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Abstract: Twitter is a popular source for the monitoring of healthcare information and public disease.
However, there exists much noise in the tweets. Even though appropriate keywords appear in the
tweets, they do not guarantee the identification of a truly health-related tweet. Thus, the traditional
keyword-based classification task is largely ineffective. Algorithms for word embeddings have
proved to be useful in many natural language processing (NLP) tasks. We introduce two algorithms
based on an existing word embedding learning algorithm: the continuous bag-of-words model
(CBOW). We apply the proposed algorithms to the task of recognizing healthcare-related tweets.
In the CBOW model, the vector representation of words is learned from their contexts. To simplify
the computation, the context is represented by an average of all words inside the context window.
However, not all words in the context window contribute equally to the prediction of the target
word. Greedily incorporating all the words in the context window will largely limit the contribution
of the useful semantic words and bring noisy or irrelevant words into the learning process, while
existing word embedding algorithms also try to learn a weighted CBOW model. Their weights
are based on existing pre-defined syntactic rules while ignoring the task of the learned embedding.
We propose learning weights based on the words’ relative importance in the classification task.
Our intuition is that such learned weights place more emphasis on words that have comparatively
more to contribute to the later task. We evaluate the embeddings learned from our algorithms on two
healthcare-related datasets. The experimental results demonstrate that embeddings learned from the
proposed algorithms outperform existing techniques by a relative accuracy improvement of over 9%.
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1. Introduction

More and more researchers have realized that Internet data could be a valuable and reliable
source for tracking and extracting healthcare-related information. For example, in 2008, Google
researchers found that they can “forecast” flu prevalence in real time based on search records [1].
Google later turned this research into one of their projects called Google Flu Trends (GFT)
(https://en.wikipedia.org/wiki/Google_Flu_Trends). However, GFT later failed by missing the
peak of the 2013 flu season by 140 percent [2]. One reason is the presence of too much noisy data [2]:
people who search using the keyword “flu” might know very little about the symptoms of the flu.
And some disease, whose symptoms are similar to the symptoms of the flu, is not actually the flu.
The failure of GFT does not negate the value of the data but highlights the importance of classification
of truly healthcare-related data from irrelevant and noisy data. Healthcare researchers desire to extract
more healthcare information from information that people have shared online. Thus, we are more
interested in tweets that talk about real disease symptoms as shown in Examples 4–6 which we name
healthcare-related tweets, rather than those tweets that simply highlight healthcare information as seen
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in Examples 1–3 which we name healthcare-noise tweets. The classification task in the healthcare field
is a challenging one since both healthcare-related tweets and healthcare-noise tweets might contain
some keywords such as “flu” and “health” which makes basic filtering approaches unworkable. Below,
we show examples of healthcare-noise tweets (Examples 1–3) versus the truly healthcare-related tweets
(Examples 4–6). (The example tweets are all drawn from a published dataset by Lamb et al. [3].)
Compared to the healthcare-related tweets, we found that although the healthcare-noise tweets all
have keywords such as “swine flu” and “flu shots”, they are not really talking about the symptoms of
the flu of individuals. With this motivation, the task of this work is to classify truly healthcare-related
data from healthcare-noise data that is typically collected through the keyword filtering approach
provided by the Twitter API (https://dev.twitter.com/streaming/overview).

1. Worried about swine flu? Here are 10 things you need to know: Since it first emerged in April,
the global swine ..

2. Swine Flu - How worried are you? - Take our poll now and check out how others feel!
3. Missed getting a FREE FLU SHOT at Central last night? You’ve got three more “shots” at it.

4. feels icky. I think I’m getting the flu...not necessarily THE flu, but a flu.
5. Resting 2day ad my mthly blood test last 1 ok got apoint 4 flu jab being lky so far not getting

swine flu thats something
6. 38 degrees is possible swine flu watching the thermometer go up. at 36.9 right now im scared :/

Social media, such as Facebook and Twitter, have been widely used by individuals to share
real-life data about a person’s health. It made the popular social media platforms, such as Twitter,
a major source of healthcare-related data. Twitter provides support for accessing tweets via the Twitter
API. Healthcare researchers have long been utilizing social media data to conduct their research [3–7].
Because of the popularity of social media platforms such as Twitter, the number of healthcare-related
posts is growing fast. To extract further healthcare information, the most basic and crucial task is to
discriminate and extract healthcare-related tweets from the massive pool of tweets. Researchers have
made efforts to collect healthcare-related tweets [3,8]. Using modern machine learning algorithms
and hand-crafted features, such as keyword-based binary features and support vector machines
(SVM) with linear kernels [8], researchers are able to collect tweets that are potentially related to
healthcare. However, many words are polysemous. For example, “cold” has a potential to talk about
the disease but it might refer to the weather; besides the health-related concept, “virus” might also
mean computer virus. Thus, tweets that are collected through ambiguous keyword filtering could
be irrelevant. Another reason for the limitation of the keywords-based approach is that the set of
important words can change over time, e.g., from H1N1, H5N1 to H7N9.

Recent years have seen the success of word embedding algorithms applied to many downstream
natural language processing (NLP) tasks such as part-of-speech tagging and sentiment analysis [9–11].
Word embeddings usually learned from neural language models are well-known for representing the
fine-granularity of words’ semantic meaning. Word2Vec, developed by Mikolov et al. [9], has been
shown to establish a new state-of-the-art performance in NLP tasks. Many other researchers have also
contributed to the area of neural language model-based word embedding [12–15]. Word embeddings
serve as machine-learned features for downstream classification tasks. Compared to the handcrafted
keywords approach, the unsupervised word embedding algorithms can be adapted to different tasks
and different corpora.

Mikolov et al. presented both the continuous bag of words (CBOW) and skip-gram models in
their work. Our work extends the CBOW model. The CBOW model learns to predict the target word
from the words in the context window surrounding the target word. The vector representations of the
words in the context window are averaged in the process to predict the target word. Thus, the CBOW
model treats every word in the context window equally in terms of their contributions to the prediction
of the target word.

https://dev.twitter.com/streaming/overview
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The CBOW model effectively learns a representation of the semantic meaning of each word
as measured by a word-similarity evaluation, as long as the corpus is large enough. Mikolov et al.
tested the CBOW model on the 6B-word Google news dataset. News articles are often written by
professional reporters. Thus, the sentences are expected to be compact and the sentences should have
meaningful semantic words. The intuitive and straightforward idea of equal contribution of every
word in the context in the CBOW model is effective enough. However, when the corpus has plenty of
slang expressions, abbreviations, emojis and unusual syntactics, such as in a microblog, the default
combination that treats every word equally in the CBOW model might not be the optimum solution.
We note that not all words in the context window contribute equally to the prediction of the target
word. Incorporating all the words in the context window will largely limit the contribution of useful
semantic words and bring more noisy or irrelevant words into the learning process.

Some existing word embedding work also learn weighted word embeddings [16–18]. Their weights,
however, are based on existing pre-defined syntactic rules while ignoring the ultimate goal of the
learned embedding.

Thus, motivated, we propose an alternative, to learn weights based on their relative importance
in the classification task. Our intuition is that such learned weights place more emphasis on words
that have comparatively more to contribute to the later classification task.

The chi-square (χ2) statistical test is often used in feature selection for data mining [19].
It calculates the dependency between the individual feature and the class. By utilizing the χ2 statistics
for each word in the corpus as weights, we emphasize words that would later benefit the classification
task and de-emphasize words that are usually independent of the class label.

We propose two algorithms based on the CBOW model. Inspired by the max-pooling layer of the
convolutional neural network model (CNN), in a small context window setting, the first algorithm
selects the word with the maximum χ2 value to represent the context to predict the target word.
The second algorithm keeps every word in the context window but weights them proportionally
according to χ2 values. The main contributions of this work can be summarized as follows.

• We are the first to propose to use the χ2 statistic to weight the context in the CBOW model to
enhance the contribution of the useful semantic words for the classification task and limit the
noise brought by comparatively unimportant words.

• We propose two algorithms to train word embeddings using χ2 on the task of healthcare tweet
classification for the purpose of identification of truly health-related tweets from healthcare-noise
data collected from a keyword-based approach.

• We evaluate our learned word embeddings for each of the proposed algorithms on two
healthcare-related twitter corpora.

2. Related Work

Microblogging sites and online healthcare forums distribute many posts that share aspects
of an individual’s life and experience each day. The potential for working with great amounts of real
healthcare-related clinical records, disease and symptom descriptions and even clinical transcripts
attracted many researchers with interesting projects. To further extract and track healthcare information
especially from users’ social media profiles, the most basic and crucial task is to discriminate the
healthcare-related tweets or target users from the massive pool of tweets and users that are irrelevant
to the topic. Wang et al. note that prior research on eating disorders only focused on datasets collected
from particular forums and communities [4]. Their goal was to identify behavioral patterns and
psychometric properties of real users that suffered from eating disorders and not the patterns of
people who simply discussed it on Twitter. They proposed a snowball sampling method to collect
data based on the labeled eating disorder users’ social media connections. Lamb et al. also used
tweets to track influenza by distinguishing tweets about truly flu-affected people from the ones that
express only concerns and awareness [3]. Because of the subtlety in distinguishing the two types of
tweets, a keyword-based approach is insufficient since both sets contain typical keywords. Lamb et al.



Appl. Sci. 2017, 7, 846 4 of 12

proposed handcrafted feature types such as a word lexicon, stylometric features and part-of-speech
template features. However, handcrafted features have the problem of scalability. Paul and Dredze [20]
build an unsupervised topic model based on latent Dirichlet allocation (LDA) [21] to extract healthcare
topics discussed in tweets. Ali et al. designed a platform to detect the trend and breakout of disease at
an early stage [8]. They identify healthcare-related tweets from a pre-defined keywords list. Signorini
et al. tracked H1N1 activity levels and public concerns on Twitter in real time [5]. They used SVM and
handcrafted features such as age, recent clinic visits, etc., to track public sentiment with respect to
H1N1, the swine flu. Interestingly, they found hygiene keywords such as “wash hands” positively
correlated with the outbreak of the disease.

The popularity of the vector space model lies in its ability to quantify semantic similarities by
the distributional structure of the language [22,23]. The assumption here is that words with similar
distributional statistics tend to have similar semantic meaning. The distributional structure of the
language can be captured by multi-dimensional vectors learned from the words’ co-occurrence
statistics. The research based on this assumption to quantify words’ meaning and similarity
is called distributional semantics [24]. There are multiple vector space models implementing
distributional semantics, including Latent Semantic Analysis (LSA) [25] and Latent Dirichlet Allocation
(LDA) [21]. Landauer and Dumais endowed LSA with a psychological interpretation and used LSA as
a computational theory to solve the fundamental problem of knowledge acquisition and knowledge
representation [26]. Enlightened by LSA’s capability to capture similarity between words and its
usage of Singular Value Decomposition (SVD) [27] to smooth the vector and handle the sparseness,
Turney proposed capturing the relations between pairs of words and developed a new algorithm
called Latent Relational Analysis (LRA) which also used SVD to smooth the data [28]. The context of a
target word is defined as a small unordered number of words surrounding the target word in semantic
space models. Pado and Lapata incorporated the syntactic information (dependency relations) to
represent the context of the target word and formed a general framework for the construction of
semantic space models [29]. The development of distributional vector representation of words greatly
solves the scalability issue by releasing engineers from tedious handcrafted feature creation work.
Neural network language models (NNLM) [30] produce a distributed vector representation of a word,
known as a word embedding. The neural language model utilizes the neural network model to predict
the word from the words appearing ahead of it [30], thus words with similar context will be mapped
to close vector locations. In 2013, Mikolov et al. [9] used a three-layer neural network model to build
word embeddings, to capture the semantic and syntactic regularities through the words in the context
window of the target word. They proposed two models: the skip-gram and CBOW models. Both learn
the vector representation of the word from the context in which the word resides. The skip-gram
model trains the weights in the hidden layer and uses a softmax function to produce a probability
of appearance in the context for every vocabulary word. Since it is very expensive to compute every
word’s probability in the corpus for every sample, Mikolov et al. adopt two mechanisms to further
reduce the computation: hierarchical softmax and negative sampling. While hierarchical softmax uses
a fixed Huffman tree structure with leaves as words in the vocabulary, negative sampling only samples
n negative examples instead of the full vocabulary. Tian et al. extended the skip-gram model from
Mikolov’s work and generated multiple vector representations for each word in a probabilistic manner
[31]. Researchers also incorporated syntactic information into neural language models. Levy and
Goldberg [16] extended Mikolov et al. [9]’s skip-gram model by replacing the linear context with an
NLP dependency-based syntactic context. Their model reported further improvement than the original
model in the word similarity task (WordSim353 [32]).

In this work, we focus on an extension of the CBOW model. There are several existing works
that also develop this line of research. Trask et al. [33] develop a very simple and effective method,
incorporating additional information, the part-of-speech tag attached to each word during training.
However, they did not invent a brand new model; instead, they used the CBOW model from Word2Vec.
For example, for polysemy disambiguation to train the embedding of (banks, verb) in the sentence
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“He banks at the bank”, the input of CBOW is (“He”, pronoun), (“at”, adposition), (“the”, determiner),
(“bank”, noun). For sentiment disambiguation, words are labeled with both the part-of-speech tag and
sentiment for adjectives. Similarly, Liu et al. used part-of-speech information to weight the context
window in the CBOW model [11]. They argue that in their learning algorithm the part-of-speech tags
capture syntactic roles of words and encode inherently the syntactic relationships inside the word
vector representation. However, the authors overlook the ultimate goal of the learned embeddings.
The usage of the pre-defined syntactic rules to weight the context does not guarantee later success in
the classification task in which the trained embeddings will be used.

Statistical measures have long been used in natural language processing. In terminology
extraction, a fundamental processing step to extract technical terms from domain-specific textual
corpora before complex NLP tasks, statistical measures such as mutual information, log likelihood
and t-test are used to rank and identify the candidate terms from the texts. Zhang et al. developed
a weighted voting algorithm that incorporated five existing term recognition algorithms to recognize
both single- and multi-word terms in the text [34]. Most of the five term recognition algorithms adopt
both statistical measures and frequency-based measures to rank the terms.

In this work, we propose using χ2 to weight the context words according to the words’
contribution to the classification task. There is existing work which also uses statistical measures in the
vector space model. Gamallo introduced a count-based vector space model. Different from most of the
co-occurrence context-based word vector space models, the context of the target word in Gamallo’s
model is the syntactic context (dependencies) of the target word [18]. To store the word–context sparse
matrix, Gamallo used a global hash table. One inevitable weakness of count-based model is that
the word–context matrix could be huge. Each word can have multiple contexts in the word–context
matrix. To reduce dimensionality and only keep the most relevant and informative contexts of the
target words, Gamallo used the log likelihood score to select the top R contexts for each word in the
corpus. In our proposed algorithms, we also use an informativeness measure, the chi-square statistical
test. Different from Gamallo’s model, we use the chi-square statistical test to calculate the dependency
between each word and the target class. The chi-square value for each word in the context is used as
weights based on their relative importance in the later classification task. Another difference is that
our work focuses on the neural language model while Gamallo’s work extends from the count-based
vector space model.

Word embedding algorithms have been applied to the healthcare field. Several studies have
shown the performance of word embedding in extracting useful clinical concepts and information
from either clinical notes or clinical free text [35,36].

3. Algorithms

In this section, we introduce two algorithms to learn word embeddings for healthcare tweet
classification. We first introduce the background knowledge of the Chi-square statistical test and the
CBOW model.

3.1. Chi-Square Statistical Test

The Chi-square (χ2) statistical test has been widely accepted as a statistical hypothesis test to
evaluate the dependency among two variables [37]. In natural language processing, the chi-square test
is often applied to test the independence between the occurrence of the term and the occurrence of the
class. It is often used as a feature selection method in NLP. Formula (1) is used to rank the terms that
appear in the corpus [38].

χ2(D, t, c) = ∑
et∈{0,1}

∑
ec∈{0,1}

(Netec − Eetec)
2

Eetec

(1)
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where et and ec are binary variables defined in a contingency table; et = 1 means the document contains
term t and et = 0 means the document does not contain term t; ec = 1 means the the document is
in class c and ec = 0 means the document is not in class c; N is the observed frequency in D and E
is the expected frequency. For example, N11 is the observed frequency of documents appearing in
class c containing term t; E11 is the expected frequency of t and c occurring together in a document
assuming the term and class are independent. A higher value of χ2 indicates that term t and class c are
dependent, thus making term t a useful feature since the occurrence of t means the document is more
likely to be seen in class c.

Utilizing the property of χ2 that higher χ2 values of term t indicate higher likelihood of occurrence
in the class c, we use χ2 to weight the context words in the CBOW model. The key aspect of our
discovery is that words with higher χ2 statistics tend to be keywords for class identification. Thus,
we are using the chi-square statistical test to select the lexicon that particularly caters to the specific
class identification task of short sentences such as tweets. Our rationale is that in our modified CBOW
model, words are weighted according to their χ2 statistics; words that are likely to be valuable for the
classification task are more heavily weighted thus reducing the disturbance of the noise words which
are not helpful comparatively to the later task.

3.2. Continuous Bag-of-Words Model (CBOW)

The CBOW model is a neural language model which consists of three layers: an input layer,
a projection layer (also known as a hidden layer) and an output layer. In the input layer, the CBOW
model uses context words both b before and after the target word to predict it; the vocabulary is
represented as an input vocabulary matrix V ∈ Rn×|V|; each column in V is represented as the vector
representation of the words in the vocabulary; V is randomly initialized from the uniform distribution
in the range [−1, 1]. The matrix U ∈ R|V|×n is also initialized, which contains parameters learned
by the neural language model during training. In the projection layer, the vector representation of
the context, C, is calculated as the arithmetic mean of the vector representation of all words wi in the
context window with b words before and after the target word, as shown in Formula (2).

C = 1
2b ∑

i∈[−b,−1]∪[1,b]
wi (2)

C is used to calculate the probability of the target word as shown in Formula (3), which is
represented as a softmax function over the dot product of the vector representation of the context C
and target word wt.

p(wt|C) =
ewt ·C

∑
wi∈Vocab

ewi ·C
(3)

Finally, we can depict the loss function of the CBOW model in Formula (4).

L = ∑
wt∈C

log p(wt|C) (4)

where over all training tuples in the corpus C, we are maximizing the probability of finding the target
word wt given C, its context. However, to go over all the words in the vocabulary in Formula (3) is
expensive. Instead of computing all the words in the vocabulary, distinguishing only the target word
from several noise words largely reduces the computation load. This is called negative sampling.
In this work, we adopt negative sampling when training the CBOW model. The window size 2b + 1
and the word embedding dimension n are all hyperparameters.

By averaging the context words, the CBOW model overlooks the fact that the contribution of
the words for the prediction should not be equal. We develop two algorithms to re-weight the
context words.
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3.3. Algorithm I

Inspired by the good performance of the max-pooling layer in the convolutional neural network
model (CNN) in which only the maximum value within a window of the feature map is returned,
instead of incorporating all the context words, we only select the word with the maximum χ2 value
to represent the context. Thus, Formula (2) of calculating the vector representation of the context is
substituted by Formula (5)

C = arg max
χ2(wi), i∈[−b,−1]∪[1,b]

wi (5)

where χ2(·) represents the chi-square statistical value of wi for the target class. Although the trained
word embedding complies to the property of linear compositionality, in a small context window size,
and a corpus containing as much noise such as Twitter, we choose the word from the context window
that is likely to contribute the most to the later classification task. The expectation is that this will
be more beneficial than the original strategy of averaging all of the context words. We emphasize
a small context window size in this algorithm because when the context window is large, there is
a greater chance that more than one word with a substantial contribution to the prediction will be
included in the context window, thus selecting only the word with the maximum χ2 statistic might not
be beneficial. We test our algorithm in a context window size of 3(b = 1), and in Section 4.4 show that
our approach can improve performance on data from Twitter.

3.4. Algorithm II

In Algorithm I described above in Section 3.3, we remove all the other words that have smaller
χ2 values and only keep the word with the maximum value to represent the context. In contrast,
Algorithm II weights every word in the context window proportionally according to its χ2 test statistic.
Thus, Formula (2) calculating the vector representation of the context is substituted by Formula (6).

C = 1
∑j∈[−b,−1]∪[1,b] χ2(wj)

∑
i∈[−b,−1]∪[1,b]

χ2(xi)wi (6)

In the original CBOW model, the words in the context window are treated equally assuming equal
contribution to the prediction task. However, the assumption is generally not held based on language
characteristics. Previous work also tries to improve this by the pre-defined syntactic rules such as
using part-of-speech to weight the words. For example, nouns and verbs are usually more important
than prepositions, pronouns and conjunctions; thus they are often weighted heavier comparatively.
However, they overlook the purpose and the usage of the learned embedding. The weighting
mechanism based on pre-defined rules is not necessarily in line with the classification task. We propose
using the χ2 test statistics as the weighting strategy, which directly links the weights to the term’s
correlation to the classification task.

4. Experimental Method

In this section, we describe experiments on the two proposed algorithms on two carefully
selected datasets.

4.1. Datasets

Our goal is to extract healthcare information from people’s profile and Twitter posts. We are more
interested in tweets that talk about real disease symptoms as shown in Examples 4–6 which we named
healthcare-related tweets, rather than those tweets that popularize the healthcare information as seen in
Examples 1–3 in the Introduction which we named healthcare-noise tweets. Our current classification
task is a challenging one since both heathcare-related tweets and healthcare-noise tweets might contain
keywords such as “flu” and “health” which makes basic filtering approaches unworkable.
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We use two datasets in the experiments. The first dataset, called the healthcare dataset, is from
Paul and Dredze [20]. It was collected and labeled using Amazon’s mechanical turk (AMT) and has
two labels: health-related and health-unrelated. All tweets were collected using healthcare keywords
filtering as a first step; thus, even health-unrelated tweets contain healthcare keywords. Tweets that
were not about a particular person’s health (e.g., advertisements of flu shots and news information
about the flu) were labeled as unrelated. The statistics of the healthcare dataset are shown in Table 1.
The second, called the influenza dataset, is from Lamb et al.’s work [3]. It was also collected from
Twitter. It contains tweets posted during the 2009 and 2012 outbreaks of swine and bird influenza.
The data is also labeled as influenza-related and influenza-unrelated by AMT workers. The statistics of
the influenza dataset are shown in Table 2.

Table 1. Tweet counts for the healthcare dataset (from [20]).

Data Healthcare-Related Healthcare-Unrelated Total

Train 868 1301 2169
Test 217 325 532

Table 2. Tweet counts for the influenza dataset (from [3]).

Data Influenza-Related Influenza-Unrelated Total

Train 2148 1609 3757
Test 537 402 939

4.2. Baselines

We compare the proposed two algorithms with the following baseline methods for healthcare
tweet classification.

1. tf-idf + SVM: we calculate the tf-idf scores [39] for the words of each tweet as the features and
train a support vector machine (SVM) classifier [40] using the Liblinear library [41].

2. skip-gram + CNN: we train Mikolov et al.’s skip-gram model on the training set for both
datasets. We learn the word embedding for each word in the corpus to use as features and
train a convolutional neural network model (CNN) for classification [42].

3. CBOW + CNN: we train the original CBOW model and learn the word embeddings for the word in
the corpus as a feature and train a convolutional neural network model (CNN) for classification [42].

4.3. Experimental Setup

Preprocessing is necessary when working with the text of tweets. We strip the punctuation,
the html tags and hypertext links, and downcase all letters. We use Tensorflow [43] to implement
the two proposed algorithms. In both cases, we keep the default model setting as in the Tensorflow
skip-gram model codec in Github (https://github.com/tensorflow/models/blob/master/tutorials/
embedding/word2vec.py). Word embeddings are learned using a window size of b = 1, embedding
dimension n = 128 and a negative sampling rate of 64. Words with frequency smaller than 3 are
eliminated from the vocabulary. We use the stochastic gradient decent optimizer (SGD) to train the
two algorithms with a learning rate of 1.0. To perform the χ2 statistical test, we use sklearn [44] on the
training sets of the two corpora. We train CNN models for the two datasets for the classification task.
We use filter sizes of 3, 4 and 5 and 128 filters for each filter size in the training process.

4.4. Evaluation and Results

We completed the χ2 statistical test on the two Twitter datasets. Boxplots for the χ2 values in both
datasets are shown in Figure 1. As we can see, most of the words in the two corpora have a very low
χ2 value. We list the words in Table 3 that ranked highest by χ2 value. Words with higher χ2 value are

https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec.py
https://github.com/tensorflow/models/blob/master/tutorials/embedding/word2vec.py
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recognizable as plausible keywords for the identification of the health-related tweets. Using the χ2

statistics in Algorithms I and II, the result of the experiment is shown in Table 4.

Figure 1. Boxplot of the values of the Chi-square (χ2) statistical test for the healthcare dataset and the
influenza dataset.

Table 3. Words with highest χ2 value for both datasets.

Healthcare Dataset Influenza Dataset

1 headache sick
2 sick vaccine
3 allergies throat
4 feeling fear
5 flu news
6 surgery swineflu
7 cramps bird
8 throat shot

Table 4. Comparison of testset classification accuracy across the two datasets using word embeddings
from various models. SVM: support vector machine; CNN: convolutional neural network; CBOW:
continuous bag of words.

Method Healthcare Dataset Influenza Dataset

tf-idf + SVM baseline 59.96 57.18
Skip-gram + CNN baseline 66.61 66.99

CBOW + CNN baseline 69.00 66.67
Algorithm I + CNN 69.19 72.31
Algorithm II + CNN 69.93 72.84

Since we assume equal importance for the identification of both of the two classes, related versus
unrelated, we choose accuracy, the commonly used evaluation criteria, as the metric to measure the
classification performance as shown in Formula (7).

accuracy(ylab, ypred) =
1

ntest

ntest

∑
i=1

1(ypred = ylab) (7)

Since tweets in both classes (related versus unrelated) contain the keywords of the topic, it is not
surprising that the keywords-based approach in the tf-idf + SVM baseline behaves poorly for both
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datasets. For the two Word2Vec baselines, the CBOW model performs better than the skip-gram model
for the smaller (healthcare) dataset; they have very similar results in the influenza dataset (which is
a larger dataset). Overall, Algorithms I and II improve over the CBOW baseline model by 1.35%
and 9.23% respectively. We can see that Algorithm I which chooses the word with the maximum χ2

value also performs well in terms of accuracy. As we noted earlier, we have a small context window
size of 3(b = 1). When the context window is larger, more context words are included. It might not
be optimal to choose only the word with the maximum statistical measurement score to form the
context representation. Our experimental results indicate that the χ2 weighting scheme of Algorithm II
generally outperforms the others.

5. Conclusions

To improve tweet classification accuracy, we use the chi-square (χ2) statistical test statistic to
directly link the weight of each term to its correlation to the tweet classification tasks. We proposed
two algorithms: in Algorithm I, assuming a small context window setting, we select the word with the
maximum χ2 value; in Algorithm II, we use the χ2 statistics to proportionally weight the words in the
context window. Our evaluation result shows improvement over the original CBOW Word2Vec model
by as much as 9.2%.

Some natural directions for future work include hyperparameter optimization (e.g., selecting the
best window size), and testing of other term weighting functions.
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