of the four operating points. The five distinct frequencies averaged to fe,j are listed in
Table 4 for j = 1 to 4.
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Table 3. First eight mean natural frequencies computed under centripetal load from rotation
at f0,e = 44.18 Hz, including natural frequency numbers respective to the four operating points.
FEM: Finite Element Method.

j 1 2 3 4 5 6 7 8

fe,j in Hz 184.7 432.8 942.8 1123 1657 1948 2034 2190
ne,j (FEM) 4.181 9.796 21.34 25.42 37.51 44.09 46.04 49.57

ne,j (OP10) 4.269 10.00 21.79 25.95 38.29 45.02 47.01 50.61
ne,j (OP11) 4.491 10.52 22.92 27.30 40.29 47.36 49.45 53.25
ne,j (OP20) 4.181 9.796 21.34 25.42 37.51 44.09 46.04 49.57
ne,j (OP21) 4.254 9.968 21.71 25.86 38.16 44.86 46.85 50.44

Table 4. First four blade-specific distinct natural frequencies.

j f e,j in Hz Distinct Associated Frequency in Hz

Blade 1 Blade 2 Blade 3 Blade 4 Blade 5

1 184.7 184.96 184.70 184.72 184.73 184.77
2 432.8 432.71 432.80 432.84 432.88 432.94
3 942.8 942.02 942.10 943.03 943.17 943.57
4 1123 1122.4 1122.5 1122.6 1123.6 1123.6

3.1.2. Spectral Decomposition of the Surface-Averaged Velocity Amplitude

Reference results show the response of the fan vibration without the presence of a uniform
ambient cross-flow field at the fan inlet (U0 = 0 m/s). Dominant amplitude peaks could be determined,
and a comparison of the two operating points OP10 and OP20 could be made. Selected frequencies n
were examined more closely, and the respective reconstructed motion pattern could be compared to
associated natural modes determined from a FEM simulation.

Figure 3 shows the spectral decomposition of the surface-averaged fan blade velocity amplitude vz

from all NScPts scan points, as defined in Equation (9), for the frequency range 2.2 < n ≤ 50.
As annotated above, the first two rotation-rate harmonics n = 1 and 2 are cut off because of
distortion by kinematic effects. In Figure 3, black dotted vertical lines indicate the harmonics
of the blade-pass frequency n = 5. The data sets’ natural frequencies ne,i are added in dashed
vertical lines for i = 1 to 4. Because of the different rotation rates f0 of the operating points’ natural
frequencies, these dashed lines do not coincide for the data sets. The base-level noise was detected at
20 · log10(vz,noise · 1 s/mm) ≈ −3.75 from the data.

It becomes clear from Figure 3 that the measured mean surface vibration was dominated by the
rotation-rate harmonics, that is, where n had integer values, with vz amplitudes close to zero in between.
Although operating at distinctly different flow rates Φ, the reference spectra of OP10 and OP20
coincided intensely; they have almost identical integral vibration measures of vrms = 362.52 mm/s
and 363.40 mm/s, respectively. The dominant peak for both operating points is n = 3, with similar
velocity amplitudes, but the blade-pass frequency harmonics n = 5 and 15 are also prominent.
Noteworthy non-integer values n are located in the proximity of the first three natural frequencies,
especially at ne,1.
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OP10: Φ = 0.165, µ = 0.000, f0 = 43.27 Hz, vrms = 362.52 mm/s

OP20: Φ = 0.277, µ = 0.000, f0 = 44.18 Hz, vrms = 363.40 mm/s

Figure 3. Frequency domain decomposition of surface-averaged blade velocity amplitude over all scan
points, without ambient flow. Dotted lines at blade-pass frequency harmonics. Dashed lines indicate
the first four natural frequencies fe,j of the fan in relation to the respective data set’s rotation rate f0

(matching colors).

3.1.3. Mode Shapes at Natural Frequencies

Before the motion patterns at the rotation-rate harmonics are analyzed, the experimental reference
results (µ = 0) are compared with the natural frequency computation. The amplitude peaks of the
surface-averaged axial velocities vz(ne,1) and vz(ne,2) from Figure 3 can be dissolved to a relative
motion pattern ṽz,i(ne,j) using the phase offset to the reference signal, as defined by Equation (8).
In Figures 4 and 5, the measured reference distribution of ṽz,i at the discrete frequencies nk of the peaks
in close proximity to the first two natural frequencies are displayed on the left. The representative
sample velocity distributions presented in Figures 4a and 5a belong to the higher flow-rate data
set OP20. They are also representative for the findings of OP10, which gave very similar results.

The images on the right (Figures 4b and 5b) illustrate the mode shapes of the natural frequencies
computed by FEM, as a comparison. Here, axial displacement is displayed. Because absolute
magnitudes are arbitrary for eigenvectors, the axial displacement values only indicate a relative
motion pattern to compare the computed mode shape and measured response qualitatively.

First Natural Frequency Mode

The numerically predicted first natural mode is shown in Figure 4b. As stated above, five very
close frequencies were found for ne,1, each with another maximum-attenuated blade (see Table 4).
In Figure 4b, the bottom blade describes the maximum motion of the first mode. It consists of the
flapping of one blade-tip leading edge, and a 180◦ counter-motion with a smaller amplitude at the
neighboring blades. Two blades in advance (clockwise rotation) from the maximum-motion blade,
an in-phase motion is detected again.
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-24.4 -7.3 9.8 26.9

vz,i · cos(ϑvvref
) in mm/s

(a) Relative axial velocity distribution fk = 184.375 Hz
(nk = 4.173), measured at Φ = 0.277 (OP20).

(b) Computed natural mode under centripetal load at
fe,1 = 184.7 Hz (ne,1 = 4.181).

Figure 4. Computed modal shape of first natural frequency in comparison to measured vibration at
associated frequency.

In the experimental realization of the commercial fan, natural frequencies of the distinct blades
were expected to disperse more than in the numerical model, as a result of manufacturing and
installation uncertainties. The combination of the five underlying discrete natural modes of the five
blades yielded a range of high-amplitude values of around n ≈ 4.2 in Figure 3. For OP20, this resulted
in the peak amplitude vz(4.173), which is dissolved to ṽz,i in Figure 4a. The same exact mode shape
can be distinguished from the LSV data as predicted from FEM in Figure 4b. The maximum-amplitude
blade (bottom position) is flanked by two counter-flapping blades, and one blade is in-phase, preceding
it by two positions. The first natural frequency is visibly a dominant location of vibration, and attention
should be paid not to operate the fan at rotation rates for which significant excitation would coincide
with fe,1.

Second Natural Frequency Mode

Compared to ne,1, the second natural frequency range measurement was lower in amplitude
vz(ne,2), as shown in Figure 3. The respective predicted mode shape is shown in Figure 5b. Again, the
image refers to one of the five associated distinct frequencies in great proximity, and the blade with
maximum attenuation is located at the upper right. The mode bends around a spanwise axis in the
blade centerline; the leading edge swings in counter-phase to the trailing edge and maximum values
at the blade tips. The remaining four non-dominant blades describe a counter-motion to the blade at
the upper right, and the most discernible motion patterns at the two blades oppose it (bottom and left
in Figure 5b).



Appl. Sci. 2017, 7, 862 10 of 16

-8.4 -1.7 5.1 11.8

vz,i · cos(ϑvvref
) in mm/s

(a) Relative axial velocity distribution fk = 425.0 Hz
(nk = 9.620), measured at Φ = 0.277 (OP20).

(b) Computed natural mode under centripetal load at
fe,2 = 432.8 Hz (ne,2 = 9.796).

Figure 5. Computed modal shape of second natural frequency in comparison to measured vibration at
associated frequency.

In reference to the associated amplitude peak vz(ne,2) in Figure 3, the relative axial motion
ṽz,i(9.620) is displayed in Figure 5a for OP20. Again, the mode shape resembles the computation
very strongly, and the dominant blade is at the upper right. The single difference between the measured
vibration response and computation may be discerned in the motion of the remaining four blades.
The two opposing blades do not show a counter-motion to the upper-right blade. Instead, such motion
is more strongly found in the blades flanking the dominant blade. This discrepancy between the
measurement and computation may be attributed to the differences due to manufacturing and
installation, as well as the interaction of presumably more distinct individual natural frequencies for
each blade.

3.2. Inlet Cross-Flow Influence on Fan Blade Vibration

3.2.1. Spectral Decomposition of Surface-Averaged Vibration

The measured response in the surface-averaged blade vibration vz(n) to inlet cross-flow is shown
by its spectral decomposition in Figure 6 for OP1 and in Figure 7 for OP2. The integral root mean
square measures show a distinct increase in the overall blade vibration for OP1 from µ = 0.258.
With 718.46 mm/s at OP11, vrms was almost double the value of the reference configuration of OP10
(vrms = 362.52 mm/s). For OP2, µ = 0.25 cross-flow increased vrms by about 20% from 363.40 mm/s
(OP20) to 436.87 mm/s (OP21).

The greater overall increase in vrms was also reflected by the influence of cross-flow in the spectral
decomposition of vz(n) in Figures 6 and 7. Amplitude gains are found for OP1 in Figure 6 for
almost every integer value n ≥ 4, but n = 5 and n = 6 are the rotation-rate harmonics that are
excited dominantly. As a result of the influence of inlet cross-flow, the blade-pass frequency was also
measured to become the dominant amplitude peak vz at the higher flow-rate operating point OP2,
as visible in Figure 7. Amplification at n = 6 was also found for OP21, but to a far lesser magnitude
than for OP1 (Figure 6). The previously dominant frequency n = 3 was not affected in amplitude by
cross-flow at either operating point.
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OP10: Φ = 0.165, µ = 0.000, f0 = 43.27 Hz, vrms = 362.52 mm/s

OP11: Φ = 0.172, µ = 0.260, f0 = 41.13 Hz, vrms = 718.46 mm/s

Figure 6. Frequency domain decomposition of cross-flow influence on measured mean surface velocity
amplitude at OP1.

An amplification of the blade vibration around the natural frequency domains cannot be discerned
from the data presented in Figures 6 and 7; the cross-flow influence appears not to have excited the
fan’s natural modes significantly.
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OP20: Φ = 0.277, µ = 0.000, f0 = 44.18 Hz, vrms = 363.40 mm/s

OP21: Φ = 0.286, µ = 0.246, f0 = 43.42 Hz, vrms = 436.87 mm/s

Figure 7. Frequency domain decomposition of cross-flow influence on measured mean surface velocity
amplitude at OP2.

3.2.2. Motion Patterns at Dominant Peaks

The measured relative axial velocity distributions ṽz,i associated with the dominantly increased
frequencies n = 5 and 6 are compared to the reference results in Figures 8–11.
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-7.3 -2.1 3.1 8.4

vz,i · cos(ϑvvref
) in mm/s

(a) OP10: Φ = 0.165; µ = 0.

-7.9 40.8 89.4 138.1

vz,i · cos(ϑvvref
) in mm/s

(b) OP11: Φ = 0.172; µ = 0.258.

Figure 8. Cross-flow influence on blade vibration at blade-pass frequency n = 5; OP1.

In all reference results (on the left in Figures 8–11), the distribution of ṽz,i forms no clear pattern,
and the amplitude range is comparably low. Considering the logarithmic representation of
Figures 6 and 7, the low-amplitude peaks at n = 5 and 6 are only a little above the base noise level
for µ = 0. In contrast to this, the right-hand graphics in Figures 8–11 show very characteristic motion
patterns of the fan blades under the influence of inlet cross-flow, and decisively larger amplitudes vz,i.

-11.7 -3.3 5.1 13.4

vz,i · cos(ϑvvref
) in mm/s

(a) OP20: Φ = 0.277; µ = 0.

-6.5 21.5 49.5 77.5

vz,i · cos(ϑvvref
) in mm/s

(b) OP21: Φ = 0.286; µ = 0.244.

Figure 9. Cross-flow influence on blade vibration at blade-pass frequency n = 5; OP2.

At the blade-pass frequency n = 5, both operating points OP11 (Figure 8b) and OP21 (Figure 9b)
showed a synchronized blade-tip flapping motion caused by the influence of cross-flow. At the
blade tips, large peak-velocity amplitudes ṽz,i(5) can be found. The vibration increase at the blade-pass
frequency is not surprising. Because n = 5 is the frequency at which the fan blades passed the inlet
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cross-flow, it was also the excitation frequency of the resultant external harmonic forces, causing an
in-phase motion of all the blades.
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(a) OP10: Φ = 0.165; µ = 0.
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vz,i · cos(ϑvvref
) in mm/s

(b) OP11: Φ = 0.172; µ = 0.258.

Figure 10. Cross-flow influence on blade vibration at n = 6; OP1.
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(b) OP21: Φ = 0.286; µ = 0.244.

Figure 11. Cross-flow influence on blade vibration at n = 6; OP2.

A blade-tip flapping motion was also detected from experimental LSV data at the sixth
rotation-rate harmonic n = 6. The pattern can be seen especially clearly for the strong excitation for
OP11 in Figure 10b, but it can also be seen in Figure 11b for OP21. However, while the single-blade
motion with its peak at the leading edge tip resembles the first natural mode shown in Figure 4b,
the dominant blade’s neighbors did not move in counter-phase to it. Instead, they have an offset θi,ref
of around 90◦, which levels the otherwise similar amplitude vz,i at the bottom and upper-right blades
in Figures 10b and 11b.
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For OP11, the blade root amplitudes ṽz,i(6) are distinctly below zero where the blade tip is
at a maximum (bottom-right blade in Figure 10b), and above zero where the blade-tip velocity is
a minimum (left and top blades). This indicates a non-negligible stator-motion, that is, a motion of the
entire fan at n = 6 for OP11.

4. Conclusions

Using a co-rotating LSV setup, it was possible to measure the blade vibration of an axial fan with
high spectral and spatial resolution. Additionally, the experiment was set up inside a wind tunnel
test section to investigate the effect of a uniform inlet cross-flow on the fan blade vibration, which is
known to introduce a significant axial asymmetry of the flow field in the rotor section [12–14].

Up to this point, similar investigations have only been made numerically [15,16,18] or by using
strain gauges on larger-diameter fans [17,24]. Using LSV in this setup, it was possible to gain more
insight into the spatial resolution of the fan blade vibration under cross-flow influence, and to compare
the resulting motion distributions to numerical mode analysis.

Two distinct fan operating points were examined, with very similar spectral distributions of the
surface-averaged blade vibration amplitude in the reference configuration, that is, without ambient
flow field. The first and, to a lesser extent, the second natural frequency showed peaks in the vibration
amplitude spectrum that fit the predicted natural mode very well in shape, but a stronger blade
vibration was measured for the rotation-rate harmonics. Under the influence of inlet cross-flow,
the blade-pass frequency and the sixth rotation-rate harmonic were excited strongly, while no
significant amplification of the natural frequencies was measured. These findings agree with previously
observed cross-flow excitation effects [17,18]. Integral fan blade vibration almost doubled at the low
fan flow rate, and increased by 20% at the higher fan flow rate.

While a synchronous flapping of all five blades’ tips was observed to be instigated at the blade-pass
frequency, the nature and cause of the sixth rotation rate harmonic’s excitation remains uncertain.
It may have been attributed to an additional resonance effect of the combined elastic system, including
the fan and its fixation to the duct section, which was not represented in the modal computation setup.

The experimental results help to identify the affected frequencies and respective mode shapes
under cross-flow excitation. Measuring capacity restrictions allowed for a few configurations only;
clearly it would be interesting to modify, for example, the fan blade-shape, the hub and shroud
shape, and cross-flow coefficients. A generic fan is suggested with improved axial alignment to better
eliminate perspective distortion. Attention has to be paid to realize a maximum rigid fan-axis fixation
in the test rig. For future investigation, it is also advised to not only record the relative phase relation of
the measured scanning points, but also to identify the azimuthal position in relation to the cross-flow.
Such results could yield a better comparison to the findings of e.g., Muiyser et al. [17,18,24].
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