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Abstract: Three-dimensional (3D) human skeleton extraction is a powerful tool for activity
acquirement and analyses, spawning a variety of applications on somatosensory control, virtual reality
and many prospering fields. However, the 3D human skeletonization relies heavily on RGB-Depth
(RGB-D) cameras, expensive wearable sensors and specific lightening conditions, resulting in great
limitation of its outdoor applications. This paper presents a novel 3D human skeleton extraction
method designed for the monocular camera large scale outdoor scenarios. The proposed algorithm
aggregates spatial–temporal discrete joint positions extracted from human shadow on the ground.
Firstly, the projected silhouette information is recovered from human shadow on the ground for each
frame, followed by the extraction of two-dimensional (2D) joint projected positions. Then extracted
2D joint positions are categorized into different sets according to activity silhouette categories. Finally,
spatial–temporal integration of same-category 2D joint positions is carried out to generate 3D human
skeletons. The proposed method proves accurate and efficient in outdoor human skeletonization
application based on several comparisons with the traditional RGB-D method. Finally, the application
of the proposed method to RGB-D skeletonization enhancement is discussed.
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1. Introduction

The development of three-dimensional (3D) human skeleton extraction contributes enormously
to prospering fields like virtual reality and somatosensory human–computer interaction. However,
current 3D human skeletonization algorithms require specified acquisition equipments including
RGB-Depth (RGB-D) cameras and wearable sensors, or a specific experimental setup like ring
illuminator array. RGB-D cameras like Microsoft Kinect are designed to perform human skeletonization
in a short range [1,2]. Wearable sensors only perform effective skeletonization on human subjects
wearing experimental tags. Ring illuminator array requires precise subject position and illuminator
array setup during the 3D modelling and skeletonization procedures. These setup restrictions of
traditional human skeletonization methods bring great limitation on the outdoor applications.

Instead of deploying algorithms on traditional specified platforms, this work pays attention to the
commonest projection of the human body on the ground. Shadow is the projection of a opaque object
on a certain surface, containing single-view silhouette information of the object. Multiple methods have
been developed to extract information from shadow. Current methods mainly focus on the recovery of
mesh model [3–5] or point clouds [6,7] of static objects based on partial shadow information [8]. In this
paper, a silhouetted shadow-based skeleton extraction (SSSE) method is proposed. The proposed SSSE
method deploys shadow information extraction algorithm to the field of human skeletonization [9–11].
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Based on the proposed SSSE method, six 3D joint positions in the human skeleton can be precisely
extracted in outdoor scenarios with a normal monocular camera. Compared with current indoor 3D
human skeleton extraction methods based on RGB-D cameras like Kinect, the proposed SSSE method
reduces constraints on input device choice and application environment setup.

This work is motivated by the procedure of taking a silhouette photo. During this procedure, the
human body blocks a part of light from reaching film or sensor, leaving a body sketch on the silhouette
photo. Human shadow on the ground, from the aspect of silhouette imaging, can be regarded as
a silhouette photo of the human body on a special giant film. The ground surface plays the role of
film. For captured frames containing human shadows, each shadow on the ground can provide extra
human contour information from a unique observation angle view other than the camera view.

This paper mainly focuses on the extraction and aggregation of the extra silhouette information
from spatial–temporal discrete human shadows on the ground, aiming to perform 3D human
skeletonization with a monocular camera in outdoor scenarios. Based on the aggregation of multiple
shadows from discrete spatial–temporal coordinates, SSSE is capable of launching 3D human
skeletonization even in outdoor scenes where the scale is too large for traditional methods [12–14] to
handle [6,15,16]. The main contributions of this paper are related to three aspects:

(1) The 3D human skeletonization is realized with a normal monocular camera based on the proposed
SSSE method.

(2) The proposed SSSE method achieves 3D human skeletonization in a large-scale outdoor scene.
(3) The proposed SSSE method deploys the aggregation of temporal–spatial discrete two-dimensional

(2D) shadow information in a 3D human skeletonization procedure

The remaining sections of this paper are organized as follows: In Section 2, the basic theory
for shadow-based single frame human skeletonization is introduced first, followed by the advanced
SSSE method aggregating temporal–spatial discrete shadow information to recover complete skeleton
sequences. In Section 3, a five-step method is introduced to deploy the proposed SSSE method
in large-scale outdoor scenarios with a monocular camera. In Section 4, the effective range and
precision of the SSSE skeletonization results are evaluated in comparison with the skeletonization
result of traditional RGB-D method. Additionally, a fusion application of the SSSE and RGB-D
skeletonization method is achieved in Section 5, providing much wider effective range in outdoor
scenarios. Eventually, the advantages and potential applications of the proposed SSSE method are
illustrated in Section 6.

2. Basic Theory

This section presents the basic theory of the silhouetted shadow-based 3D human skeletonization
method. To illustrate our method clearly, the basic theory under multiple light source scenarios is
introduced first. Then the advanced theory designed to aggregate temporal–spatial discrete shadow
information is introduced to achieve skeleton recovery under single light source scenarios.

2.1. Skeleton Simulation in Multi-Light-Source Scenarios

In a multiple light source scenario, contour of each human shadow on the ground is decided by
two factors:

(1) human contour shape.
(2) positional relationship between the light source and the human.

Since each single shadow on the ground is restricted in a 2D plate, it is impossible to reproduce
3D information from any single shadow image. However, multiple shadows generated by different
light sources can carry contour information from multiple 3D view angles, allowing the reproduction
of 3D information.
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A 3D voxel model of an object can be simulated from shadows generated by a annular set of light
sources [6]. However, out of the laboratory environment, accurate manual arrangement of light source
positions is elusive. Thus SSSE is designed to be adaptive to the posterior combination of random
light source positions. With two or more shadows generated by different light sources, our method is
capable of simulating 3D human skeleton information.

In a multiple light source scenario shown in Figure 1a, Sha and Shb are shadows of human body
M, generated by light sources Sa and Sb respectively. The scenario is captured by camera C, and the
human body M and shadows Sha, Shb are captured as P, Shca, Shcb in the frame, respectively. With the
captured frame, 3D position of the certain joint part Mp ∈ M can be extracted based on the following
three steps.

(a) (b)

Figure 1. Demo of silhouetted shadow-based skeleton extraction (SSSE) in a multi light source scenario:
(a) A simulated dual light source scenario; (b) Scenario reconstruction.

2.1.1. 3D Scenario Reproduction

The silhouettes of human shadow are projected on the ground. To locate 2D shadow areas
corresponding to different human joints, 3D scenario reproduction is launched to extract original 2D
silhouette information Sh from the corresponding images Shc captured by camera C. The extraction
is launched through the a two step perspective transformation between the ground surface plane
S(u, v) and the camera coordinate plane C(x′, y′). Due to the progressive road engineering and
partial patching, the height levels between different road parts are normally discontinuous. Instead
of deploying global perspective transformation between the ground surface plane S(u, v) and image
coordinate plane Im(x, y), this work proposes a block matrix-based projection transformation
optimized for uneven road surfaces.

Before the 3D scenario reproduction procedure, the projection transformation parameter matrices
are calculated once. Then frame-by-frame block matrix-based projection transformations are launched
to extract original silhouette information.

In order to illustrate the block matrix-based projection transformation clearly, traditional
plane-to-plane projection transformation is presented first. Then the block matrix-based projection
transformation is introduced along with the optimized extraction solution for parameter matrices.
Based on the extracted parameter matrices, the simplified Equation (15) for frame-by-frame projection
transformation is presented.

Plane-to-Plane Projection Transformation

During the imaging process of a monocular camera, the projection transformation from ground
surface plane to image coordinate plane is carried out in two steps. Firstly, each point (u, v) on
ground surface plane is projected to corresponding coordinates (x′, y′) on the camera coordinate plane.
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Secondly, a linear transformation happens inside the camera, transforming coordinates (x′, y′) to pixel
coordinates (x, y) on the image coordinate plane.

The projection transformation between the point coordinates (u, v) on the ground surface plane
and the corresponding coordinates (x′, y′) on the camera coordinate plane is presented as below:

[x′, y′, w′] = [u, v, 1] A (1)

w′ is a fixed camera internal parameter that affects the linear transformation from the camera coordinate
plane to the image coordinate plane. Noticeably, A is the projection transformation calibration matrix
that defines the relationship between ground surface plane and camera coordinate plane. Multiple
transformations are taken into consideration in architecting the projection transformation calibration
matrix A.

• Rotation transformation. Most surveillance cameras are not precisely set up at the horizontal
angle which is parallel with the ground surface. The non-horizontal installation attitude brings a
rotated field of view. The rotation transformation is introduced to calibrate the rotated field of
view, ensuring the calibrated field of view parallel with the ground surface.

• Scale transformation. The coordinate system of the ground surface plane is measured in
centimeters. However, pixel is the basic unit of measurement in the image coordinate plane. Thus
the scale transformation is introduced to bridge two different units of measurement, extracting
ground surface plane coordinates from the pixel coordinates.

Both rotation transformation and scale transformation are linear transformations. The coordinates
of both transformations are combined into the linear parameter matrix L.

• Translation transformation. For the image coordinate plane, the origin of the coordinate system is
fixed at the bottom left corner. For each captured frame, the origin of the coordinate system on
the ground surface plane does not necessarily coincide with the origin of image coordinate plane.
The translation transformation is introduced to calibrate the translation between two coordinate
systems. The detailed parameters for translation transformation are given in parameter matrix T.

• Perspective transformation. Instead of the flat view, a perspective view is captured by each
monocular surveillance camera in each frame. Thus, the perspective transformation is introduced
to recover the flat ground surface plane from the captured perspective view. The detailed
perspective transformation parameters are given in parameter matrix P.

For linear transformation parameter matrix L, the scale transformation parameters cx and cy and
rotation angle θ are included.

L =

[
cx cos θ cx sin θ

−cysinθ cy cos θ

]
(2)

The translation transformation parameter matrix T is made up of translate values tx and ty in
different axis directions.

T =
[

tx ty

]T
(3)

The perspective transformation parameter matrix P is made up of perspective values px and py in
different axis directions.

P =
[

px py

]T
(4)
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Based on the detailed transformation parameter matrices T, L and P, the projection transformation
matrix A can be presented as:

A =

[
L P

TT 1

]
=

 cx cos θ cx sin θ px

−cysinθ cy cos θ py

tx ty 1

 =

 a11 a12 a13

a21 a22 a23

a31 a32 1

 (5)

Based on the Equations (1) and (5), coordinates x′,y′ and w′ on the camera coordinate plane can
be presented by coordinates u, v on the ground surface plane and sub-parameters of matrix A.

x′ = a11u + a21v + a31 (6a)

y′ = a12u + a22v + a32 (6b)

w′ = a13u + a23v + 1 (6c)

Then, a linear transformation carried out to calculate pixel coordinates x and y in image coordinate
plane. The transformation is controlled by the camera internal parameter w′.

(x, y)T =
(

x′
w′ ,

y′
w′

)T
(7)

Eventually, the pixel coordinates x and y can be presented by ground surface plane coordinates u,
v and sub-parameters of projection transformation calibration matrix A.

x =
a11u + a21v + a31

a13u + a23v + 1
(8a)

y =
a12u + a22v + a32

a13u + a23v + 1
(8b)

Additionally, if the human shadow pixel coordinates x and y and projection calibration matrix A
is acknowledged, the real-world coordinates u and v of the human shadow can be extracted based
on solving the Equations (8a) and (8b). The procedure of solving real-world coordinates u and v is
simplified in Equation (9).

(u, v)T = f ((x, y)T , A) (9)

Block Matrix-Based Projection Transformation Parameter Calculation

The traditional plane-to-plane projection transformation is designed for ideal scenarios with
continuous flat ground surface. Nevertheless, the realistic scenarios contain uneven ground surfaces
with discontinuous pavement levels. Thus, the single projection transformation calibration matrix
A is not capable of ensuring precise projection transformation for all sub-blocks of the uneven
ground surface.

In order to deploy the projection transformation on realistic scenarios with high precision,
a block matrix-based projection transformation is proposed in this part. Instead of deploying
imprecise plane-to-plane global transformation, the proposed method launches a set of precise
sub-transformations. Each single sub-transformation covers only one partially flat sub-block on
the ground surface, ensuring the precise projection transformation between a surface sub-block and
the corresponding image subset. For each sub-block, the unique projection transformation calibration
matrix Asub is non identical with the parameter matrices belonging to other sub-blocks.

The parameter matrices Asub of different sub-blocks are calculated separately based on
Equations (8a) and (8b). To solve the unique calibration matrix of each sub-block, four pairs of
marked point coordinates on ground surface plane and their corresponding pixel coordinates on
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image coordinate plane are required. However, manipulating massive markers to calculate parameter
matrices of all sub-blocks will bring a heavy workload.

In order to simplify the setup, the optimized block matrix based parameter calculation procedure
is designed to be marker coordinates multiplexable and parallel computing friendly. From the top-view
angle, the ground surface is divided into a matrix consisting of multiple intensive square sub-blocks as
shown in Figure 1b.

Each sub-block is a unit square area Sqsub defined by the four corner markers, occupying one
meter square area on the ground surface as shown in Figure 1b. The coordinate set of four markers on
ground surface is defined as MS

sub = {(ui, vi) , i = 1, 2, 3, 4}, their corresponding image coordinate set
is MIm

sub = {(xi, yi) , i = 1, 2, 3, 4}.
For each sub-block Sqsub, a set of auxiliaries is introduced to simplify the calculation of parameter

matrices Asub based on Equation (10). The scale auxiliary parameters set includes ∆x1, ∆x2, ∆y1,
and ∆y2. 

∆x1 = x2 − x3

∆x2 = x4 − x3

∆y1 = y2 − y3

∆y2 = y4 − y3

∆x3 = x1 − x2 + x3 − x4

∆y3 = y1 − y2 + y3 − y4

(10)

Additionally, the parallel auxiliary parameters ∆x3 and ∆y3 are introduced as Equation (10) as
well. If both auxiliary parameters ∆x3 and ∆y3 approach zero, the field of camera view is regarded as
parallel with the sub-block.

The translation parameter Tsub, perspective parameter Psub and linear parameter Lsub in each
calibration matrix Asub can be solved as:

Tsub =
[

a31 a32

]T
=
[

x1 y1

]T
(11a)

Psub =
[

a13 a23

]T
= [∆x3∆y2−∆x2∆y3

∆x1∆y2−∆x2∆y1
, ∆x1∆y3−∆x3∆y1

∆x1∆y2−∆x2∆y1
]T (11b)

Lsub =

[
a11 a12

a21 a22

]
=

[
(x2 − x1 + a12x2) (y2 − y1 + a13y2)

(x4 − x1 + a12x3) (y4 − y1 + a23y4)

]
(11c)

The extraction procedure of the block matrix based projection transformation calibration matrix
can be simplified as:

Asub = P(MS
sub, MIm

sub) =

[
Lsub PT

sub
Tsub 1

]
(12)

Block-Matrix Based Projection Transformation Deployment

Based on Equation (9) and the calculated parameters in matrix Asub, real-world coordinates (u, v)
of each point in one sub-block area can be calculated from the corresponding pixel coordinates (x, y).
The presentation of extraction procedure can be simplified as:

(u, v)T = f ((x, y)T , Asub) (13)

Noticeably, different from the original global calibration matrix A, each sub-block calibration
matrix Asub is only deployed on the restricted regional transformation between the sub-block area on
the ground and the corresponding pixel range in the image.

Once all parameter matrices Asub for different sub-blocks are extracted through the block
matrix-based parameter calculation procedure, coordinates (x, y) of pixels belonging to different
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sub-blocks can be transformed to corresponding real-world coordinates (u, v) inside the sub-block
Sqsub. Block matrix-based projection transformation is deployed based on the parallel computation of
sub-transformations illustrated in Equation (13). The deployment algorithm of a sub-transformation is
illustrated in Algorithm 1.

Algorithm 1: Block matrix based projection transformation deployment Algorithm

Input: MS
sub = {(ui, vi) , i = 1, 2, 3, 4}: coordinates set of marker positions for sub-block Sqsub;

MIm
sub = {(xi, yi) , i = 1, 2, 3, 4} :corresponding pixel coordinates set of MS

sub on image
coordinate plane Im(x, y);

(x, y): image coordinates of captured pixel in human shadow silhouette
Output: (u, v): corresponding real-world coordinates of (x, y)

1 foreach Sqsub do
2 [∆x1, ∆x2, ∆y1, ∆y2] = [x2 − x3, x4 − x3, y2 − y3, y4 − y3]
3 [∆x3, ∆y3] = [x1 − x2 + x3 − x4, y1 − y2 + y3 − y4]

4 Tsub = [ a31 a32 ]T = [ x1 y1 ]T

5 Psub = [ a13 a23 ]T = [∆x3∆y2−∆x2∆y3
∆x1∆y2−∆x2∆y1

, ∆x1∆y3−∆x3∆y1
∆x1∆y2−∆x2∆y1

]T

6 Lsub =
[ a11 a12

a21 a22

]T
=

[
(x2 − x1 + a12x2) (y2 − y1 + a13y2)
(x4 − x1 + a12x3) (y4 − y1 + a23y4)

]T

7 Asub =

[
Lsub Psub
TT

sub 1

]
;

8 end
9 (u, v)T = f ((x, y)T , Asub)

For each sub-block area Sqsub, a distinctive sub-transformation thread is launched based on
the specific calibration matrix Asub. The parallel computation of block matrix-based projection
transformation contains multiple sub-transformation threads. For the simplicity of the parallel
computation presentation, Amat is introduced as the collection of all calibration sub-matrices {Asub}
for different sub-blocks. The overall transformation is simplified as Equation (14).

(u, v)T = F((x, y)T , Amat) (14)

Based on Equation (14), the real-world coordinates (u, v) of human shadow silhouette Sh can
be extracted from corresponding pixel coordinates (x′, y′) ∈ Shc captured by a monocular camera.
The block matrix-based projection transformation between the captured human shadow silhouette Shc

and the corresponding real-world shadow silhouette Sh is illustrated in Equation (15).

Sh = F(Shc, Amat) (15)

The benefits of the block matrix based projection transformation are obvious:

• The positions of markers can be reused to simplify the scenario set up. For a scenario containing a
m× n square meter area, the number of markers is reduced from (4×m× n) to (m + 1)× (n + 1).

• Parallel sub-transformations on different sub-blocks can be processed synchronously to accelerate
the overall projection transformation procedure.

• Only when the position of camera is moved or the ground surfaced is repaved, will partial
recalibration work be necessary for the affected sub-block Sqsub.

Overall, all parameter matrices Asub for different sub-blocks only need to be calculated once. Then
all pixel coordinates in video frames can be transformed into the real-world coordinates on the ground
surface plane. The block matrix-based structure also simplifies the parameter maintenance procedure
when changes occur in the scenario.
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2.1.2. Silhouette Information Extraction

For the extracted human shadow contour Sh on the ground surface, joint positions are extracted
through an optimized method based on the silhouette contour extreme point seeking method.
Comparing with traditional human segmentation methods, only silhouette information is available for
shadow contour segmentation in our work. In order to perform an efficient joint position extraction
based on precise silhouette contour segmentation [17], a two-step algorithm is presented in this section.

Human Shadow Silhouette Contour Preprocess

Firstly, a survey for global peak points on the shadow contour is launched to locate most obvious
joint positions on the human shadow contour. In this step, the gravity center coordinate (u, v) of
human shadow contour Sh is calculated first. For human shadow contour Sh containing N contour
points (um, vm), the gravity center (u, v) can be extracted based on the Equation (16).

(u, v) =
(

1
N

N
∑

m=1
um, 1

N

N
∑

m=1
vm

)
(16)

Then, the the distance curve D between contour points (um, vm) ∈ Sh and the gravity center
(u, v) is calculated for the localization of global peak points. The value of each point on the distance
curve D is calculated based on Equation (17). The Cartesian distance is applied in the Equation (17) as
a linearized approximation for the value of each point on the distance curve.

D (m) =
√
(um − u)2 + (vm − v)2 (17)

In order to reduce the interference of grainy ground surface in the joint position extraction
procedure, the distance curve D is denoised based on Equation (18). The smooth length unit η is set
as 10 in our experiment. In the next step, the localization procedure of major joint positions is based on
the denoised distance curve D.

D (m) = 1
η+1

η
2
∑

l=− η
2

D (um+l , vm+l) (18)

The global peak points including head and two feet appear at the maximum point on the distance
curve. Based on the denoised distance curve D, the major joint positions can be located through seeking
peak points. The normalized distance curve extraction procedure is illustrated from Equation (16)
to Equation (18) and simplified in the stage Equation (19). In order to simplify the subsequent
presentations, function Pre is introduced to cover the extraction procedure for the normalized distance
curve D based on the human shadow contour Sh.

D = Pre(Sh) (19)

Localization of Major Joint Positions on Human Shadow Silhouette Contour

In the second step, a quick localization of global maximum peaks is launched first to locate the
positions of head and both feet, then elaborate local search for major joints including hands, shoulders
and knees is carried out.

(1) Localization of Global Convex Areas

Three global maximum peaks of denoised curve D is marked in corresponding positions on
Figure 2a with square symbols. The marked positions indicate precise global convex area on the
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human shadow silhouette contour, including head Sphead, left foot Sp f ootle f t and right foot Sp f ootright .
As shown in Figure 2b, the area containing the head are marked in red, and areas containing the feet
are marked in green.

(2) Localization of Auxiliary Anchor Points

Based on the acknowledged major joint positions including head and feet, the positions of rest
joints are calculated through locating the local peak and nadir points.

Based on the three major joint positions, the shadow contour is divided into three sub-curves.
Each sub-curve contains one auxiliary anchor point at the corresponding local nadir position on curve
D. The auxiliary anchor points are markered with star symbols in Figure 2a.

• The sub-curve between two feet joints contains the position of hip center Sphip at the local nadir
position.

• The sub-curves between the head position and two feet positions contain positions of two oxters
at local nadir positions, respectively.
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Figure 2. Silhouette information analyses and joint position extraction. (a) Sub-curve segmentation;
(b) two-dimensional (2D) joint position extraction on the shadow area.

(3) Localization of Remaining Major Joint Positions

Based on the three global peaks and three auxiliary anchor points, the shadow contour is
subdivided into six new sub-curves. To illustrate the extraction of remaining joint positions clearly,
six sub-curves are marked as Ci

sub. The indicated i ranges from 1 to 6 as shown in Figure 2a. C1
sub to

C6
sub cover the shadow contour in a clockwise direction , initiating from the head position.

• Sub-curves C1
sub and C6

sub cover the contour ranges of left arm and right arm. Thus the local
peak positions of these two sub-curves are hand positions. Their local nadir positions are located
between the cervical vertebra position Spneck and two shoulders.

• The local peak positions of C2
sub and C4

sub indicate the positions of two keens Spkeenle f t and
Spkeenright in the shadow area.

• Similarly, the nadir positions of C3
sub and C5

sub can assist the positioning of both keens Spkeenle f t

and Spkeenright .

The major joint position localization procedure is illustrated in the three steps above and simplified
in stage Equation (20). In order to simplify the subsequent presentations, function Loc is introduced
to cover the localization procedure for major joint position set

{
Spjoint} based on the human shadow

contour Sh and the corresponding distance curve D.{
Spjoint} = Loc

(
Sh, D

)
(20)
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Noticeably, the joint position localization procedure can also be adopted in the joint position
extraction from a normal human pose contour. The human pose classification illustrated in Section 2.2.2
is based on the joint position extraction procedure illustrated in Equation (20).

2.1.3. 3D Joint Position Estimation and Skeleton Synthesis

In a multiple light source scenario, more than one human shadow is projected on the ground
surface at the same time. In order to identify shadow areas generated by different light sources,
2D human shadow contour Sh and joint position region Spjoint are footnoted with corresponding light
source identifier i as shown in Equation (21). Additionally, the point coordinates (u, v) inside the each
region Spjoint

i are footnoted as (ujoint
i , vjoint

i ).

Spjoint
i ⊂ Shi (21)

In order to estimate the 3D joint position Mpjoint of each major joint, the light beams Ljoint
i from

different light sources Si blocked by Mpjoint are reconstructed first. Then, the 3D position of Mpjoint is
calculated based on allocating the shared voxel area between multiple reconstructed light beams Ljoint

i .
Finally, the human skeleton is synthesized based on the calculated 3D joint position set {Mpjoint}.

For the first step, each light beam Ljoint
i is generated as a 3D cone with its vertex on the light

source position Si = (ui, vi, hi). The underside of each cone is the joint area Spjoint
i in the shadow.

While any light beam Ljoint
i from light source Si is blocked by the certain joint part Mpjoint of

human body M, the joint shadow area Spjoint
i = {(ujoint

i , vjoint
i )} is produced on the ground. Thus,

the direction of blocked light beam Ljoint
i leads to shadow area Spjoint

i ⊂ Shi, going through human

body part Mpjoint. If w ∈ [0, hi] is introduced as the height component in the cone expression of Ljoint
i ,

the 3D space caused by Ljoint
i can be presented as Equation (22).

Ljoint
i = (

(hi−w)ujoint
i

hi
, (hi−w)vjoint

i
hi

, w) (22)

The 3D light beam shape extraction procedure presented by Section 2.1.3 is simplified in the stage
Equation (23). For the simplicity of the subsequent presentations, function Occ is introduced to cover
the 3D light beam shape extraction procedure for the occupied 3D cone shape Ljoint

i based on the

corresponding joint position Spjoint
i and the light source position Si.

Ljoint
i = Occ(Spjoint

i , Si) (23)

Then, for multiple light beams Ljoint
i generated by different light sources Si, Mpjoint is the shared

subset for all reconstructed Ljoint
i . Thus, the 3D position Mpjoint can be generated based on the

intersection of all reconstructed Ljoint
i as shown in Figure 3a. suml is the sum of light sources in

the scenario.

Mpjoint =
sumS⋂
i=1

Ljoint
i (24)

Figure 3a demonstrates the recovery of neck joint area Mpneck based on two related shadow areas
Spneck

a and Spneck
b generated by light sources Sa and Sb.

Finally, 3D human skeleton Sk with multiple joint positions is synthesized by calculating Mpjoint

joint by joint.
Figure 3b presents the skeleton synthesis procedure of a human being based on human shadow

information under a multi light source scenario. The illustrated human skeleton synthesis procedure
is presented in Algorithm 2 and simplified in Equation (25).
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Sk = Syn({Shi}, {Si}) (25)

However, there are two restrictions for the deployment of the basic theory:

• Condition (1) Two or more light sources are required in the scene.
• Condition (2) Relative angular positions between human body and different light sources should

be different.

(a)
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Figure 3. Demo of SSSE in a multiple light source scenario: (a) A simulated dual light source scenario.
Spneck

a and Spneck
a are the joint areas of the neck position in the shadows projected by light source a and

b, respectively. Similarly, light beams Lneck
a and Lneck

b are generated by light sources a and b, respectively.
The enclosure Mpneck is the intersection area of Lneck

a and Lneck
b . (b) Scenario reconstruction.

Algorithm 2: Human skeleton synthesis procedure under multiple light source scenario
Input: {Shi}: 2D human shadow contour on the ground surface.

{Si} :3D positions of multiple light sources {(ui, vi, hi)}.
Output: Sk: 3D human skeleton synthesis based on seven major joint positions.

1 foreach Si = (ui, vi, hi) do
2 Di = Pre(Shi)
3

{
Spjoint} = Loc

(
Shi, Di

)
4 Ljoint

i = (
(hi−w)ujoint

i
hi

, (hi−w)vjoint
i

hi
, w) , w ∈ [0, hi]

5 end
6 foreach joint do

7 Mpjoint =
suml⋂
i=1

Ljoint
i

8 end
9 Sk = {Mpjoint}

2.2. Skeleton Simulation in Single-Light-Source Scenario

The basic theory introduced in Section 2.1 is only effective in scenes containing two or more
shadows generated by multiple light sources. For single light source scenarios, only one shadow is
generated in each captured frame. In order to extend the proposed basic theory in single light source
scenarios, a video sequence instead of a single frame is taken into consideration. Human shadow
contours are footnoted with time coordinate t in this part. The extension solution is introduced below.
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2.2.1. Theoretic Proof of the Extension Solution in a Single Light Source Scenario

For every video sequence, the extension solution is based on two facts:

Temporal Distinguished Relative Position between Light Source and Human Body

In a sequence, the relative position between a moving human and a fixed light source keeps
changing. In other words, temporal discrete shadows Sht are generated by the light sources from
different relative positions θt towards the human. The temporal neighboring human shadows Sht

and Sht+1 are distinguished from each other because of different relative positions between the light
source S and the human body. For neighboring frames at time coordinates t and t + 1, it is clear that
θt 6= θt+1 and Sht 6= Sht+1.

Temporal Discrete Shadows for Same Human Pose

In order to categorize different frames based on the human poses, the 2D contour of human
body captured by a monocular camera is regarded as the human pose Pt at the time coordinate t.
As shown in Figure 4b, same human pose P0 appears repeatedly during an activity sequence. Since
each relative position between the light source and human body is different frame by frame, multiple
frames sharing the same human pose P0 can be found. Each frame owns different shadows Sht and
projection angles sθt. In an activity sequence, all the human shadows Sht sharing the same human pose
P0 are categorized into the set {Sht}. For different human shadows Sht ∈ {Sht}, their corresponding
relative position angles θt are distinguished from each other. If multiple human shadows in {Sht}with
different projection angles θt are integrated in one single frame as shown in Figure 4b, condition (2)
of launching the basic theory proposed in Section 2.1 is satisfied. Through applying translation
transformations on each integrated frames to make the all human poses Pt spatially coincide with
the central pose Pjc , an artificial multiple light source scenario satisfying conditions (1) and (2) is
established as shown in Figure 4c.

(a) (b)

(c) (d)

Figure 4. Demo of SSSE procedure in a single light source scenario. (a) Pose classification based
on major joint positions; (b) Spatial–temporal discrete human poses belonging to same class;
(c) Temporal–spatial aggregation; (d) Three-dimensional (3D) human skeletonization.
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The simulated scenario makes it feasible to recover the skeleton of the shared pose Po in a single
light source scenario based on the basic theory proposed in Section 2.1.

2.2.2. Temporal–Spatial Aggregation Method

Before the deployment of human skeletonization, it is necessary to find shadows that share the
same human pose P0, yet have distinctive projection angles θt. Human pose classification and
temporal–spatial shadow aggregation are deployed to fit spatial coordinates of shadows in {Sht} with
the chosen central pose position Ptc .

Human Pose Classification

In order to analyses the human pose Pti at each time coordinate ti, the denoised distance curve
Dti between the human pose contour and human pose gravity center is extracted based on the same
method illustrated in Equation (19). Similarly, the stage Equation (26) covers the normalized distance
curve extraction procedure illustrated from Equation (16) to Equation (18). The function Pre presents
the extraction procedure for the normalized distance curve Dti based on the contour curve Pti .

Dti = Pre(Pti ) (26)

Based on the distance curve Dti , major peak point set {Jpk
ti
|k = 1, 2, 3} including head and

two feet are extracted from the captured human contour based on the same procedure presented in
Equation (20). Similar to the stage Equation (20), stage Equation (27) covers the major joint position
localization procedure illustrated in the Section 2.1.2. The function Loc presents the human joint
position extraction procedure for major joint position set {Jpk

ti
} based on the human contour Shti and

the corresponding distance curve Dti .

{Jpk
ti
} = Loc(Shti , Dti ) (27)

The positions of three peak points of the human pose contour are combined into a star feature to
describe the human pose in each frame [10,18]. Then unsupervised classification is adopted to assort
each frame with corresponding pose category label based on the star feature [19].

Cti = Lab({Jpk
ti
}) = j| arg min

j
(

3

∑
k=1

∑
Jpk

j
∈Pj

∥∥∥Jpk
ti
− Jpk

j

∥∥∥2
) (28)

Temporal–Spatial Shadow Aggregation

During the temporal-spatial shadow aggregation procedure shown in Figure 4c, temporal discrete
light sources are aggregated in a single frame. Normally, for multiple human poses, the human pose
Pti with median time coordinate ti is chosen as the central pose Pjc .

For each human pose Pti ∈ {Pj}, the translation transformation parameter Tti→jc is defined by the
vector between corresponding joint points in Pti and Pjc , satisfying the spatial transformation from Pti

to Pjc .
Noticeably, the joint positions Jpk

ti
and Jpk

jc are captured in the image coordinate plane. Before
calculating the translation transformation Tti→j in real-world coordinates, it is necessary to transform
the joint coordinates into the real- world coordinates Spk

ti
and Spk

jc based on the stage projection
transformation F((x, y), Amat) presented in Equation (14).

Spk
ti
= F(Jpk

ti
, Amat) (29a)

Spk
jc = F(Jpk

jc , Amat) (29b)
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−−−→
T(ti ,jc) =

1
2

3
∑

k=2

−−−−→
Spk

ti
Spk

jc = ∆u(ti ,jc)α + ∆v(ti ,jc)β (29c)

Ati→jc =

 1 0 0
0 1 0

∆u(ti ,jc) ∆v(ti ,jc) 1

 (29d)

As shown in Equation (29a), Spk
ti

is the extracted real-world human joint coordinates at the original
captured position. In Equation (29b), Spk

jc is the human joint coordinates at the destination position.

Then the translation vector
−−−→
Tti→jc is calculated based on the averaged horizontal translation vectors

from the original position to the destination position. As shown in Equation (29c), α and β are two
vertical unit vectors of the real-world coordinate system on the ground surface. The translation vector−−−→
Tti→jc is presented as a combination of translation components ∆u(ti ,jc) and ∆v(ti ,jc) in two vertical
directions. Based on the translation components ∆u(ti ,jc) and ∆v(ti ,jc), a translation transformation
matrix Ati→jc can be established for the translation calculation as shown in Equation (29d).

For the convenience of further illustration, the extraction procedure of matrix Ati→jc is simplified
in Equation (30). The function Par is introduced to present translation matrix extraction procedure
illustrated from Equation (29a) to Equation (29d).

Ati→jc = Par({Jpk
ti
}, {Jpk

jc}) (30)

In order to maintain a consistent expression system, the translation transformation is
presented in the same format with Equations (14) and (15). When the translation transformation
in Equations (31) and (32) is deployed synchronously on the light source Sti and human shadow
contour Shti for each frame, all the transformed human shadows Sh′ti

fit the spatial coordinates of the
central human pose Ptc in each simulated scenario.

Sh′ti
= F(Shti , Ati→jc) (31)

The position of light source Sti applies the same transformation Tti→jc along with the related
shadow Shti , simulating multiple light sources S′ti in the single frame.

S′ti
= f (S, Ati→jc) (32)

The temporal–spatial aggregation procedure illustrated above is presented in Algorithm 3.
With more than two positional distinctive light sources simulated in the same frame, the skeleton
synthesis procedure presented in Equation (24) can be applied on the simulated human shadow set
{Sh′ti

} and the corresponding light source set {S′ti
}. Based on Equation (33), the skeleton Sk jc of pose

Pjc can be synthesized under a single light source scenario as shown in Figure 4d. The detailed human
skeleton synthesis procedure under a single light source scenario is illustrated in Section 3.

Sk jc = Syn({Sh′ti
}, {S′ti

}) (33)



Appl. Sci. 2017, 7, 685 15 of 25

Algorithm 3: Temporal–spatial aggregation procedure
Input: ti: time coordinate for each frame;

Shti :human shadow on the ground surface in frame ti;
Pti : human pose in frame ti;
S: light source position;
{Jpk

jc}: joint position set of the central pose on the aggregation destination ;
Output: Sh′ti

: integrated human shadow Shti in the simulated scenario.
S′ti

: integrated light source position in correspondence with Sk′ti
.

1 foreach time coordinate ti do
2 Dti = Pre(Pti )

3 {Jpk
ti
} = Loc(Shti , Dti )

4 Cti = Lab({Jpk
ti
})

5 Ati→jc = Par({Jpk
ti
}, {Jpk

jc})
6 Sh′ti

= F(Shti , Ati→jc)

7 S′ti
= f (S, Ati→jc)

8 end

3. Proposed Method

Based on the basic theory and its extension introduced in Section 2, a normal single light source
scenario can support 3D human skeletonization. In this section, a five-step algorithm is proposed
according to the illustrated theory as shown in Figure 5. The procedure of the proposed method is
shown in Algorithm 4.

3D Joints Extraction

Skeleton Synthesis

Block-matrix based

3D Reconstruction

Shadow Silhouette 

Analyses

2D Joint Localization

Projection 

Transformation

Pose Classification

Temporal-spatial Aggregation

Figure 5. The flow chart of skeleton synthesis procedure based on SSSE.
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Algorithm 4: Skeleton synthesis procedure
Input: ti: time coordinate for each frame;
Shcti :captured human shadow in frame ti;
Pti : human pose in frame ti;
S: light source position;
{Sqsub}: the set of sub-blocks on the ground surface plane S
{MS

sub}: the marker position coordinate sets for sub-block Sqsub on S;
{MIm

sub}: the pixel coordinates set of {MS
sub} on the image coordinate plane.

Output: Skti :3D human skeleton corresponding to Shti at time coordinate ti
1 foreach Sqsub do
2 Asub = Par(MS

sub, MIm
sub)

3 end
4 Amat = {Asub}.
5 foreach Pti at ti do
6 Dti = Pre(Pti )

7 {Jpk
ti
} = Loc(Shti , Dti )

8 Cti = Lab({Jpk
ti
})

9 Ati→jc = Par({Jpk
ti
}, {Jpk

jc})
10 end
11 foreach Shcti at ti do
12 Shti = F(Shcti , Amat)
13 Sh′ti

= F(Shti , Ati→jc)

14 S′ti
= f (S, Ati→jc)

15 end
16 foreach Pose Category C do
17 Sk jc = Syn({Sh′ti

}, {S′ti
})

18 end
19 foreach ti do
20 Skti = Tjc→ti (Sk jc)
21 end

Pose Classification

In a human activity sequence captured under a single light source scenario, frames at different
time coordinates are classified based on human poses [8] on the captured frames. For each captured
human pose Pti at time coordinate ti, the denoised distance curve between contour points and the
gravity center of Pti can be extracted based on the method presented in Equation (19). The deployment
of the extraction method on the human pose Pti is presented in Equation (34).

Dti = Pre(Pti ) (34)

Based on the method presented in Equation (20), a major peak joint position set {Jpk
ti
} is extracted

from the human contour Pti , including the head position Jp1
ti

, the left foot position Jp2
ti

and right foot
position Jp3

ti
.

{Jpk
ti
} = Loc(Shti , Dti ) (35)

Based on the normalized peak joint positions, raw frames containing same class human poses
Pti is aggregated to the human pose category Pj based on the automatic unsupervised clustering
illustrated in Equation (28). Cti is the category label of human pose Pti as shown in Equation (36).

Cti = Lab({Jpk
ti
}) (36)
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Preprocess

The preprocess procedure transforms the captured shadow contour pixel coordinates Shcti into
the real-world coordinates Shti .

Before the preprocess of the first shadow contour Shcti , all the Asub ∈ Amat are calculated and
saved for further preprocess procedures. For each square unit area Sqsub, the related projection
parameter matrices Asub are calculated based on four real-world coordinates {MS

sub} and their
corresponding imaging coordinates {MIm

sub} based on Equation (12).
Based on the calibration matrix set Amat = {Asub}, the global projection transformation

F(Shcti , Amat) can be figured out. Based on the projection transformation presented in Equation (37),
captured human shadow contour pixel coordinates Shcti can be extracted from each of the raw frames
and transformed into the real-world coordinates Shti .

Shti = F(Shcti , A) (37)

Temporal–Spatial Aggregation

Preprocessed shadow contours Shti are aggregated according to category Pj of corresponding
human pose Pti . Nevertheless, the real-world coordinates of Pti ∈ Pj are spatially dispersed due to the
human movement as shown in Figure 4a. Thus it is necessary to aggregate shadow contours Shti of
the same central human pose Pjc to deploy precise joint position estimation.

For each pose category, one central human pose Pjc is set up as the aggregating destination for
other human shadow Shti related with Pti ∈ Pj.

The translation of each human shadow Shti is based on the translation transformation calibration
matrix Ati→jc . The translation transformation matrix is calculated based on the Equation (30). Since
the major peak joint position sets {Jpk

ti
} and {Jpk

jc} are obtained in the pose classification step,
the translation transformation calibration matrix Ati→jc can be extracted as shown in Equation (38).

Ati→jc = Par({Jpk
ti
}, {Jpk

jc}) (38)

Along with the 2D translation of each Shti , the corresponding 3D light source position Si is moved
with the identical translation as shown in Equation (39b). The aggregated human shadow Sh′ti

and
light source S′ti

offer the ideal multiple light source situation for 3D joint position estimation.
As shown in Figure 4b, when Pt2 is setup as the aggregating destination, other Shti are aggregated

to the aggregating destination through the 2D translation as shown in Equation (39a).

Sh′ti
= F(Shti , Ait→jc) (39a)

S′ti = f (S, Ait→jc) (39b)

Joint Position Estimation and Skeleton Synthesis

For each aggregated human shadow contour Sh′ti
, joint area estimation is launched based on

the algorithm introduced in the basic theory section. First of all, the gravity center G′ti
of curve Sh′ti

is calculated. Then, the denoised distance curve D′ti
between each point (x′ti

, y′ti
) ∈ Sh′ti

and G′ti
is

available based on the preprocess procedure illustrated in Section 2.1.2.

D′ti
= Pre(Sh′ti

) (40)

The 2D positions of major joint areas including head Sp′1i , neck Sp′2i , hip center Sp′3i , left keen
Sp′4i , right keen Sp′5i , left foot Sp′6i and right foot Sp′7i can be obtained through locating the peak and
nadir points in D′ti

.
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{Sp
′k
ti
} = Loc(Sh′ti

, D′ti
) (41)

In each simulated scenario, silhouette information extraction is applied to each joint area Sh′i_k.
In order to estimate the 3D joint position based on Sp′ti

, the ray set L′kti
connecting light source S′ti

and
joint shadow area Sp′ti

is simulated.

L′kti
= Occ(Sp

′k
ti

, S′ti
) (42)

Since more than two simulated light sources S′ti
exist in the scenario, silhouette information of

single joint area is extracted separately for each light sources. Based on all ray sets L′ti_k targeting at the

same joint, 3D joint position Mk
pj

can be calculated based on Equation (43).

Mpk
j =

suml⋂
i=1

L′kti
(43)

Repeating steps above for each major joints, 3D joint position set {Mpk
j } containing all

joint positions can be figured out. Then joint positions can be synthesized based on the
combination Equation (44).

Sk jc = {Mpk
j } (44)

In order to simplify the presentation in Algorithm 4, the illustrated joint position estimation and
skeleton synthesis procedure is simplified into Equation (45).

Sk jc = Syn({Sh′ti
}, {S′ti

}) (45)

Frame Integration

Repeating the above steps, synthesized 3D human skeletons Sk jc can be generated for all human
poses category by category. The kinematic model of skeleton Skpj contains seven major joints, including
head, neck, hip, both keens and both feet. The bones connecting particular joints are regarded as rigid
objects. Based on the pose classification result in the step (1), the time coordinate ti of each Pti ∈ Pj can
be tracked. Then, reassign synthesized human skeleton Sk jc to frame ti as Skti based on the reverse
translation transformation.

Skti = F−1(Sk jc , Ati→jc) (46)

4. Experimental Validation

In this section, the experimental data source and settings are illustrated first. Then the
effective range and precision of the proposed method are validated in comparison with the RGB-D
based method.

4.1. Data Source Description and Experimental Settings

The experiments are launched based on data captured by a Kinect RGB-D camera, containing
daily human activities. Captured sequences include both RGB frames and normal depth frames
captured by Kinect. Kinect extracts human skeleton automatically based on the combined information
of RGB frames and depth frames [15]. However, SSSE is deployed only on RGB frames captured by
the monocular RGB camera on Kinect.
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In each sequence captured for effective range validation, Kinect is set up at a static distance
from the human subject. The photographic distance increases from 1 m to 20 m with a fixed step
of 1 m. Sampled skeletonization results based on both methods at different distances are presented
in Figure 6a.

(a)

 Kinect RGB with SSSE

(b)

Figure 6. Experimental results. (a) A comparison of tracking results; (b) Effective ranges of RGB-D-based
results and SSSE-based results.

4.2. Effective Range and Precision Analyses

In order to validate the effectiveness of the proposed SSSE method and traditional RGB-D method,
two aspects including effective range and precision are evaluated. In the following, the effective
distance range is marked first. Then, the precision of six major 3D joint positions extracted by SSSE
is evaluated.

Effective Range

Effective range is defined as the distance between the sensor and human, which allows effective
human skeleton extraction. Effective human skeleton extraction in the effective range generates
valid human joint positions. For the RGB-D based method, each extracted joint position comes with a
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confidence index. Valid joints are joints with confidence above 0.7. For the SSSE method, valid joints are
extracted joints not affected by sheltering. In the following experiments, frames with all valid simulated
human joints are defined as effective frames. In order to obtain the effectiveness–distance relationship
of both methods, the shares of effective frames at different distance levels are measured. In addition,
1000 to 1200 frames containing 3D human skeletons sampled at each photographic distance from 1 to
20 m are evaluated for each method. For the RGB-D-based skeletonization procedure, effective frames
are automatically labeled based on the corresponding joint confidence. For an SSSE-based procedure,
effective frames are chosen based on the number of valid joints in each skeleton. The effectiveness
of both methods at the same distance can be represented by the shares of effective frames among all
frames. For each method, effective range covers photographic distances whose effectiveness exceed a
specified threshold.

The official parameter of Kinect [1,15] indicates the effective range of state-of-art Kinect result
is from 0.8 m to 3.5 m. Thus, the range of distance where effectiveness is above 0.8 is regarded as
the effective range. As shown in Figure 6b, the effective range of SSSE is 7–10 m. Note that the
effectiveness of SSSE decreases when photographic distance exceeds 10 m because of the limitation
of camera resolution. The experimental result in Figure 6a shows that SSSE can provide reliable 3D
human skeletonization at an effective range of 7–10 m, while Kinect is unable to extract human skeleton
information when the photographic distance exceeds 5 m.

Precision Evaluation

As with the effectiveness evaluation result mentioned above, the RGB-D-based method and SSSE
provide effective skeleton extraction results at different distance ranges. Precisions of all extracted
joints by SSSE are determined by the deviation values relative to corresponding ground truth joint
positions. In the precision evaluation procedure, two Kinects are setup for different purposes. Kinect
No.1 is set up 9 m way from human object, capturing RGB frames for human skeletonization based
on SSSE. Kinect No.2 is setup 3 m away from human object, capturing RGB-D frames along with
3D human skeletons simultaneously. Since 3 m is inside the effective range of the RGB-D-based 3D
skleletonization, the 3D joint positions captured by Kinect No.2 are valid joints, providing ground
truth for the deviation calculation. Based on the experimental scenario setup, 1546 frames are captured
simultaneously for both methods, of which 1345 effective frames are evaluated.

For each skeleton extracted from a effective frame, joint positions are normalized relative to the
hip center, avoiding deviation introduced by different shot distances.

Six major joints are considered in evaluation, including head, spine, both keens and both feet.
Figure 7 depicts the averaged precision evaluation result.

As presented in Figure 7, due to the larger scale of upper body shadow on the ground, relative
high deviations appear at joints of the head and spine, where averaged deviations reach 14.5 cm and
12.1 cm, respectively. For the remaining joints, the averaged deviations are around 4 cm and the highest
deviation remains below 8 cm. In summary, SSSE extracts joint positions in a reasonable precision
at 9 m away from the target human, compared with the ground truth Kinect skeletonization result
obtained at a position 6 m closer to the subject human.
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Figure 7. Deviation between SSSE-extracted joints and ground truth.

5. Discussion

Based on the experimental results in Section 4.2, an interesting phenomenon can be observed in
that the effective ranges of the proposed SSSE and traditional RGB-D method are highly complementary.
Thus, the fusion application of SSSE and traditional RGB-D method can provide wide range human
skeletonization for indoor and outdoor scenarios. In the fusion method, the traditional RGB-D method
and SSSE are deployed under different scenarios. For humans inside the effective range of RGB-D
cameras, the traditional RGB-D based skeletonization method can provide solid human skeleton
extraction method. For humans outside the effective range of RGB-D cameras, SSSE method can
redress the unreliable 3D joint positions appears in RGB-D skeletonization result. In order to evaluate
the fusion application effectiveness, a comparison between the reliable joint percentage of original
skeletons extracted by Kinect and redressed skeletons processed by SSSE is carried out in this section.
Reliable joints are defined as joints generated by SSSE not affected by sheltering, and joints generated
by Kinect with a confidence index above 0.7. On the contrary, unreliable joints are unavailable joints
affected by sheltering in SSSE methods, or joints generated by Kinect with confidence index under 0.7.
For better evaluation of the fusion application, Kinect is set up to skeletonize a human subject outside
its effective range.

The unreliable 3D joint positions in Kinect skeletonization result is redressed by SSSE
simultaneously. In total, 20 sets of experiments have been launched to evaluate the reliable joint
percentage enhancement.

5.1. Reliable Joint Percentage Enhancement

The enhancement of the reliable joint percentage is evaluated by determining the precisely
recovered joint rate JR and precisely recovered frame rate FR. As shown in Equation (6a)–(6c), NEj and
NE f are the unreliable joint number and relevant affected frame number, respectively. Nrj is the
number of total recovered unreliable joint positions after deploying the SSSE procedure, while Erj is
the number of inaccurately recovered joints. From the aspect of frame statistics, Nr f is the total number
of recovered frames and Er f is the number of frames containing inaccurately recovered joints.

JR =
Nrj − Erj

NEj

FR =
Nr f − Er f

NE f

(47)
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The 20 test sets presented in Table 1 indicate that more than four-fifths of all unreliable joints are
successfully redressed based on the proposed SSSE method, and more than three-quarters of all frames
containing unreliable joint skeletonization results are accurately fixed. Based on the experimental
results above, the fusion application of SSSE and traditional RGB-D method proved effective in reliable
joint percentage enhancement.

Table 1. Result of unreliable joint position redress. JR is the precisely recovered joint rate. FR is the
precisely recovered frame rate. NEj is the number of unreliable joints. NE f is the number of frames
affected by unreliable joints. Nrj is the number of total recovered unreliable joint. Erj is the number of
inaccurately recovered joints. Nr f is the total number of recovered frames. Er f is the number of frames
containing inaccurately recovered joints.

Test Set Joints Frames

Set No. JR NEj Nrj Erj FR NE f Nr f Er f

1 0.8644 1221 1111 56 0.7923 1385 1291 194
2 0.8554 1666 1516 91 0.7943 1218 1125 158
3 0.8357 1654 1519 137 0.8603 1293 1236 124
4 0.8636 1632 1532 123 0.8410 1377 1316 158
5 0.8391 1913 1764 159 0.7705 1176 1066 160
6 0.8929 1404 1348 94 0.7606 1198 1072 161
7 0.8816 1985 1842 92 0.8170 1048 973 117
8 0.8303 1254 1096 55 0.8189 1383 1287 154
9 0.8476 1907 1796 180 0.8264 1346 1236 124
10 0.8374 1516 1395 126 0.7877 1132 1049 157
11 0.7664 1944 1817 327 0.7190 1228 1132 249
12 0.7254 1135 992 169 0.7209 1063 970 204
13 0.7480 1446 1319 237 0.7092 1242 1159 278
14 0.7234 1129 996 179 0.6987 1037 941 216
15 0.7282 1076 944 160 0.7419 1247 1171 246
16 0.8029 1561 1492 239 0.7348 1269 1211 279
17 0.8113 1959 1892 303 0.7542 1414 1333 267
18 0.7999 1562 1470 221 0.6861 1138 1041 260
19 0.7806 1599 1486 238 0.6800 1039 942 236
20 0.7849 1589 1521 274 0.7445 1182 1100 220

Total 0.8149 31152 28848 3460 0.7655 24415 22651 3962

5.2. Computational Cost Evaluation

The simultaneous collaboration between the RGB-D skeletonization method and proposed
SSSE method is crucial for the real-time deployment of the fusion application. Thus, limiting the
computational cost is essential for the effectiveness of the fusion method. The test platform is a
mainstream personal laptop connected with the first generation Kinect, equipped with one Intel Core
i7 central processing unit (CPU) and 16 Gigabyte of random access memory (RAM). Two indicators,
i.e., maximum process capability per second and single frame delay are concerned in order to evaluate
the computational cost. This evaluation test aims to process as many frames as the computational
capability allows based on the proposed method. The computation cost efficiency of the fusion
application is determined by the number of frames processed per second. As shown in Figure 8,
the stable maximum process capability remains around 25 frames per second after the initial stage
where less than 10 frames are processed per second. The experimental result indicates that the fusion
application is feasible for real-time deployment based on its stable maximum process capability.
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Figure 8. Maximum process capability test.

6. Conclusions

In this paper, we proposed a shadow silhouette-based skeleton extraction (SSSE) method. SSSE
extracts three-dimensional human skeleton based on the human shadow information on the ground.
Specifically, the proposed SSSE method comprises the following:

(1) A block matrix-based projection transformation is proposed, allowing the reconstruction of
precise shadow silhouette information from human shadow captured by monocular camera.

(2) A silhouette shadow-based human skeleton extraction method is proposed. The proposed
SSSE method extracts 3D positions of seven major joints in the human skeleton based on the
reconstructed human shadow silhouette information and light source position.

(3) A temporal–spatial integration algorithm for discrete shadow silhouette information is proposed,
empowering the SSSE-based human skeletonization in single light source scenario.

As shown in Table 2, compared with the traditional RGB-D human skeletonization method and
other mono-RGB method, the proposed SSSE method has the following advantages:

(1) The SSSE method can be deployed in large-scale outdoor scenarios where traditional 3D human
skeletonization algorithms are not effective.

(2) the SSSE method is capable of extracting human skeleton from frames shot by any normal
monocular camera.

(3) The SSSE method can be deployed in stretching the effective range of traditional RGB-D
skeletonization method in the fusion application.

Table 2. Comparison between external sensor information-based quadcopter monitoring methods.

Methods Device Effective Output Joint
Requirement Range Re Format Numbers

SSSE Single RGB Camera 7.0 m <Re < 10 m Human Skeleton 7
Traditional RGB-D Method [20] RGB-D Camera 0.8 m < Re < 3.5 m Human Skeleton 20
SSSE and RGB-D Fusion RGB-D Camera 0.8 m <Re < 10 m Human Skeleton 7 to 20
Jafari’s RGB-D method [16] RGB-D Camera Not Available (N/A) Human Voxel 0
Yang’s mono-RGB method [6] Multiple RGB Cameras N/A Partial Voxels 0

For traditional outdoor surveillance systems, the limited 8-Bit color depth in the analogy
transmission system restricts the precision of depth information. Based on the proposed SSSE method,
precise 3D human skeleton activities can be extracted at any monitoring terminal. The extracted 3D
human skeleton activities will enrich the information for surveillance video analyses, empowering
convenient 3D scenario reproduction. Because of the simplicity in device requirement and the
compatibility with the traditional surveillance network, the proposed SSSE is an ideal upgrade solution
for a traditional surveillance system without extra hardware expenditure.
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In conclusion, SSSE offers an extra choice for 3D human skeletonization other than depth
camera, wearable sensors, or illuminator array, laying down a milestone to deploy in-lab human
skeleton-related methods [6,16,20] in outdoor scenarios with normal photographic devices. Based on
the unique outdoor merits provided by SSSE, we will focus our future research on applications of SSSE
on outdoor surveillance and unmanned aerial vehicle navigation.
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