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Abstract: In control systems of power grids, conveying observations to controllers and obtaining
control outputs depend greatly on communication and computation resources. Particularly for
large-scale systems, the costs of computation and communication (cyber costs) should not be
neglected. This paper proposes a self-triggered frequency control system for a power grid to reduce
communication costs. An equation for obtaining the triggering time is derived, and an approximation
method is proposed to reduce the computation cost of triggering time. In addition, the communication
cost of frequency triggering is measured quantitatively and proportionally. The defined cost function
considers both physical cost (electricity transmission cost) and communication cost (control signal
transmission cost). The upper bound of cost is estimated. According to the estimated upper bound of
cost, parameters of the controller are investigated by using the proposed optimization algorithm to
guarantee the high performance of the system. Finally, the proposed self-triggered power system is
simulated to verify its efficiency and effectiveness.
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1. Introduction

Control systems have been widely used in power grids, and large-scale control systems continually
increase the proportion of usage. Due to limited computation and communication resources,
the traditional electric power network seriously affects the performance of large-scale control systems.
The public shared networks for control signal communication, such as the Internet, have more
powerful computation and communication resources which are used to increase the efficiency of
current large-scale control systems. The scheduling of computation capacity and communication
bandwidth is the key to efficiently utilizing public shared networks. Event-triggered control (ETC)
systems are used to reduce the costs of computation and energy resources when the electricity network
is in a steady state. They avoid the limited bandwidth of the communication network occupied by
redundant sampled and fused signals [1–6]. The self-triggered control (STC) method [7,8] as one of the
control methods can effectively reduce communication costs and power costs of sensor monitoring in
the control system. An STC method is applicable to solve the optimization of scheduling computation
and communication resources, especially in networked control systems (NCSs). The control task is
triggered when STC is at the pre-computed updating time.
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Since more and more systems have become increasingly networked, wireless, and spatially
distributed, event-based systems are proposed to adopt a model of calls for resources only if necessary,
and to utilize communication bandwidth, computation capability, and energy budget efficiently [9–12].
The proposed control-based model allowed each control task to trigger itself to achieve the optimization
of computing resources and control performance. The execution time of next instance was scheduled by
the executing instance. As a function of the utilization factor and control performance, the next instance
execution point was dynamically obtained in time [13–17]. The dynamic selection of an appropriate
threshold was investigated for basic send-on-delta (SoD) sampling strategies. The error reduction
principle was formulated and proved to reduce the signal tracking-error in an available transmission
rate [18,19]. A new event-based control strategy was proposed and applied to differential wheeled
robots. Compared with the classical discrete–time strategy, the proposed event-based control strategy
not only reached the same accuracy, but also obtained a higher efficiency in communication resource
usage [20–23].

In power system frequency regulation research, Shashi Kant Pandey [24] used linear matrix
inequalities (LMI) with parameters tuned by particle swarm optimization (PSO). Praghnesh Bhatt [25]
analyzed the dynamic participation of doubly-fed induction generators and coordinated control
for frequency regulation of an interconnected two-area power system in a restructured competitive
electricity market. Soumya R. Mohanty [26] presented a study on frequency regulation in an isolated
hybrid distributed generation (DG) system with the robust H-infinite loop shaping controller. Although
much frequency regulation research has been done in order to achieve better physical performances,
cyber costs also need to be taken into account. Considering both physical performance and the cyber
cost of power system, event-driven schemes are usually used. Dai [27] proposed a methodology for
real-time prediction that required event-driven load shedding (ELS) against severe contingency events.
Jun [28] presented a novel emergency damping control (EDC) to suppress inter-area oscillations
occurring as anticipated low-probability cases in power system operations. The proposed EDC
combined an event-driven scheme and a response-based control strategy. Yan [29] elaborated a new
approach based on parallel-differential evolution (P-DE) to efficiently and globally optimize ELS
against voltage collapse.

However, continuously monitoring plants using event-driven schemes takes many cyber resources.
In contrast with the EDC approach, STC does not generally require dedicated hardware to continuously
monitor the plant state and check the defined stability conditions [30–33]. Therefore, STC can be
considered in power grid frequency regulation to reduce communication costs and make the utilization
of communication resources more efficient.

In this paper, we propose a novel self-triggered control scheme employed in a frequency-controlled
power grid. A power grid consists of many subsystems that interact with each other through
communication networks and power flow. The proposed self-triggered controller calculates the
triggering period with each state point to ensure the system’s exponential stability, input-to-state
stability, and low communication cost. In the proposed model, the triggering interval is a function
of system state and triggering rate is proportional to communication cost. This paper has three main
contributions as follows:

• A self-triggered control scheme is applied to the frequency regulation of the power grid;
• An online optimization method is used to extend the triggering period for reducing communication

cost; and
• Communication cost and parameters of control system for power grid are estimated and

optimized, so that the cost of control system can be guaranteed under a required level.

This paper is organized as follows. Section 2 introduces the model of the power system and
the basic concept used in this paper. Section 3 presents the proposed self-triggered control scheme
in which the exponential stability theory with varying sampling rate, control performance synthesis
algorithm for the control system under the consideration of communication, physical cost and online



Appl. Sci. 2017, 7, 688 3 of 20

optimization for searching the maximal triggering period are elaborated. A simulation of frequency
regulation with a self-triggered control scheme is illustrated in Section 4. Conclusions are given in
Section 5.

2. System Model of Power Grid

2.1. Dynamic Model of Power Grid

The electric power network consists of n interconnected power subsystems as shown in Figure 1.
It assumes that all power subsystems are same. Each power subsystem consists of a distributed energy
source and load, including gas turbine generators, wind power generations and battery arrays [34,35] in
the system. These power generating machines supply electric power to meet the demands. Gas turbine,
wind power, and battery power output are controllable.

Figure 1. Power grid structure.

Mass loads are considered in the dynamic model of the power grid. Battery electric storage
systems and wind power systems, which are connected to the power net by power electronic interface,
are controllable. In mathematics, the frequency control method is equivalent to the tie-line bias
control (TBC) method as a frequency control in electrical power systems in consideration of tie-line
frequency [36–39]. For each subsystem, the block diagram is shown in Figure 2. The meaning of each
parameter in the block diagram is given as follows.

• Ki and Bi are TBC gain and frequency bias, respectively.
• Tgi and Tdi are the governor and gas turbine constant, respectively.
• Mi and D are the inertia and damping constant, respectively.
• Rgi and Tij are the regulation and synchronizing constant, respectively.
• ∆xgi is a governor input of a gas turbine generator.

There are six power notations as follows:

• ∆Pgi is an output of the gas turbine generator.
• ∆PWi is an output of wind power generation.
• ∆PLi is the load fluctuation except controllable load.
• ∆PBi is an output of the battery electric storage system.
• ∆Pji and ∆Pij is the tie-line power low deviation.
• ∆Pij − ∆Pji is the output power of area i, which is delivered to area j.
• ∆Pi in Equation (1) shows the electric power generation of subsystem i and the supply error

margin of power consumption.
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Figure 2. Subsystem structure.

Frequency deviation ∆ fi can be calculated by the supply error margin shown in the block diagram.
The power ∆Pi for subsystem i is:

∆Pi = ∆Pgi + ∆PWi + ∆PBi − ∆PLi + ∆Pij − ∆Pji (1)

In a mathematical form, for subsystem i, if the set of neighbored subsystem is denoted as Di,
the dynamics of each subsystem can be described by using continuous time–state equation:

ẋi = Aixi + Biui + ∑
j∈Di

Ajixj + Eiwi (2)

Ai =


0 −∑j∈Di

Tji 0 0 0
1/Mi −Di/Mi 1/Mi 0 0

0 0 −1/Tdi 1/Tdi 0
0 −1/(TgiRgi) 0 1/Tgi Ki/Tgi
1 −Bi 0 0 0

 ,

Bi =



0 0
1/Mi 1/Mi

0 0
0 0
0 0
0 0


,

Aji =


0 0 0 0 0
Tij

Mi ∑h∈Di
Tih

0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , j ∈ Di.
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where x = (∆Pouti, ∆ fi, ∆Pgi, ∆xgiUARi )
T , and ∆Pouti, ∆ fi, ∆gi, ∆xgi, and UARi are output power

deviation, frequency deviation, gas generator output power deviation, governor input of gas turbine
generator, and regional demand for subsystem i, respectively. wi is disturbance of the dynamic system,
which is bounded. The power output of subsystem i is ∆Pouti = ∑j∈Di

∆Pij. The tie-line power
flow deviation of i is expressed as ∆ ∑j∈Di

Pji = ∑j∈Di
Tij(∆ f jBi∆ fi), when the adjoining area is j.

The regional demand is defined by UARi =
∫

ARidt, where ARi = ∆ ∑j∈Di
Pji.

For subsystem i, we assume the L-2 norm of wi is bounded, and ||wi||2 ≤ η. The control input ui
for subsystem i is:

ui = −Kixi − ∑
j∈Di

Ljixj, (3)

where K is the local state feedback gain for control law of Equation (3), −Kixi is the local feedback
component and −∑j∈Di

Ljixj is the control compensation for the neighbors.

2.2. The Self-Triggered Controller

Compared with the distributed control scheme, the advantage of the centralized control scheme in
STC is that it reduces the conservativeness of control system, and further decreases the communication
cost [40,41]. In order to present the self-triggered control scheme, the power system is formulated as
a linear dynamic system in a form of:

ẋ = Ax + Bu + EW (4)

where x = (xi)n×1, 1 ≤ i ≤ n and i ∈ N+; A = (Aij)n×n, Aii = Ai,1 ≤ i, j ≤ n and i, j ∈ N+,
if no connection exits between subsystem i and j, Aij = 0; B = diag(Bi)n×1 and E = diag(Ei)n×1,
1 ≤ i ≤ n and i, j ∈ N+; the control input u = (ui)n×1 = (−Lij)n×n, x = −Kx, Lii = Ki,
1 ≤ i, j ≤ n and i, j ∈ N+, and Lij = 0, if there is no connection on subsystems i and j;
the disturbance is W = (wi)n×1, 1 ≤ i, j ≤ n and i, j ∈ N+. The control objective is to drive state x
to origin zero by the linear controller.

In a self-triggered control scheme [42], the local state xi(t) can be acquired by observers (sensors).
However, the information remains within the ith subsystems and is not shared within the system
controller unless a pre-calculated triggering time is up, a self-triggered state is reached and a message
is sent via data communication links. Thus, the control signal from controller remains constant and
may change only after a self-triggered message is received. Self-trigged control promises the reduction
of communication cost without sacrificing control performance. For a self-event triggered controller,
the dynamic of power system in kth triggering is:

ẋ(t) = Ax(t) + Bu(tk) + EW(t), tk ≤ t < tk+1 (5)

and the control output u(tk) is:

u(tk) = (−Lij)n×nx(tk), 1 < i, j < n and i, j ∈ N+ (6)

As shown in Figure 3, for a self-triggered control scheme, the controller obtains system state x1, x2,
x3 from sensors or observers of each subsystem, when the time for triggering tk is up. Then, the next
triggering time tk+1 is calculated by using the previous system state x(tk). Meanwhile, the controller
calculates the new control output u(tk) with the obtained new system state. The new control output
u1(t) = u1(tk), u2(t) = u2(tk), u3(t) = u3(tk), where tk ≤ t < tk+1 is then applied to its corresponding
subsystems. Above all, the procedure of self-triggered control is:

1. First, obtain the system state of each subsystem, when the time for triggering is up;
2. Second, calculate the time for the next triggering;
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3. Finally, apply the new control output, which is calculated by using the system state obtained
in step 1.

Figure 3. Self-triggered control scheme.

2.3. Exponential Stability and Cost Function

Before elaborating the control scheme for power grid, the exponential stability and cost function
are introduced. Exponential stability [43,44] is a kind of asymptotic stability. According to the
exponential stability, the state converges to zero with an exponential rate, and x(t) = x(0)e−t.
If a Lyapunov function satisfies κ1|x| ≤ V(x) ≤ κ2|x|, we have Proposition 1.

Proposition 1 [45]. Let V : Rn → R+ be a quadratic Lyapunov candidate function satisfying
V(x) = xT Px, ∀x ∈ Rn, with P = PT > 0. If the condition:

V̇(x) + 2βV(x) ≤ 0 (7)

is satisfied for all trajectories of (4), for a given scalar β > 0, the system origin is globally β-stable
(i.e., there exists a scalar β and α, such that the trajectories satisfy ‖x(t)‖ ≤ αe−βt‖x0‖ for any initial
condition x0). Proposition 1 addresses the relationship between the time derivation of Lyapunov
function V(x) and the V(x) under the restriction of exponential stability.

As both physical cost and cyber cost are considered, the cost of system consists of two parts.
The first part, the physical state cost expressed by the following equation, is a general form that is
widely used in optimal control theory [46].

p(t) = x(t)TQx(t) = ‖x(t)‖2
Q

where Q is the weight matrix for state cost. The communication cost as the second part is essentially
related to the triggering rate. High triggering rate means high communication bandwidth cost in data
transmission within a time unit. Therefore, the communication cost is proportional to the sampling rate.

Definition 1. At the kth triggering period, the communication cost is defined as:

c(t) =
$

τ(k)
.

where $ is the weight of communication cost, and τ(k) is the sampling interval between number k
sampling and the number k + 1 sampling.

Integrating physical state cost with communication cost, the cost function is shown as:

J =
∫ Tf

0 [q(t) + c(t)]dt

=
∫ Tf

0 [‖x(t)‖2
Q + $

τ(k) ]dt
(8)
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where Tf is the terminal time. When t = Tf , the system state converges to a small value that is close to
zero. Moreover, when t = Tf , the Lyapunov function value is VT, which is much smaller than the initial
Lyapunov function value V0. c is the number of control actions, which have Tf = ∑n

i=0 τ(i). This model
considers two parts. The first is a function σ(x(tk)) = tk+1 − tk for calculating self-triggered time,
which is adaptive to state x(tk), to reduce costs in communication; the second is the determination of
control gain K = (−Lij)n×n. Hence, the cost of system J is guaranteed under a specified upper bound.
The following assumptions are made to calculate the upper bound.

Assumption 1. For a given Lyapunov function V(x) = xT Px, ε and initial state x0, the system is exponentially
stable. The terminal time of control process is Tf defined by dV(x(Tf ))/dt = ν, where ν is a small number.
The Lyapunov function is V(x(Tf )) = VT , and its initial value is V(x(0)) = V0, which has VT < V0.

Assumption 1 is applied to make the value of Lyapunov function close to zero at terminal time Tf ,
so that the terminal time Tf for cost function can be determined. It should be noted that the variation
of the Lyapunov function converges to zero, when the system converges to a stable state. Therefore,
ν should be a small number.

3. The Self-Triggered Controller Design

3.1. Function σ for Self Triggering

The communication cost of self-triggered control depends on the triggering rate, which is directly
related to the triggering time in self-triggered control. The system calculates the next triggering time
and updating control output when the triggering time is up. The function σ for self-triggering is
a crucial function. For obtaining the function σ, some important results about exponential stability
and input-to-state stability under self-triggered control are introduced. To investigate the relationship
between the maximal triggering interval function σ and system performance, exponential stability and
input-to-state stability from disturbance W to system state x, Theorem 1 is proposed.

Theorem 1. For the dynamic system (5), given scalars β > 0, γ > 0, if there exists an n× n matrix P = PT ,
a positive scalar γ and a bounded function σ(x) : Rn → R+ are for all x ∈ R4n and τ ∈ [0, σ(x)]:

xTΦP,β(τ)x ≤ ψ(τ) (9)

where ψ is,

ψ =


0 τ ∈ R1 ∩ R2

(γ/2− (2β + 1)(eατ − 1)rε)nη τ ∈ R1/R2

(γ/2− rεeατ)nη τ ∈ R2/R1

(γ− rεeατ(2β + 1)(eατ − 1)rε)nη τ ∈ R+/R1/R2

with R1 = {τ|γ/2− rεeατ} > 0, R2 = {τ|γ/2− (2β + 1)(eατ − 1)r > 0},
α = λmax(AT + A), ε = λmax(P), r = λmax(ETE), where,

ΦP,β(τ) =

(
Λ(τ)

I

)T (
AT P + PA + 2βP −PBK
−KT BT P 0

)(
Λ(τ)

I

)
(10)

and,

Λ(τ) = I +
∫ τ

0
esAds(A− BK), (11)

then the origin system (2) is global β-stable and input-to-state stability from W to x for any triggering
interval σ(x) : R+ × Rn → R+ defines the triggering interval sequence by the law tk+1 = tk + σ(x(tk)),
k ∈ N. ||x||2 ≤ n(γ + ϑ)η/(εβ) under a given zero initial state x(tk) = 0.

Proof. See Appendix A. �
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The key of Theorem 1 is that the function σ must satisfy the inequality (9). However directly
solving inequality (9) for obtaining σ is difficult. Approaches, such as in [30,47], are employed to cut
the triggering interval (sampling interval) and state space into several sections. Numerical methods,
such as the linear matrix inequality (LMI) toolbox, offer a possibility to solve σ. The precision of
maximal triggering time depends on the number of sections. Higher precision of maximal triggering
time requires more sections. In addition, if the state space dimension is high, the computation cost in
the design process dramatically increases. This is not practical in power system control applications
with a high state space dimension. Therefore, another algorithm is proposed. The σ(x) can be directly
computed with a given x on-line by the proposed algorithm. Based on the result of Theorem 1,
the following theorem is derived for calculating σ.

Theorem 2. For the given parameters in Theorem 1, the dynamic system in Equation (5) has a minimal
triggering interval for the global state space τmin = minx∈R4n σ(x), and a maximal sampling interval
τmax = maxx∈R4n σ(x). ∀τ ∈ [0, σ(x)], xTΦP,β(τ)x ≤ 0, if the σ(x) is:

σ(x) = argτ min
τ∈[τmin ,τmax ]

τ, (12)

where τmin and τmax are the lower bound and upper bound of self-triggering interval or sampling
interval, respectively. Under the constraint of:

xTΦP,β(τ)x = ψ(τ) (13)

then the origin system in Equation (2) is global β-stable with input-to-state stability from W to x.

Proof. From Theorem 1, it is known that the left-hand-side and the right-hand side of inequalities (9)
are continuous, and σ(x) ∈ [τmin, τmax], thus the maximal triggering interval σ(x) must be the minimal
root of Equation (13).

From Theorem 2, for a given triggering interval τ = tk+1 − tk, the root of Equation (13) for
triggering interval σ(x) should be the one which is closest to τmin. Equation (13) can be written as
a linear combination of eλiτ and e(λi+λj)τ , where λi and λj are the eigenvalues of A. If we denote
eτ by z,

ΦP,β(τ) = φ1 + φ2zv1 + φ3zv2 + . . . + φrzvr−1 (14)

where φk is the coefficient matrix of zvk , vk is λi or λi + λj, i ≤ n, j ≤ n and vi 6= vj.
However, the computation cost of directly solving the equation xTΦP,β(τ)x = 0 is very high, and it
is not practical in online processing for power system control. Instead, the approximate root of this
equation can be obtained by the two-point Taylor expansion method. The ΦP,β(τ) can be expanded

into two-point Taylor series in m orders at z1 = eτmin
and z2 = eτmax . The approximation of ΦP,β(τ) is:

H(z) = ∑m
k=0{[ak(z1, z2)(z− z1)+

ak(z2, z1)(z− z2)](z− z1)
k(z− z2)

k}, (15)

where z = eτ , and an(z1, z2) is:

an(z1, z2) =

∑m
k=0{

(n+k−1)!
k!(n−k)

(−1)n+1nφ(n−k)(z2)+(−1)kkφ(n−k)(z1)
n!(z1−z2)n+k+1 }.

(16)

and the approximation of the right hand side of Equation (13), denoted h(z), can be obtained similarly
as H(z). Above all, for a given state x, we have the following theorem to calculate the σ(x).
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Theorem 3. For the given parameters in Theorem 1, the dynamic system (5), the maximal and minimal
triggering intervals τmin, τmax, and the maximal approximation error of ΦP,β(τ):

ε1 = max
τ∈[τmin ,τmax ]

eig[ΦP,β(τ)− H(z)]

The maximal approximation error of h(z) is ε2 = maxτ∈[τmin,τmax] ψ1(τ)− h1(z),
under γ− rεeατ > 0, with the approximation expression (15). Then, under the constraint of
σ(x) ∈ [τmin, τmax], the maximal triggering interval function is chosen by:

σ(x) = ln zc (17)

where,
zc = argz min

xT [H(z)+ε1 I]x=h1(z)−ε2

|z− z1| (18)

Then, the origin system in Equation (2) is global β-stable with input-to-state stability from W to x.

Proof. See Appendix B. �

For a given state x, zc can be easily obtained by solving the polynomial in Equation (18).
Thus, under the constraint of σ(x) ∈ [τmin, τmax], the maximal triggering interval can be obtained
by Theorem 3. If the approximation error ε1 and ε2 are very small, the approximation maximal
triggering interval obtained by applying Theorem 3 should be very close to the actual maximal
triggering interval. It should be noted that τmin can be calculated by conventional discrete control
theory. However, the maximal sampling interval τmax = maxx∈R4n σ(x) cannot be obtained without
knowing σ. Thus, τmax is set to be much larger than τmin, τmax > τmin in the algorithm to guarantee
σ(x) ≤ τmax.

3.2. The Selection of Feedback Gain for Controller

The system performance to some extent depends on the feedback gain. If the selected
feedback gain is not proper for the control system, the τmin in Theorem 1 may not exist, so that
β-exponential stability and input-to-state stability cannot be satisfied even under the continuous
control. Therefore, the feedback gain should be selected for satisfying the exponential stability and
input-to-state stability in continuous control (σ(x) = 0) first. Otherwise, the cost function should
be considered when we select the feedback gain. In dealing with nonlinear control problems, many
optimal control theories are proposed, such as Hamilton–Jacobi–Bellman equations, Euler–Lagrange
equations and Sontag’s formula [44,48]. However, it is difficult to apply those methods to solve this
optimal control problem with the cost function described in Section 2. The reason is that solving the
Hamilton–Jacobi–Bellman equations and Euler–Lagrange equations is extremely difficult. In addition,
Sontag’s formula requires a fixed standard form of cost function, which does not coincide with our
cost function. It is difficult to obtain the value of cost function directly. Therefore, instead of directly
calculating the value of the cost function, inequalities for estimation are derived to select a proper
feedback gain for guaranteeing the cost function within an upper bound.

Theorem 4. For given feedback gain K, γ, β, and τmin = minx∈RN σ(x) for global state space, which satisfies
the condition of Proposition 1 and Assumption 1. Then the cost function (8) can be estimated by:

J < λmax(Q)
β2λmin(P)

{γnηT′f β− [γnη + V0β](1− e−βT′f )}+
$T′f
τmin

, (19)

where,

T′f =
1
β

ln[(V0β− γnη)/ν] ≥ Tf (20)
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Proof. From the proof of Theorem 1, the value of the Lyapunov function can be estimated by
V(t) ≤ e−βtV0 + γnη/β(1− e−βt).

To integrate both sides of the above inequality during 0 and Tf , the cost of state can be estimated

by:
∫ Tf

0 xTPxdt ≤ 1
β2 {γnηTf β− (γnη + V0β)(1− e−βTf )}.

The estimated terminal time T′f for Tf can be obtained by solving the following inequality: V(Tf ) ≤
e−βTf V0 + γnη/β(1− e−βTf ) = VT, and the time derivatives of V have the inequality dV(Tf )/dt ≤
(γnη−V0β)e−βTf .

Therefore, the result is: Tf ≤ 1
β ln[(V0β− γnη)/ν] = T′f .

The communication cost can be estimated by c ≤ $Tf /τmin ≤ $T′f /τmin. Above all, the value of
the cost function at terminal time Tf can be estimated by summing the estimation of state cost and
communication cost.

For a given P for Lyapunov function, the decay rate β, and γ for the inhibition of disturbance
effect, the minimal sampling interval τmin and the feedback gain K can be figured out by conventional
robust discrete control technique. Then, the upper bound of cost function J can be estimated by a given
Lyapunov function value V0 and VT in initial time and terminal time by Theorem 4. The objective
is to minimize the upper bound of J, so that the value of the cost function J can be guaranteed on
a required level. Therefore, the feedback gain K, decay rate β, parameter γ for input-to-state stability,
minimal sampling interval τmin, and Lyapunov function parameter P, can be estimated by minimizing
the upper bound of J. If we denote the right-hand side of inequality (19) by χ, it is:

{K, β, P, γ} = arg min
{K,β,P,γ}

χ(K, β, P, γ) (21)

Some numerical optimization methods can be applied to solve this optimization problem.
Let θ = {K, β, P, γ}. The optimization process in one iteration can be depicted as follows:

1. For a given θ, τmin is calculated by conventional discrete robust control technique;
2. The upper bound of cost function χ is obtained by Theorem 4, and Rk can be calculated;
3. Update θ by numerical optimization algorithms (such as GA optimization algorithm) with χ

obtained in previous step;
4. Return to the first step until the stop criteria is satisfied.

The iteration stop condition depends on the value of χ and the iteration count and satisfies the
design requirements. With the smallest upper bound of cost, the performance of control is guaranteed.
The cost consists of state cost and communication cost. Thus, the Pareto Frontier curve may be
calculated for generality. Then the optimal parameter θ can be easily obtained for any $.

3.3. Event-Triggered Control Algorithm

The self-triggered control is divided into two phrases. The first phrase is about parameter design,
and the second phrase is online computing of triggering interval σ(x(tk)). First, for a given power grid
dynamic model (4) and Q, the τmin is calculated. The best value of θ is designed by Theorem 4. Optimal
searching algorithms consider both state and communication cost in cost function. If the feedback with
gain K does not have a solution with given γ and β, β and γ should decrease and increase respectively
until there is a solution of K. After θ, τmin and τmax are selected, the approximation error ε1, ε2 and
ε3 are calculated. Meanwhile, the two-point Taylor expansion of Φ, ψ1 and ψ2 can be obtained by
software such as Mathematica.

Second, the triggering interval is calculated online. The power system obtains new system state xk
from sensors, when a self-triggered time is up. Then, the time tk+1 = tk + σ(x(tk)) is calculated for the
next triggering. For a system state xk, the coefficient of polynomial respect to z is derived by xT H(z)x.
Then zc is solved using Equation (18) by inverse iteration. Therefore, the triggering interval can be
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obtained by zc and (17). The new control output u = −Kx(tk) is calculated and applied to actuators.
At last, the control output is updated at the next triggering time tk+1.

4. Simulation Results

In this section, a simulation of power frequency control with distributed energy source
demonstrates the effectiveness and advantages of our proposed control method. The subsystem
frequencies are controlled by our proposed controller, which can save more costs under the
consideration of communication and system state. Meanwhile, a comparison is carried out to verify
the benefit on the control of power system. The simulation is performed in MATLAB 2010b.

We consider the electrical power network shown in Figure 4. Three subsystems are in the power
system. It assumes that the composition of three electric power subsystems is same, which is illustrated
in Figure 2. There are gas turbine generators, wind power generations and battery arrays in the system.
Power supply is done to the electric power demand with these power generating machines. The gas
turbine, wind power and battery power output are controllable.

Figure 4. Power system structure for simulation

The parameters of each subsystem are given in Table 1.

Table 1. Parameter set.

Parameters ($) Symbols (Unit) ($)
Values

Subsystem 1 Subsystem 2 Subsystem 3

Inertia constant M (puMw s/Hz) 0.20 0.14 0.16
Damping constant D (puMw/Hz) 0.26 0.26 0.23
Governor constant Tg (s) 0.20 0.20 0.12

Gas turbine constant Td (s) 5.0 4.5 5.0
Regulation constant Rg (Hz/pu Mw) 2.5 2.5 1.5

Synchronizing constant Ti j (pu Mw) 0.50 0.5 0.5
TBC gain Ki 0.1 0.08 0.1

Frequency bias Bi (Mw/Hz) 0.1 0.1 0.08

The maximal norm of disturbance assumes to be 0.1, and the weight $ for communication cost is
set to 0.1. The contour map of cost upper bound with respect to exponential stability parameter β and
input-to-state stability parameter γ is illustrated in Figure 5, and the relationship between β and τmin
is shown in Figure 6.

According to the cost upper bound contour map, if the parameter β is selected to be very low
(lower than 0.02), then the effect of parameter γ is not significant. Meanwhile, it shows that the faster
convergence rate (larger β) makes the physical cost (state cost) lower. However, according to the
relationship between the τmin and β illustrated in Figure 6, large β may bring a higher communication
cost, because the controller has to reduce the triggering interval to satisfy higher physical cost
requirements (faster rate of convergence). Thus, a tradeoff should be made to reduce the total cost.
After solving the optimization problem described in (21) with MATLAB Optimization ToolBox, β and
γ are obtained as 0.12 and 0.11, respectively. In addition, the feedback gain K and Lyapunov function
parameter P are also calculated by the robust control design algorithm and LMI toolbox. The initial
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state is set to 1, and the terminal time is calculated to be 10. The simulation is divided into two groups.
The first group is the proposed algorithm with approximation method to calculate the triggering
interval. The second method is the method proposed in [42], which is a widely used method in
self-triggered control. We call it the “conventional method” in the following. The simulation results
and comparisons are illustrated in Figures 7–11.

According to the simulation results in Figures 7–11, we know that the control method can make
all states converge to zero with exponential rate β. Moreover, the curve with proposed control method
converges slightly faster than the conventional method in the beginning, especially in the curve of ∆ f
and ∆xg.
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Figure 5. Contour map of cost upper bound with respect to β and γ.
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Figure 9. The power output deviation of the gas turbine generator Pg.
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Figure 11. The regional demand UAR.

At last, they are in the same magnitude. Above all, under the same exponential convergence rate
β and input-to-state stability parameter γ requirement, the convergence rate or the physical cost seems
almost same and satisfies the performance. The proposed method is effective in the frequency control
application of power system. However, the communication should be considered in our proposed
control algorithm. Therefore the comparison of communication cost is illustrated. As the sampling rate
of classical control method is fixed, it causes the communication cost of the classical control method to
be much higher than for the STC method [49,50]. We only compare the proposed STC method with the
conventional STC method in Figure 12. The total cost is illustrated in Figure 13.
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Figure 12. Communication cost comparison.
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Figure 13. Cost curve comparison.

According to the communication cost comparison in Figure 12, it is known that the communication
cost of the proposed self-triggered control method is lower than that of the conventional self-triggered
control method. At the end of the simulation time, it costs about 530 control actions using the proposed
self-triggered control method. In comparison, it costs about 600 control actions using conventional
self-triggered control method. According to the definition of communication cost, the system takes
530 control actions for sensor data acquisition to compute control output with the proposed method,
and needs 600 control actions using the conventional method. Based on the total cost curve comparison,
the proposed self-triggered method costs less than the conventional method. At the end of simulation,
the conventional method costs about 120 control actions, and the proposed method costs about
110 control actions. The cost of the proposed method is not much lower than for the conventional
method. When the communication cost is high, bandwidth is limited, or communication network is
publicly shared, the triggering time of proposed method further improves. Besides, the computation
cost of calculating triggering time in the proposed method is reduced by the approximation method.
Above all, the proposed method is better than the conventional method in frequency control application
of power system, at least under this situation.
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5. Conclusions

In this paper, a novel self-triggered control method is proposed and applied to the frequency
control application of the power system. The power system dynamic model consists of multiple
subsystems that have distributed energy sources. Physical cost and communication cost as two
parameters of cost function are considered in the proposed model. On one hand, the equation for
solving the triggering time is derived by the definition of exponential stability and the input of
state stability, and an approximation algorithm is proposed to reduce computation costs. On the
other hand, the upper bound of cost is derived. The feedback gain and parameters are selected,
according to optimizing the upper bound of the cost. Thus, the system cost can be guaranteed
under a required level. At last, a simulation of power system frequency control is carried out to
demonstrate that the proposed method is effective and can save more costs than the conventional
method. Compared with the distributed control scheme, the advantage of the centralized control
scheme in STC is that it reduces the conservativeness of the control system, and further decreases the
communication cost. Meanwhile, it may require more computational resources and time. Additionally,
more communication networks are needed in the centralized control scheme. In future research,
the application of self-triggered control method in the transient control of power system for avoiding
cascade failure will be investigated.
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Appendix A. Proof of Theorem 1

For t ∈ [tk, tk+1] and t = tk + τ, it is known that x(t) = ζ(τ)x(tk) + ξ(τ), where,

ζ(τ) = I +
∫ τ

0
eAsds(A− BK), ξ(τ) =

∫ τ

0
eAsEW(s)ds

Therefore for the Lyapunov function

V(x(t)) = x(t)T Px(t) = [ζ(τ)x(tk) + ξ(τ)]T P[ζ(τ)x(tk) + ξ(τ)] ≤ x(xk)
Tζ(τ)T Pζ(τ)x(xk) + ξT Pξ.

We denote:

V
′
(x(tk), τ) = x(xk)

Tζ(τ)T Pζ(τ)x(xk) + ξT Pξ.

We define v as the mean of EW(s) in the paper. For the given β > 0 and γ > 0, if,

V̇
′ ≤ −2βV̇

′
+ γ/2||W||2 + γ/2||v||2, (A1)

where ξ =
∫ τ

0 eAsdsv, then,

V
′
(x(tk), τ) ≤ e−βτV

′
(x(tk), 0) +

∫ τ

0
(γ/2e−βs||W(s)||2 + γ/2||v||2)ds,
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so that,

V(x(t)) ≤ V
′
(x(tk), τ) ≤ e−βτV(x(tk)) +

∫ τ

0
γ/2e−βs||W(s)||2ds +

∫ τ

0
γ/2e−βs||v(s)||2ds.

which means the dynamic system is of β-exponential stability. When ||v||2 ≤ nη, we have ||x||2 ≤
nγη/(εβ) with initial state x(tk) = 0. The inequality (A1) is:

d[x(tk)
Tζ(τ)T Pζ(τ)x(tk)]/dt + 2βx(tk)

Tζ(τ)T Pζ(τ)x(tk) ≤ −d(ξT Pξ)/dt− 2β(ξT Pξ) + γ/2||W||2 + γ/2||v||2, (A2)

and the inequality is:

−d(ξT Pξ)/dt− 2β(ξT Pξ) + γ/2||W||2 ≥ ξ̇T Pξ̇ − (2β + 1)(ξT Pξ) + γ/2||W||2 ≥
(γ/2− rεeατ)||W||2 + [γ/2− (2β + 1)(eατ − 1)r]ε||v||2.

It should be noted that the left-hand side of inequality (A2) is equivalent to the left-hand side of
inequality (9). If:

d[x(tk)
Tζ(τ)T Pζ(τ)x(tk)]/dt + 2βx(tk)

Tζ(τ)T Pζ(τ)x(tk) ≤
(γ/2− rεeατ)||W||2 + [γ/2− (2β + 1)(eατ − 1)r]ε||v||2,

then the inequality (A1) satisfies. When γ/2− rεeατ > 0, and γ/2− (2β + 1)(eατ − 1)r > 0, the
above inequality holds if:

d[x(tk)
Tζ(τ)T Pζ(τ)x(tk)]/dt + 2βx(tk)

Tζ(τ)T Pζ(τ)x(tk) ≤ 0.

When γ/2− rεeατ > 0, and γ/2− (2β + 1)(eατ − 1)r ≤ 0, the above inequality holds if:

d[x(tk)
Tζ(τ)T Pζ(τ)x(tk)]/dt + 2βx(tk)

Tζ(τ)T Pζ(τ)x(tk) ≤ [γ/2− (2β + 1)(eατ − 1)rε]nη.

When γ/2− rεeατ ≤ 0, and γ/2− (2β + 1)(eατ − 1)r > 0, the above inequality holds if:

d[x(tk)
Tζ(τ)T Pζ(τ)x(tk)]/dt + 2βx(tk)

Tζ(τ)T Pζ(τ)x(tk) ≤ (γ/2− rεeατ)nη.

When γ/2− rεeατ ≤ 0, and γ/2− (2β + 1)(eατ − 1)r ≤ 0, the above inequality holds if:

d[x(tk)
Tζ(τ)T Pζ(τ)x(tk)]/dt + 2βx(tk)

Tζ(τ)T Pζ(τ)x(tk) ≤
(γ/2− rεeατ)nη + [γ/2− (2β + 1)(eατ − 1)rε]nη.

Appendix B. Proof of Theorem 3

Since the approximation errors are given, under τ ∈ [τmin, τmax], we have
ΦP,β(τ)− [H(z) + εI] ≤ 0. Hence,

xTΦP,β(τ)x ≤ xT H(z)x + xTε1 Ix. (A3)

As we know, |ψ1(τ) − h1(z)| ≤ ε2 and |ψ2(τ) − h2(z)| ≤ ε3 where τ ∈ [τmin, τmax], thus if
xTΦP,β(τ)x ≤ xT H(z)x + xTε1 Ix ≤ h1(τ)− ε2 then xTΦP,β(τ)x ≤ ψ1(τ) ≤ ψ(τ).

Therefore, the zc calculated from Equation (18), makes the inequality (9) in Theorem 1.
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