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Abstract: In this paper, a novel method based on the Poggio–Miller–Chang-Harrington–Wu–Tsai
(PMCHWT) integral equation is presented to study the electromagnetic fields excited by vertical or
horizontal electric dipoles in the presence of a layered region which consists of K-layered dissipative
media and the air above. To transform the continuous integral equation into a block tridiagonal matrix
with the feature of convenient solution, the Rao–Wilton–Glisson (RWG) functions are introduced
as expansion and testing functions. The electromagnetic fields excited by an electric dipole are
calculated and compared with the available results, where the electric dipole antenna is buried in the
non-planar air–sea–seabed, air–rock–earth–mine, and multilayered sphere structures. The analysis
and computations demonstrate that the method exhibits high accuracy and solving performance in
the near field propagation region.

Keywords: electromagnetic propagation; layered dissipative media; surface integral
equation; PMCHWT

1. Introduction

The electromagnetic fields excited by a dipole source in a layered dissipative medium structure
have been investigated widely because of their applications in Through-the-Earth communication,
underwater communication, ground penetrating radar technology, and antenna design [1–6]. The
developments in electromagnetic field propagation in layered medium structures have been analyzed
by many investigators, including Wait [7–9] and King [7,10,11] who proposed the asymptotic methods,
and the surface-impedance technique has been used for a two-layered region. Contour integrations
and ranch cuts have been also used for the electromagnetic field in a layered region [8,9]. King et
al. have obtained the complete formulas for electromagnetic fields excited by horizontal and vertical
electric dipoles in two- and three-layered regions by using the proposed method in the recent studies.
However, it is difficult to solve the arbitrary layered region problem. To overcome this drawback,
Michalski et al. [12] presented a compact formulation of the electric-type and magnetic-type dyadic
Green’s functions for a plane-stratified, laterally unbounded multilayered structure, which is based on
the tranmission-line network. Nikita et al. [13] has presented a near-fielding radiating dipole antenna
next to a three-layered lossy sphere close to a human head model. Moreover, the numerical results
have been verified via a unified method of moments (MoM) model based on the electric field integral
equation (EFIE) given by Khamas [14]. These algorithms are suitable for analyzing the non-planar
electromagnetic problem only when the structure is a concentric sphere, which limits their application
in an arbitrary shaped non-planar layered region. Quintana et al. [15] studied the electromagnetic
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field propagation characteristic of shallow water in detail, and the influence of seabed layer is also
considered.

In most studies [16–19], surface integral equation (SIE)-based methods have been adopted in
the numerical analysis of the scattering of arbitrary shaped objects and the scattering of objects
buried in layered structure, but few of them focus on the electromagnetic fields excited by dipoles in
arbitrary layered dissipative media. In this paper, an SIE-based method to study the electromagnetic
fields excited by electric dipole submerged in arbitrary layered homogeneous dissipative media is
proposed. The total electromagnetic fields in each layer with three source components including
the excitation source itself, equivalent electric/magnetic surface currents at the top of the layer,
and equivalent electric/magnetic surface currents at the bottom of the layer are derived in detail.
Then, the formulation proposed for the interface of each layer is discretized by using the Galerkin’s
method. After that, a matrix equation for a layered dissipative structure with a block tridiagonal
matrix feature of a convenient solution is derived [20]. Three application scenarios are constructed and
computed to analyze the electromagnetic characteristics with the vertical and horizontal dipole buried
in wide, practically important media including sea, wet and other dissipative materials. Finally, the
numerical results are presented to discuss the difference of the proposed method in comparison with
the Computer Simulation Technology (CST) Studio Suite.

2. SIEs for Multilayered Dissipative Medium Structures

A non-planar K-layered dissipative medium structure is illustrated in Figure 1. Let the frequency
of excitation sources in homogeneous medium be ω. The electromagnetic constants at the ith-layer
are denoted by conductivity σi, permittivity εi, and permeability µi, with complex wave number ki
and wave resistance ηi. Let Si−1 and Si denote the top and bottom surfaces of ith-layer medium of the
region Di, respectively, where i = 0, 1, 2, . . . , K. In addition, there is no top surface on the half-space
region D0 and no bottom surface beneath the half-space region DK.

Figure 1. K-layered dissipative medium structure.
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Let
(
Esource

i , Hsource
i

)
denote the incident fields in region Di, which can be excited by electric

dipole antennas or magnetic dipole antennas. According to the equivalent principle, the total fields
(Ei, Hi) in region Di can be seen as a synergistic result of the incident fields

(
Esource

i , Hsource
i

)
, fields(

EJM
i,i−1, HJM

i,i−1

)
excited by the surface currents on Si−1, and fields

(
EJM

i,i , HJM
i,i

)
excited by the surface

currents on Si.
Hence, the total electric and magnetic fields at arbitrary point on surface Si−1 or Si can be

expressed as
Ei = Esource

i + EJM
i,i−1 + EJM

i,i , (1)

Hi = Hsource
i + HJM

i,i−1 + HJM
i,i . (2)

The electric and magnetic surface currents on surface Si in region Di are defined as Ji = ni ×Hi
and Mi = −ni × Ei, where ni is the normal vector of Si pointing to the inside of the region Di.
Because electric and magnetic currents on each interface shall be continuous across the boundary, the
electric and magnetic surface currents on Si−1 are (Ji−1 , Mi−1) in region Di−1 and (−Ji−1 ,−Mi−1)

in region Di. Based on the electric and magnetic field integral equations [17,21,22], the induced
electric and magnetic fields

(
EJM

i,i−1, HJM
i,i−1

)
and

(
EJM

i,i , HJM
i,i

)
in region Di excited by surface current

(−Ji−1 ,−Mi−1) and (Ji , Mi) can be written as

EJM
i,i−1 = E−Ji−1

i + E−Mi−1
i = ηiLi(−Ji−1)− Ki(−Mi−1),

EJM
i,i = EJi

i + EMi
i = ηiLi(Ji)− Ki(Mi),

HJM
i,i−1 = H−Ji−1

i + H−Mi−1
i = Ki(−Ji−1) +

1
ηi

Li(−Mi−1),

HJM
i,i = HJi

i + HMi
i = Ki(Ji) +

1
ηi

Li(Mi).

(3)

The linear operator Li and Ki can be defined as

Li(F) = −jki

∫
Si

[
F +

1
k2

i
∇(∇′s · F)

]
Gids′, (4)

Ki(F) =
∫
Si

∇Gi×Fds′, (5)

where ∇′s is the surface divergence of a vector field. The Green’s function in homogeneous isotropic
infinite space is given by

Gi = Gi(r, r′) =
e−jki |r−r′ |

4π|r− r′| , (6)

where ki is the wave number of region Di, r is the field point and r′ is the source point.
According to the definition of the surface currents [19], for a field point r ∈ Si−1 in region Di,

the tangential component of electric and magnetic fields can be written as Equations (7)–(10).
The left-hand side are induction fields and right-hand side can be expressed in terms of incident fields.(

E−Ji−1
i + E−Mi−1

i + Mi−1 × ni−1+EJi
i + EMi

i

)
|tan = −Esource

i |tan , (r ∈ Si−1) (7)

(
H−Ji−1

i −Ji−1 × ni−1+H−Mi−1
i +HJi

i +HMi
i

)
|tan = −Hsource

i |tan , (r ∈ Si−1) . (8)

Similarly, for r ∈ Si in Di,(
E−Ji−1

i + E−Mi−1
i + EJi

i + EMi
i +Mi × ni

)
|tan = −Esource

i |tan , (r ∈ Si) (9)
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(
H−Ji−1

i +H−Mi−1
i +HJi

i −Ji × ni+HMi
i

)
|tan = −Hsource

i |tan , (r ∈ Si) . (10)

For r = r′, the linear operator K in (5) needs to be split into two parts [22–25]:

Ki(F) = p.v.
∫
S
∇Gi×Fds′ + Ω0

4π F× n = p.v.Ki(F) +
Ω0
4π F× n, (11)

where p.v. denotes the Cauchy’s principal value integration with Ω0 = 2π for smooth surface, and
n is the outward directed normal vector of the integral surface. By substituting Equation (11) into
Equations (7)–(10), we get the electromagnetic fields on the surface in region Di,

(
E−Ji−1

i + p.v.E−Mi−1
i + 1

2 Mi−1 × ni−1+EJi
i + EMi

i

)
|tan = −Esource

i |tan , (r ∈ Si−1) (12)

(
E−Ji−1

i + E−Mi−1
i + EJi

i + p.v.EMi
i + 1

2 Mi × ni

)
|tan = −Esource

i |tan , (r ∈ Si) (13)

(
p.v.H−Ji−1

i − 1
2 Ji−1 × ni−1+H−Mi−1

i +HJi
i +HMi

i

)
|tan = −Hsource

i |tan , (r ∈ Si−1) (14)

(
H−Ji−1

i +H−Mi−1
i +p.v.HJi

i −
1
2 Ji × ni+HMi

i

)
|tan = −Hsource

i |tan , (r ∈ Si) . (15)

Similarly, we can also calculate the electromagnetic fields on surface Si in region Di+1,(
E−Ji

i+1 + p.v.E−Mi
i+1 + 1

2 Mi × ni+EJi+1
i+1 + EMi+1

i+1

)
|tan = −Esource

i+1 |tan , (r ∈ Si) (16)

(
p.v.H−Ji

i+1−
1
2 Ji × ni+H−Mi

i+1 +HJi+1
i+1+HMi+1

i+1

)
|tan = −Hsource

i+1 |tan , (r ∈ Si) . (17)

Combining Equations (13) and (16), electric field on surface Si can be written as,(
E−Ji−1

i + E−Mi−1
i + (EJi

i − E−Ji
i+1) + (p.v.EMi

i − p.v.E−Mi
i+1 )− EJi+1

i+1 − EMi+1
i+1

)
|tan

=
(
−Esource

i +Esource
i+1

)
|tan , (r ∈ Si) .

(18)

The magnetic field on surface Si is obtained by combining Equations (15) and (17),(
H−Ji−1

i +H−Mi−1
i +(p.v.HJi

i − p.v.H−Ji
i+1) + (HMi

i −H−Mi
i+1 )−HJi+1

i+1 −HMi+1
i+1

)
|tan

=
(
−Hsource

i +Hsource
i+1

)
|tan , (r ∈ Si) .

(19)

3. Discretization

For numerical solutions of equivalent electric and magnetic currents on the media interfaces,
the Galerkin’s method and the Rao–Wilton–Glisson (RWG) basis functions [16,26] are utilized to
discretize the continuous formulations Equations (18) and (19) [27]. The media interface of each layer is
discretized into planar triangular elements, with Ti,n = T+

i,n ∪ T−i,n which is defined as the nth triangular
element on surface Si, i = 0, 1, 2, ..., K−1 and n = 0, 1, 2, ..., Ni.

The RWG basis function fi,n assigned to a pair of triangular elements on surface Si is defined as:

fi,n(r
′) =


Li,n

2A+
i,n
(r′ − p+

i,n), r′ ∈ T+
i,n

− Li,n
2A−i,n

(r′ − p−i,n), r′ ∈ T−i,n,

0 , otherwise

(20)



Appl. Sci. 2017, 7, 74 5 of 15

where p+
i,n and p−i,n are the vertex of triangular elements T+

i,n and T−i,n, which share a common edge of
length Li,n [18]. A+

i,n and A−i,n are the areas of triangular elements T+
i,n and T−i,n, respectively. Spatial

distribution of RWG functions are shown in Figure 2.

Figure 2. Spatial distribution of Rao–Wilton–Glisson (RWG) functions.

The unknown surface current distribution Ji and Mi on surface Si are replaced by an expansion in
the basis in numerical computations:

Ji =
Ni

∑
n=1

αi,nfi,n, Mi =
Ni

∑
n=1

βi,nfi,n (21)

where αi,n and βi,n (i = 0, 1, 2, ..., K−1; n = 0, 1, 2, ..., Ni) are the nth complex expansion coefficients of
Ji and Mi. By substituting (21) into (18) and (19), and testing them with RWG basis, the matrix equation
for media interface Si can be written as

[
Zi

i−1 Zi
i Zi

i+1

]  Ii−1
Ii

Ii+1

 = VEH
i (22)

where,

Zi
i−1 =


[

Z Ji−1
E,mn

]
Ni×Ni−1

[
ZMi−1

E,mn

]
Ni×Ni−1[

Z Ji−1
H,mn

]
Ni×Ni−1

[
ZMi−1

H,mn

]
Ni×Ni−1

 ,

Zi
i =


[

Z Ji
E,mn

]
Ni×Ni

[
ZMi

E,mn

]
Ni×Ni[

Z Ji
H,mn

]
Ni×Ni

[
ZMi

H,mn

]
Ni×Ni

 ,

Zi
i+1 =


[

Z Ji+1
E,mn

]
Ni×Ni+1

[
ZMi+1

E,mn

]
Ni×Ni+1[

Z Ji+1
H,mn

]
Ni×Ni+1

[
ZMi+1

H,mn

]
Ni×Ni+1

 ,

 Ii−1
Ii

Ii+1

 =



[αi−1,n]Ni−1×1

[βi−1,n]Ni−1×1

[αi,n]Ni×1
[βi,n]Ni×1
[αi+1,n]Ni+1×1

[βi+1,n]Ni+1×1


,
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VEH
i =


[
−VEi

i,m + VEi
i+1,m

]
Ni×1[

−VHi
i,m + VHi

i+1,m

]
Ni×1

 .

The submatrix in the matrix equation can be expressed as:

Z Ji−1
E,mn =

∫
Ti,m

fi,m(r) · ηiLi

(
−fi−1,n(r

′)
)

ds, (23)

ZMi−1
E,mn = −

∫
Ti,m

fi,m(r) · Ki

(
−fi−1,n(r

′)
)

ds, (24)

Z Ji
E,mn =

∫
Ti,m

fi,m(r) · ηiLi

(
fi,n(r

′)
)

ds−
∫

Ti,m

fi,m(r) · ηi+1Li+1

(
−fi,n(r

′)
)

ds, (25)

ZMi
E,mn = −

∫
Ti,m

fi,m(r) · p.v.Ki

(
fi,n(r

′)
)

ds +
∫

Ti,m

fi,m(r) · p.v.Ki+1

(
−fi,n(r

′)
)

ds, (26)

Z Ji+1
E,mn = −

∫
Ti,m

fi,m(r) · ηi+1Li+1

(
fi+1,n(r

′)
)

ds, (27)

ZMi+1
E,mn =

∫
Ti,m

fi,m(r) · Ki+1

(
fi+1,n(r

′)
)

ds, (28)

Z Ji−1
H,mn =

∫
Ti,m

fi,m(r) · Ki

(
−fi−1,n(r

′)
)

ds, (29)

ZMi−1
H,mn =

∫
Ti,m

fi,m(r) ·
1
ηi

Li

(
−fi−1,n(r

′)
)

ds, (30)

Z Ji
H,mn =

∫
Ti,m

fi,m(r) · p.v.Ki

(
fi,n(r

′)
)

ds−
∫

Ti,m

fi,m(r) · p.v.Ki+1

(
−fi,n(r

′)
)

ds, (31)

ZMi
H,mn =

∫
Ti,m

fi,m(r) · 1
ηi

Li

(
fi,n(r

′)
)

ds−
∫

Ti,m

fi,m(r) · 1
ηi+1

Li+1

(
−fi,n(r

′)
)

ds, (32)

Z Ji+1
H,mn = −

∫
Ti,m

fi,m(r) · Ki+1

(
fi+1,n(r

′)
)

ds, (33)

ZMi+1
H,mn = −

∫
Ti,m

fi,m(r) ·
1

ηi+1
Li+1

(
fi+1,n(r

′)
)

ds. (34)

The basis fj,n(r
′), (j = 0, 1, 2, ..., K−1) in medium Di is operated by the linear operator L and K:

Li

(
fj,n(r

′)
)
= −jki

∫
Tj,n

[
(fj,n(r

′)) + 1
k2

i
∇(∇′s · (fj,n(r

′)))

]
Gi(r, r′)ds′, (35)

Ki

(
fj,n(r

′)
)
=
∫

Tj,n

∇Gi(r, r′)×fj,n(r
′)ds′. (36)

For r ∈ Si, the electric and magnetic excitation source matrix in Di can be expressed as:
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VEi
i,m =

∫
Ti,m

fi,m(r) · Esource
i ds, VEi

i+1,m =
∫

Ti,m

fi,m(r) · Esource
i+1 ds, (37)

VHi
i,m =

∫
Ti,m

fi,m(r) ·Hsource
i ds, VHi

i+1,m =
∫

Ti,m

fi,m(r) ·Hsource
i+1 ds. (38)

According to Equation (22), the matrix equation for all surfaces with block tridiagonal matrix
equation is derived as follows:

Z0
0 Z0

1 0
Z1

0 Z1
1 Z1

2 0
0 Z2

1 Z2
2 Z2

3 0
. . .

0 ZK−3
K−4 ZK−3

K−3 ZK−3
K−2 0

0 ZK−2
K−3 ZK−2

K−2 ZK−2
K−1

0 ZK−1
K−2 ZK−1

K−1





I0

I1

I2

I3
...

IK−2

IK−1


=



VEH
0

VEH
1

VEH
2
...

VEH
K−3

VEH
K−2

VEH
K−1


. (39)

Equation (39) is the relation between the surface current, impedance matrix and incidence fields
in K-layered dissipative medium structures. The impedance matrix is a square matrix with the number

of elements equal to
K−1
∑

i=0
2Ni ×

K−1
∑

i=0
2Ni, with

K−1
∑

i=0
(2Ni)(2Ni−1 + 2Ni + 2Ni+1) non-zero data in the

impedance matrix. Both the number of unknown surface current coefficients and excitation source

matrix are
K−1
∑

i=0
2Ni × 1. Therefore, the surface current coefficients can be obtained by solving the

matrix equation.

4. Numerical Examples

In this section, three experiments are constructed to analyze the performance of the proposed
method with the vertical or horizontal dipole buried in media including sea, wet and other dissipative
materials. The algorithm is implemented by MATLAB 2011b on a computer with CPU i3-4030U
working at 1.9 GHz with 4 GB RAM and a Windows 10 operating system. The Low Frequency
(LF) Domain Solver of CST Studio Suite in the same computer is used to simulate the models for
comparison.

We first consider a non-planar air–sea–seabed structure with a hemispherical depression at the
seabed shown in Figure 3 for the application that the naval vessel receives signals from the transmitter
burried in the seabed. The air permittivity and permeability are ε0 µ0, respectively, which are the same
as vacuum. Generally, the conductivity of the sea is σ1 = 4 S/m, and the permittivity and permeability
of the sea are ε1 = 74ε0 and µ1 = µ0, respectively. Conductivity of the seabed is σ2 = 0.01 S/m, with
permittivity ε2 = 13ε0 and permeability µ2 = µ0. Media interface S0 and S1 are both circular with
radius r = 50 m, located at plane z = 0 m and z = −20 m, respectively. The hemispherical depression
is set at point (0, 0,−20) with radius r = 10 m. A vertical electric dipole excitation source is located at
point (0, 0,−25), with dipole moment 1 A ·m and the frequency is 100 Hz. In order to reduce the mesh
amount, we refine the mesh in the source areas and other part is sparse. The number of triangles on
the air–sea interface S0 and the sea–seabed interface S1 are 856 and 1528. As a result, 7088 unknowns
are generated. In numerical calculations, the processor takes 49.4 s and 0.58 GB to solve the matrix
equation. However, the calculation of the same model with 1, 046, 366 unknowns using CST takes 156 s
and 2.3 GB of memory.
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Figure 3. Air–sea–seabed layered media structure with a non-planar surface.

Figure 4 shows the x-direction electric field and the total electric field at point (x, 0,−60),
0 ≤ x ≤ 25. The results calculated by CST are also plotted in Figure 4 for comparison. These results
show clearly that the numerical results calculated by the proposed method are close to the results
computed by CST, with most errors within a range of ±2%. However, from the results listed in Table 1,
it can be observed that there are relatively large errors in the first and last column, which are larger
than 2%. As the electric field in Ex close to z-axis is a minimum value, non-uniform discretized mesh
can introduce a relatively large error to the first column in numerical calculations. The sparse mesh
far from source also causes large error in the last column. It can be also observed from the results in
Table 2 that most of the results are within the error range of ±2%. However, there is relatively large
error when field point is in the sparse mesh area. The comparisons indicate that the proposed method
provides good performance in solving time and high accuracy results for the electric dipole in the
two-layered dissipative structure.

0 5 10 15 20 25

10
−8

10
−7

10
−6

Distance x-axis [m]

M
a
g
n
it
u
d
e
[V

/
m
]

SIE: |E |
CST: |E |
SIE: Ex

CST: Ex

Figure 4. The total electric field and the electric field in x-direction at test point (x, 0,−60). SIE: surface
integral equation. CST: Computer Simulation Technology.
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Table 1. Electric field in x-direction component at test point (x, 0,−60).

x-Axis (m) 1 2 13.6 19.6 23.6

CST(dB µV/m) −18.06 −12.43 1.57 2.12 1.98

SIE(dB µV/m) −18.42 −12.43 1.58 2.14 1.73

Error % −4.0 0 0.2 0.3 −2.9

Table 2. The total electric field at test point (x, 0,−60).

x-Axis (m) 0 2 13 20 25

CST(dB µV/m) 9.28 9.16 7.49 5.25 3.52

SIE(dB µV/m) 9.37 9.34 7.49 5.25 3.35

Error % 1.0 2.1 0 0 −2.0

For the second example, we consider the air–rock–earth–mine layered structure shown in
Figure 5. It can be used in Through-The-Earth communication for mines, where communication
devices communicate with other nodes by using horizontal electric dipoles located in the earth layer.
The frequency of excitation source is 10 kHz. The conductivity of the rock layer is σ1 = 0.001 S/m,
and the permittivity and permeability of the rock are ε1 = 3ε0 and µ1 = µ0, respectively. Conductivity
of the earth layer is σ2 = 0.01 S/m, with permittivity ε2 = 4ε0 and permeability µ2 = µ0. The
conductivity of the mine layer is σ3 = 0.001 S/m, and the permittivity and permeability of the mine
are ε3 = 3ε0 and µ3 = µ0, respectively. Media interfaces S0, S1 and S2 are circular of radius r = 1000 m.
Media interfaces S0, S1 and S2 are located at plane z = 0 m, z = −150 m and z = −350 m. The
x-directional horizontal electric dipole with dipole moment 1A ·m is located at (0, 0,−250).

Figure 5. Air–rock–earth–mine layered media structure.

The x-component electric field propagation at point (0, y,−500), 0 ≤ y ≤ 1000 is plotted in
Figure 6. The z-component electric field propagation and the y-component magnetic field propagation
at point (x, 0,−500), 0 ≤ x ≤ 1000 are plotted in Figures 7 and 8, respectively. We can notice that the
numerical results calculated by the proposed method are close to the results computed by CST. It can
be observed from Tables 3–5 that most of the numerical results are within the error range ±3%. The
mesh is sparse at the boundary area, which results in relatively large deviation when the test point
gets closer to the boundary, and the magnetic field results are more accurate than electric field results.

Each of the interfaces S0, S1 and S2 is meshed into 710 triangle patches, resulting in 6288 unknowns.
It takes 37.9 s and 0.36 GB to solve the matrix equation by the use of the proposed method. However,
the calculation of the same model with 461, 970 unknowns using CST takes 55 s and 1.7 GB memory.
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Figure 6. Electric field in the x-direction component at test point (0, y,−500).
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Figure 7. Electric field in the z-direction component at test point (x, 0,−500).



Appl. Sci. 2017, 7, 74 11 of 15

0 200 400 600 800 1000

10
−10

10
−9

10
−8

10
−7

M
a
g
n
it
u
d
e
[A

/
m
]

 

 

Distance x-axis [m]

SIE:Hy

CST:Hy

Figure 8. Magnetic field in the y-direction component at test point (x, 0,−500).

Table 3. Electric field in the x-direction component at test point (0, y,−500).

y-Axis (m) 45 95 695 745 845

CST(dB V/m) −122.09 −123.97 −173.81 −178.06 −185.37

SIE(dB V/m) −122.13 −124.10 −174.02 −177.79 −185.13

Error % −0.51 −1.4 −2.4 3.2 2.7

Table 4. Electric field in the z-direction component at test point (x, 0,−500).

x-Axis (m) 45 95 695 745 845

CST(dB V/m) −136.03 −132.04 −169.63 −173.03 −180.00

SIE(dB V/m) −136.03 −132.04 −169.89 −173.43 −180.40

Error % 0.0 0.0 −3.0 −4.4 −4.5

Table 5. Magnetic field in the y-direction component at test point (x, 0,−500).

x-Axis (m) 70 170 720 770 870

CST(dB A/m) −141.25 −146.66 −187.65 −191.27 −198.01

SIE(dB A/m) −141.34 −146.67 −187.76 −191.20 −198.05

Error % −1.1 0.1 −1.3 0.8 −0.4

The proposed method is used to simulate the electromagnetic fields excited by horizontal electric
dipole in a dissipative sphere, which is a closed structure coated by layered materials and is shown
in Figure 9. The external sphere is located at origin and has a radius of 6 m with conductivity
σ1 = 0.001 S/m, permittivity ε1 = 3.1ε0 and permeability µ1 = µ0. The radius of the middle sphere
is 3 m with conductivity σ2 = 0.01 S/m, permittivity ε2 = 2ε0 and permeability µ2 = µ0, which is
located at point (−1, 0, 0). The internal sphere is located at origin and has a radius of 1 m, where the
conductivity is σ3 = 0.1 S/m, permittivity is ε3 = 2ε0, and permeability is µ3 = µ0. A horizontal
electric dipole excitation source is located at origin with dipole moment of 1 A ·m along x-axis, and
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the frequency is 1 MHz. After discretization, the numbers of triangles on the external sphere S0,
the middle sphere S1 and the internal sphere S2 are 1204, 604 and 626, respectively. As a result,
7302 unknowns are generated. It takes 54.3 s and 0.66 GB of memory to solve the matrix equation
in numerical calculations. Compared with the proposed method, the calculation of the same model
with 923, 446 unknowns using CST takes 150 s and 1.9 GB of memory, which shows that the proposed
method has a good performance in solving time and storage space.

Figure 9. Horizontal electric dipole in sphere structure. External sphere: Yellow. Middle sphere: Purple.
Internal sphere: Green.

Figure 10 shows the near magnetic field component Hz as a function of the observation angle
in plane z = 0, and Figure 11 illustrates the near electric field component Ey, which are compared
with CST. We can observe that the numerical results obtained from the proposed method are in good
agreement with the results obtained by CST. Figure 12 gives the root-mean-square (RMS) error of
different observation radius. The Root-mean-square (RMS) error is given by [28]:

RMS(x) =

√√√√√√√√
N
∑

i=1
|xSIE(r)− xCST(r)|2

N
∑

i=1
|xCST(r)|2

(40)

where xSIE is the calculated quantity and xCST refers to the corresponding CST result. We can see that
the Hz RMS error is smaller than that of Ey of each observation radius. It indicates that the proposed
method has a better performance in solving magnetic field than solving electric field. In the CST model,
the excitation source is a quasi-ideal horizontal electric dipole. As a result, the comparison model is
different from our simulation model, and the RMS error seems to be higher when the observation
point is close to the source. When the observation radius are larger than 0.6 m, the numerical results
are still in good agreement with the comparison model with RMS error of less than 2% for magnetic
fields and 4% for electric fields.



Appl. Sci. 2017, 7, 74 13 of 15

0 50 100 150
60

70

80

90

100

110

120

Observation Angle θ [deg]

M
a
g
n
it
u
d
e
o
f
H

z
[d
B
µ
A
/
m
]

 

 

SIE,r =0.5

CST,r =0.5

SIE,r =0.6

CST,r =0.6

SIE,r =0.7

CST,r =0.7

SIE,r =0.8

CST,r =0.8

Figure 10. The magnetic fields Hz for observation radius r =0.5, 0.6, 0.7 and 0.8 m.
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Figure 11. The electric fields Ey for observation radius r =0.5, 0.6, 0.7 and 0.8 m.
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Figure 12. Root-mean-square (RMS) errors for Hz and Ey with different observation radius.

5. Conclusions

In this paper, a novel method based on PMCHWT integral equations has been proposed to study
the electromagnetic fields excited by the vertical or horizontal electric dipole in a layered dissipative
medium region. The electromagnetic fields in each layer are excited only by the equivalent surface
current at the top/bottom of the layer and the dipole in it. A block tridiagonal matrix system is derived,
which results in a much more straightforward treatment to handle non-planar layered structure,
multilayered planar structure and closed structure coated with arbitrary layered dissipative materials.
To analyze the performance of the method, non-planar air–sea–seabed, air–rock–earth–mine and
multilayered sphere structures are investigated. The numerical results show that accurate near fields
in the layered dissipative medium region are obtained by the method with deviation of 2%. The
proposed method can give a better performance with respect to the solving time and storage space in
comparison with the CST in handling near-filled problems. Other areas for future work include filling
and solving the block tridiagonal matrix using fast/parallel techniques.

Acknowledgments: This research has been supported by the National Key Research and Development Program
of China-Government Corporation Special Program (2016YFE0111100), Fundamental Research Funds for the
Central Universities (GK2080260160 and GK2080260166).

Author Contributions: Yidong Xu did the mathematical modeling and the simulations. He also wrote the draft
of the paper. Wei Xue and Yingsong Li put forward to the idea and checked the simulation of this paper. Lili Guo
and Wenjing Shang contributed to the revisions and the discussion of the results.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kraichman, M.B. Handbook of Electromagnetic Propagation in Conducting Media; Headquarters Naval Material
Command; U.S. Government Publishing Office: Washington, DC, USA, 1970.

2. King, R.W.; Owens, M.; Wu, T.T. Lateral Electromagnetic Waves: Theory and Applications To Communications,
Geophysical Exploration, and Remote Sensing; Springer Science & Business Media: Berlin, Germany, 2012.

3. Collin, R.E. Some observations about the near zone electric field of a Hertzian dipole above a lossy earth.
IEEE Trans. Antennas Propag. 2004, 52, 3133–3137.

4. Collin, R.E. Hertzian dipole radiating over a lossy earth or sea: Some early and late 20th-century
controversies. Antennas Propag. Mag. IEEE 2004, 46, 64–79.

5. Sharma, A.; Singh, G. Design of single pin shorted three-dielectric-layered substrates rectangular patch
microstrip antenna for communication systems. Prog. Electromagn. Res. 2008, 2, 157–165.



Appl. Sci. 2017, 7, 74 15 of 15

6. Cella, U.M.; Johnstone, R.; Shuley, N. Electromagnetic wave wireless communication in shallow water
coastal environment: Theoretical analysis and experimental results. In Proceedings of the Fourth ACM
International Workshop on UnderWater Networks, Berkeley, CA, USA, 3 November 2009.

7. Wait, J.R. Electromagnetic Waves in Stratified Media: Revised Edition Including Supplemented Material;
Elsevier: Amsterdam, Netherlands, 2013; Volume 3.

8. Wait, J.; Fraser, W. Radiation from a vertical dipole over a stratified ground (Part II). Trans. Ire Prof. Group
Antennas Propag. 2003, 2, 144–146.

9. Wait, J.R. Radiation from a vertical antenna over a curved stratified ground. J. Res. Natl. Bur. Stand. 1956,
56, 237–244.

10. King, R.W.P.; Sandler, S.S. The electromagnetic field of a vertical electric dipole over the Earth or sea.
IEEE Trans. Antennas Propag. 1994, 42, 382–389.

11. King, R.W.P. The electromagnetic field of a horizontal electric dipole in the presence of a three-layered region:
Supplement. J. Appl. Phys. 1993, 74, 4845–4848.

12. Michalski, K.A.; Mosig, J.R. Multilayered media Green’s functions in integral equation formulations.
Antennas Propag. IEEE Trans. 2002, 45, 508–519.

13. Nikita, K.S.; Stamatakos, G.S.; Uzunoglu, N.K.; Karafotias, A. Analysis of the interaction between a layered
spherical human head model and a finite-length dipole. Microw. Theory Tech. IEEE Trans. 2000, 48, 2003–2013.

14. Khamas, S.K. Electromagnetic radiation by antennas of arbitrary shape in a layered spherical media.
IEEE Trans. Antennas Propag. 2009, 57, 3827–3834.

15. Quintanadíaz, G.; Menarodríguez, P.; Pérezálvarez, I.; Jiménez, E.; Dortanaranjo, B.P.; Zazo, S.;
Pérez, M.; Quevedo, E.; Cardona, L.; Hernández, J. Underwater electromagnetic sensor networks—Part I:
Link characterization. Sensors 2017, 17, 189.

16. Rao, S.; Wilton, D.; Glisson, A. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans.
Antennas Propag. 1982, 30, 409–418.

17. Kolundzija, B.M. Electromagnetic modeling of composite metallic and dielectric structures. IEEE Trans.
Microw. Theory Tech. 1999, 47, 1021–1032.

18. Oijala, P.Y.; Taskinen, M.; Sarvas, J. Surface Integral Equation Method for General Composite Metallic and
Dielectric Structures with Junctions. Prog. Electromagn. Res. 2005, 52, 81–108.

19. Cui, Z.; Han, Y.; Li, M. Solution of CFIE-JMCFIE using parallel MOM for scattering by dielectrically coated
conducting bodies. J. Electromagn. Waves Appl. 2011, 25, 211–222.

20. Yang, W.; Li, K.; Li, K. A parallel solving method for block-tridiagonal equations on CPU–GPU heterogeneous
computing systems. J. Supercomput. 2017, 73, 1760–1781.

21. Putnam, J.M.; Medgyesimitschang, L.N.; Gedera, M.B. Generalized method of moments for
three-dimensional penetrable scatterers. Neuroimage 1994, 33, 706–714.

22. Solís, D.M.; Taboada, J.M.; Basteiro, F.O. Surface integral Equation-Method of moments with multiregion
basis functions applied to plasmonics. IEEE Trans. Antennas Propag. 2015, 63, 2141–2152.

23. Rius, J.M.; Ubeda, E.; Parron, J. On the testing of the magnetic field integral equation with RWG basis
functions in method of moments. Antennas Propag. IEEE Trans. 2001, 49, 1550–1553.

24. Gibson, W.C. The Method of Moments in Electromagnetics; CRC Press: Boca Raton, FL, USA, 2014.
25. Tiryaki, B. Solution of Electromagnetics Problems With the Equivalence Principle Algorithm. PhD thesis,

Bilkent university, Ankara, Turkey, 2010.
26. Özgür Ergül.; Gürel, L. Improving the accuracy of the magnetic field integral equation with the linear-linear

basis functions. Radio Sci. 2006, 41, 1–15.
27. Olcen, A.B. Method of Moments Analysis of an Aperture in a Thick Ground Plane. Dissertations &

Theses-Gradworks, Syracuse University, December 2012.
28. Cheng, J.; Adams, R.J.; Young, J.C.; Khayat, M.A. Augmented EFIE With Normally Constrained Magnetic

Field and Static Charge Extraction. IEEE Trans. Antennas Propag. 2015, 63, 4952–4963.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	SIEs for Multilayered Dissipative Medium Structures
	Discretization
	Numerical Examples
	Conclusions

