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Abstract: Perfect structural periodicity is disturbed in presence of imperfections. The present
paper is based on a realistic modeling of imperfections, using uncertainties, to investigate the
robustness of the collective nonlinear dynamics of a periodic coupled pendulums chain. A generic
discrete analytical model combining multiple scales method and standing-wave decomposition is
proposed. To propagate uncertainties through the established model, the generalized Polynomial
Chaos Expansion is used and compared to the Latin Hypercube Sampling method. Effects of
uncertainties are investigated on the stability and nonlinearity of two and three coupled pendulums
chains. Results prove the satisfying approximation given by the generalized Polynomial Chaos
Expansion for a significantly reduced computational time, with respect to the Latin Hypercube
Sampling method. Dispersion analysis of the frequency responses show that the nonlinear aspect of
the structure is strengthened, the multistability domain is wider, more stable branches are obtained
and thus multimode solutions are enhanced. More fine analysis is allowed by the quantification
of the variability of the attractors’ contributions in the basins of attraction. Results demonstrate
benefits of presence of imperfections in such periodic structure. In practice, imperfections can be
functionalized to generate energy localization suitable for several engineering applications such as
vibration energy harvesting.

Keywords: nonlinear coupled pendulums; collective dynamics; robustness analysis; polynomial
chaos expansion

1. Introduction

In structural mechanics as well as in practically all fields of engineering, the periodicity
characterizes the structuring of many systems such as layered composites, crystal lattices, bladed
disks, turbines, multi-cylinder engines, ship hulls, aircraft fuselages, micro and nanoelectromechanical
systems, etc. Periodicity implies an infinite or finite geometrical repetition of a unit cell in one, two or
three dimensions and requires appropriate approaches to investigate it. Under the hypothesis of
perfect periodicity, many works provided interesting insights in the behavior of these structures. In
the context of wave propagation in periodic structures, the basic works performed in linear case
by Brillouin [1] and Mead [2] are based on the Floquet’s principle or the transfer matrix in order to
compute propagation constants. Based on the transfer matrix theory, a combination of wave and
finite element approaches was proposed by Duhamed et al. [3] and used later by Goldstein et al. [4]
to calculate forced responses of waveguide structures. Casadei et al. [5] developed analytical and
numerical models based on the transfer matrix approach to investigate the dispersion properties
and bandgaps of a beam with a periodic array of airfoil-shaped resonating units bonded along
its length. Using the Floquet-Bloch’ theorem, Gosse et al. [6] completely described the behavior
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of a heat exchanger periodic structure only from the vibroacoustic knowledge of the basic unit.
Collet et al. [7] extended the analysis to two-dimensional periodic structures with complex damping
configurations and underlined the reduced computational costs allowed by the Floquet-Bloch’ theorem
when representing whole structures by unit cell modeling. Recently, Droz et al. [8] combined the Wave
Finite Element Method (WFEM) with Component Mode Synthesis (CMS) to evaluate the dispersion
characteristics of two-dimensional periodic waveguides.

On the other hand, the wave propagation becomes considerably complicated when the governing
wave equation contains nonlinear terms (i.e., contact, material or geometric nonlinearity). In this case,
complex phenomena such as localization, solitons and breathers arise and traditional Floquet-Bloch
and transfer matrix wave analyses are no longer applicable. In literature, other methodologies are
developed to deal with nonlinear periodic structures such as perturbation approaches. For instance,
Chakraborty and Mallik [9] investigated the harmonic wave propagation in one-dimensional
periodic chain consisting of identical masses and weakly non-linear springs through single-frequency
harmonic balance. They used a perturbation approach to calculate the propagation and attenuation
constants. A straightforward perturbation analysis is applied by Boechler et al. [10] to investigate
amplitude-dependent dispersion of a discrete one-dimensional nonlinear periodic chain with Hertzian
contact. Otherwise, as an alternative to perturbation approach for strongly nonlinear systems,
Georgiades et al. [11] proposed a combination of shooting and pseudo-arc-length continuation to
examine nonlinear normal modes and their bifurcations in cyclic periodic structures. Moreover, Lifshitz
et al. used a secular perturbation theory to calculate the response of a coupled array of nonlinear
oscillators under parametric excitation in [12] and of N nonlinearly coupled micro-beams in [13]
using discrete models. The method of multiple scales is used by Nayfeh [14] to construct a first-order
uniform expansion in the presence of internal resonance for the governing equations of parametrically
excited multi-degree-of-freedom systems with quadratic nonlinearities. Using the same methodology,
Bitar et al. [15] investigated the collective dynamics of a periodic structure of coupled nonlinear
Duffing-Van Der Pol oscillators under simultaneous parametric and external excitations. An analytico
computational model was used to compute the frequency responses and the basins of attraction of two
and three coupled oscillators. The authors demonstrated the importance of the multimode solutions
and the robustness of their attractors. The multiple scales method was also used by Gutschmidt
and Gottlied [16] in a continuum-based model to investigate the dynamic behavior of an array of N
nonlinearly coupled micro-beams. Furthermore, Manktelow et al. [17] used the multiple scales method
to investigate wave interactions in monoatomic mass-spring chain with a cubic nonlinearity. In [18],
the method was combined with a finite-element discretization of a single unit cell, to study the wave
propagation in continuous periodic structures subject to weak nonlinearities. The authors proposed
later robust tools for wave interactions analysis in diatomic chain with two degrees of freedom
per unit cell [19]. Recently, Andreassen et al. [20] studied the wave interactions in a periodically
perforated plate through the two-dimensional dispersion characteristics, group velocities and internal
resonances investigation. Romeo and Rega [21] identified the regions of existence of discrete breathers
and guided their analysis using the nonlinear propagation region of chain of oscillators with cubic
nonlinearity exhibiting periodic solutions. Furthermore, using the idea of harmonic balance in the
periodic structures inspired from [9] the Harmonic Balance Method (HBM) was combined with
multiple scales method in [22] in order to study the attenuation caused by weak damping of harmonic
waves through a discrete periodic structure. The HBM was later used by Narisetti et al. [23] to
analyze the influence of nonlinearity and wave amplitude on the dispersion properties of plane waves
in strongly nonlinear periodic uniform granular media. Particularly, periodic coupled pendulum
structure has been the purpose of several researches in literature. Marlin [24], for instance, proved
several theorems on the existence of oscillatory, rotary, and mixed periodic motions of N coupled
simple pendulums. Khomeriki and Leon [25] demonstrated numerically and experimentally the
existence of three tristable stationary states. Jallouli et al. [26] investigated the nonlinear dynamics
of a two-dimensional array of coupled pendulums under parametric excitation and, recently [27],
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the energy localization phenomenon in an array of coupled pendulums under simultaneous external
and parametric excitations by means of a nonlinear Schrodinger equation. The authors show that
adding an external excitation increases the existence region of solitons. Bitar et al. [28,29] investigated
the collective nonlinear dynamics of perfectly periodic coupled pendulum structure under primary
resonance using multiple scales and standing-wave decomposition. The authors studied the effects
of modal interactions on the nonlinear dynamics. They highlighted the large number of multimode
solutions and the bifurcation topology transfer between the modal intensities, in frequency domain.
The analysis of the Basins of attraction illustrated the distribution of the multimodal solutions which
increases by increasing the number of coupled pendulums. A detailed review was presented by
Nayfeh et al. [30] dealing with the influence of modal interactions on the nonlinear dynamics of
harmonically excited coupled systems. Besides, the study of collective nonlinear dynamics of coupled
oscillators may serve to identify the Intrinsic Localized Modes (ILMs). ILMs are defined as localizations
due to strong intrinsic nonlinearity within an array of perfectly periodic oscillators. Such localization
phenomenon was studied by Dick et al. [31] in the context of microcantilever and microresonator
arrays. Authors used the multiple scales method and other methods to construct nonlinear normal
modes and suggested to realize an ILM as a forced nonlinear vibration mode.

It is important to note that the dynamic analysis of periodic structures is greatly simplified
by assuming perfect periodicity. However, far from this mathematical idealization, imperfections,
which can be due to material defects, manufacturing defaults, structural damage, ageing, fatigue, etc.,
and which reflect the reality of systems, can perturb the perfect arrangement of cells in a structure
and change significantly the dynamic behavior from the predictions done under perfect periodicity
hypothesis. In literature, primary works dealing with the issue of presence of imperfections in
periodic structures treat it under the framework of disorder. Kissel [32], for instance, investigated
the effects of disorder in one-dimensional periodic structure using Monte Carlo (MC) simulations.
He used a transfer matrix modeling and the limit theorem of Furstenberg to compute products of
random matrices for structures carrying a single pair of waves and the theorem of Oseledets for those
carrying multiplicity of wave types. The results show that disorder causes wave attenuation and
pronounced spatial localization of normal modes at frequencies near the bandgaps of the perfectly
periodic associated structure. Statistical investigation of the effect of disorder on the dynamics of
one-dimensional weakly/strongly coupled periodic structures, using the MC method, was carried
out by Pierre et al. [33]. The effect of disorder is evaluated through the statistics of the localization
factor reflecting the exponential decay of the vibration amplitude. An extension of the analysis
from single degree of freedom bays to multimode bays which are more representative of periodic
engineering structures was then presented in [34]. Impact of disorder on the vibration localization
in randomly mistuned bladed disks was also discussed by Castanier et al. in the review paper [35].
Statistical investigations were made using both classical and accelerated MC methods. With the aim of
computational cost saving of numerical analysis, CMS-based ROMs could then be used to calculate the
mistuned forced response for each MC simulation, at relatively low cost. Moreover, to study the effects
of the randomness of flexible joints on the free vibrations of simply-supported periodic large space
trusses, Koch [36] combined an extended Timoshenko beam continuum model, MC simulations and
first-order perturbation method. These works proved that the normal modes, which would be periodic
along the length of a perfectly periodic structure, are localized in a small region when periodicity is
perturbed. Moreover, Zhu et al. [37] studied the wave propagation and localization in periodic and
randomly disordered periodic piezoelectric axial-bending coupled beams using a finite element model
and the transfer matrix approach. The localization factor characterizing the average exponential rate of
decay of the wave amplitude in the disordered periodic structure was computed using the Lyapunov
exponent method. The authors proved that the wave propagation and localization can be altered by
properly adjusting the structural parameters.

In the context of disorder in periodic coupled pendulums structures, Tjavaras and
Triantafyllou [38] investigated numerically the effect of nonlinearities on the forced response of two
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disordered pendulums coupled through a weak linear spring. Disorder generates modal localization
and reveals large sensitivity to small parametric variations. In [39], the authors demonstrated that
an impurity introduced by longer pendulum in the chain of coupled parametrically driven damped
pendulums supporting soliton-like clusters expands its stability region. Whereas impurity introduced
by shorter pendulum defects simply repel solitons producing effective partition of the chain. Hai-Quing
and Yi [40] developed a discrete theoretical model based on the envelope function approach to study
analytically and numerically the effect of mass impurity on nonlinear localized modes in a chain of
parametrically driven and damped nonlinear coupled pendulums. The influence of impurities on the
envelope waves in a driven nonlinear pendulums chain has been investigated numerically under a
continuum-limit approximation in [41] and then experimentally in [42].

Design of engineering structures with periodicity, nonlinearity and uncertainty is a complex
challenge and the main aim of this work is to deal with. Under the hypothesis of small imperfections,
the collective dynamics and the localization phenomenon due to the weak coupling of components is
preserved. To investigate the collective dynamics of perfectly periodic nonlinear N degrees of freedom
systems and control modal interactions between coupled components, previous works [12,15,28,29]
proposed discrete analytical models combining the multiple scales method and standing-wave
decomposition. The main objective of the present work is to extend these methodologies to the
presence of imperfections by proposing a more generic discrete model. If, in particular, imperfections
are taken into account in a probabilistic framework as parametric uncertainties modeled by random
variables, uncertainty propagation methods must be applied. Uncertainties are thus propagated
through the proposed generic model to evaluate the robustness of the collective dynamics against
the randomness of the uncertain input parameters. The established generic discrete analytical model
leads to a set of coupled complex algebraic equations. These equations are written according to the
number and positions of the imperfections in the structure and then numerically solved using the
Runge-Kutta time integration method. To propagate uncertainties through the established model,
the statistical Latin Hypercube Sampling (LHS) method [43] is used as a reference with respect to
which the efficiency of the generalized Polynomial Chaos Expansion (gPCE) [44,45] is evaluated.

Uncertainty effects on the nonlinear dynamics of two and three coupled pendulums chains are
investigated in this paper. Dispersion analyses of the frequency responses, in modal and physical
coordinates, and the basins of attraction are carried out. Moreover, in order to highlight the complexity
of the multimode solutions in terms of attractors and bifurcation topologies, a thorough analysis
through the basins of attractions is performed. The robustness of the multimode branches against
uncertainties around a chosen frequency in the multistability domain is investigated.

2. Mechanical Model

Figure 1 illustrates a generic structure for N coupled pendulums of identical length l, mass m. and
viscous damping coefficient c generated by the dissipative force acting on the supporting point of each
one. The pendulums are coupled by linear springs of stiffness k and are subject to an external excitation
f cos(Ωt) each one. The inclination angle φn. from the equilibrium position quantifies the rotational
displacement of the nth pendulum. Applied boundary conditions are such as the pendulum labeled 0.
and N + 1 are fixed so that φ0 = φN+1 = 0. The periodicity of the structure is broken by presence of
p pendulums containing parametric uncertainties which can, for instance, be the pendulum’s length
ls as illustrated in Figure 1.
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In perfect periodicity case, one can refer to works performed in [12,15,28,29] to investigate the
collective dynamics of the periodic nonlinear coupled-pendulums chain. Nevertheless, such analyzes
are no longer suitable if periodicity is disturbed. The main objective of the present work is to propose
a generic model which is adapted to the presence of uncertainties.

Uncertainties are supposed to affect structural input parameters, here some pendulums’ lengths,
and to vary randomly. A probabilistic modeling of uncertainties, by random variables, is used and
implies applying stochastic uncertainty propagation methods to evaluate the effect of the randomness
in structural input parameters on the collective dynamics of the nonlinear coupled-pendulums chain.

Developing the generic model, through which uncertainties will be propagated, is based on the
fact that the pendulums behave in different ways, depending on the position of each one with respect
to uncertainties localization. Indeed, the equations of motion of the system are written according to
the number and positions of uncertainties in the structure.

2.1. Equations of Motion

Applying the Lagrange approach leads to the equation of motion of the nth pendulum:

..
φn + cn

.
φn + ω2

nφn + knLc(φ, φ̃) + αnφn
3 = fn cos(Ωt), (1)

where cn = c
m , kn = k

ml2 , αn = − g
6l , fn = f

ml2 if the nth pendulum is deterministic and cn = c
m ,

kn = k
mls2 , αn = − g

6ls
, fn = f

mls2 if the length of the nth pendulum, of stochastic displacement φ̃n,
is uncertain.

Since linear coupling between pendulums is very weak and small imperfections are considered,
each angular frequency ωn is supposed to be equal to the eigenfrequency ω0 (ωn = ω0 =

√
g/l).

The linear coupling term Lc(φ, φ̃) depends on the positions of the stochastic pendulums in the
chain. If stochastic pendulums are not adjacent, four different configurations are distinguished:

a. If the concerned pendulum is deterministic as well as its neighbors, Lc(φ, φ̃) = 2φn−φn−1−φn+1;
b. If the concerned pendulum is deterministic but the previous one is stochastic, Lc(φ, φ̃) = 2φn −

φ̃n−1 − φn+1;
c. If the concerned pendulum is deterministic but the following is stochastic, Lc(φ, φ̃) = 2φn −

φn−1 − φ̃n+1;
d. If the stochastic pendulum is concerned, the deterministic displacement φn is replaced by the

stochastic one, φ̃n, in Equation (1) such as

..
φ̃n + cn

.
φ̃n + ω2

0φ̃n + knLc(φ, φ̃) + αnφ̃3
n = fn cos(Ωt), (2)

and Lc(φ, φ̃) = 2φ̃n − φn−1 − φn+1, in this case.
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The displacement φn can be expressed as a sum of standing wave modes with slowly varying
amplitudes [12,15,28,29]. Taking into account the boundary conditions φ0 = φN+1 = 0, the standing
wave modes are:

un = sin(nqm) with qm =
mπ

N + 1
, m = 1 . . . N. (3)

The displacement φn of the nth pendulum is thus expressed as

φn =
N

∑
m=1

Amsin(nqm)exp(iω0t) + c.c.︸ ︷︷ ︸
φn0

+ ε φn1, (4)

if it is deterministic, and as

φ̃n =
N

∑
m=1

Ãmsin(nqm)exp(iω0t) + c.c.︸ ︷︷ ︸
φ̃0n

+ ε φ̃1n, (5)

if it is affected by uncertainties.

2.2. Multiple Scales Method Applied to Stochastic Model

The multiple scales method [46,47] consists on replacing the single time variable by an infinite
sequence of independent time scales (Ti = εi t), where ε is a dimensionless parameter assumed to be
small, and eliminating secular terms in the fast time variable T0 = t.

Limiting the study to a first order perturbation, (T = T1 = ε1 t), Equation (1) takes the form

..
φn + ε cn

.
φn + ω2

0φn + ε Lc(φ, φ̃) + ε αnφn
3 = ε fn cos(Ωt), (6)

where the excitation frequency Ω is expressed as: Ω = ω0 + ε σ, σ being the detuning parameter.
The solution of Equation (6) can generally be given by a formal power series expansion:

φn = ∑i εiφni. Up to the order ε1, the solution is of the form

φn = φn0 + ε φn1. (7)

Its derivatives are given by

.
φn =

dφn

dt
= φ

(0,1)
n0 + ε

[
φ
(1,0)
n0 + φ

(0,1)
n1

]
, (8)

..
φn =

d2φn

dt2 = φ
(0,2)
n0 + 2 ε φ

(1,1)
n0 + ε φ

(0,2)
n1 , (9)

with φ
(0,1)
n0 = ∂φn0

∂t , φ
(0,2)
n0 = ∂2φn0

∂t2 , φ
(1,0)
n0 = ∂φn0

∂T et φ
(1,1)
n0 = ∂2φn0

∂t∂T .
Substituting Equations (7)–(9) into Equation (6) and separating the terms with different orders

of ε, one obtains a hierarchical set of equations. For the order ε0, an unperturbed equation is obtained

..
φn0 + ω2

0φn0 = 0. (10)

The solution of Equation (10), which appears in every order in the expansion of the approximate
solution, is expressed as

φn0 = An exp(iω0t) + c.c. (11)
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for the order ε1, one obtains an equation of the form

φ
(0,2)
n1 + ω2

0φn1 + cnφ
(0,1)
n0 + 2φ

(1,1)
n0 + kn(2φn0 − φn0−1 − φn0+1) + αnφ3

n0=
fn

2
exp[i(ω0t + σT)]. (12)

Substituting Equations (4) and (5) into Equation (12) leads to N equations of the form

φ
(0,2)
n1 + ω2

0φn1 =
N

∑
m=1

(
mthsecular terms

)
eiω0t + other terms, (13)

where the secular terms (coefficients of eiω0t) should be equated to zero to satisfy the condition of
solvability of the multiple scales method. Projecting the response on the standing-wave modes implies
to multiply all terms by sin(nqm) and sum over n. Consequently, a generic complex equation of the
mth amplitude Am is obtained:

2iω0 A(1,0)
m + iω0cn Am + kn(2Am − cos[qm] ∗ Gm)

+S ∗ 2kn
N+1 ∑N

n=1 sin[nqm]∑N
x=1 cos[nqx]sin[qx](Ax − Ãx) +

3
4 αn ∑j,k,l Aj Ak A∗l ∆(1)

jkl,m−
1

(N+1) fn exp(iσT)∑N
n=1 sin[nqm] = 0,

(14)

where ∆(1)
jkl,m is the delta function [12,15] defined in terms of the Kronecker deltas as

∆(1)
jkl,m = δ−j+k+l,m − δ−j+k+l,−m − δ−j+k+l,2(N+1)−m

+δj−k+l,m − δj−k+l,−m − δj−k+l,2(N+1)−m
−δj+k+l,m − δj+k+l,2(N+1)−m − δj+k+l,2(N+1)−m,

(15)

with δv,w is the Kronecker delta equal to 1 if v = w and to 0 otherwise. The functions Gm and S are
defined in the Appendix A.

2.3. Uncertainty Propagation

To propagate uncertainties through the established model, one can use, in a probabilistic
framework, stochastic uncertainty propagation methods. Statistical methods, such as the MC
method [48] and the LHS method [43], are the most frequently used in the literature and are considered
as reference since they permit to achieve a reasonable accuracy. The LHS method consists on generating
a succession of deterministic computations

{
Am

(
ξ(n)

)
, n = 1, . . . , NLHS

}
according to a set of random

variables
{

ξ(n)
}NLHS

n=1
to approximate the mth amplitude Am. The LHS method permits to reduce the

computing time required by the very time-consuming MC method by partitioning the variability space
into regions of equal probability and picking up one sampling point in each region. Nevertheless,
it remains computationally unaffordable since the accuracy level is proportional to the number of
generated simulations. To overcome this prohibitive computational cost without a significant loss
of accuracy, the gPCE is used in this work [44,45]. The gPCE combines multivariate polynomials
and deterministic coefficients. Indeed, it approximates the mth amplitude Am using a decomposition,
practically truncated by retaining only polynomials terms with degree up to p:

Am =
P

∑
j=0

(Âm)jψj(ξ) = ÂT
mΨ(ξ); P + 1 =

(d + p)!
d!p!

, (16)

where (Âm)j are the unknown deterministic coefficients and ψj(ξ) the multivariate polynomials of d

independent random variables ξ = {ξi}d
i=1.
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Solving the gPCE consists on computing the deterministic coefficients (Âm)j. To do this, one can
use intrusive or non-intrusive approaches. The former implies model modifications. However the
latter considers the initial model as a black box. The regression approach is one of the most commonly
used non-intrusive methods. In its standard form, it consists in minimizing the difference between
the gPCE approximate solution and the exact solution. The latter is a set of deterministic solutions{

Am

(
ξ(n)

)
, n = 1, . . . , M

}
corresponding to M realizations of random variables Ξ =

{
ξ(n)

}M

n=1
forming an experimental design (ED). The approximate solution takes, consequently, the form

Âm =
(

ΨTΨ
)−1

ΨT Am = Ψ+Am, (17)

where Ψnj ≡
(

ψj

(
ξ(n)

))
n = 1, . . . , M
j = 0, . . . , P

is called the data matrix and Ψ+ is its Moore-Penrose

pseudo-inverse.
In order to ensure the numerical stability of the regression approximation, the matrix

(
ΨTΨ

)
must

be well-conditioned. Therefore, the ED should be well selected and have the size M ≥ P + 1.
The ED selection technique used in this work is based on two conditions:

(i) classification of all possible combinations of the roots of the Hermite polynomial of degree p + 1
so as to maximize the variable [49–51]:

ζM

(
ξ(n)

)
= 2π−d/2exp

(
−‖ ξ(n) ‖2

2

)
. (18)

(ii) minimization of the number:

κ =‖
(

ΨTΨ
)−1
‖ . ‖ ΨTΨ ‖, (19)

where ‖ . ‖ is the 1-norm of the matrix, in order to ensure that the invertible matrix ΨTΨ is
well-conditioned [51,52].

A number M of roots’ combinations, which verify the conditions in Equations (18) and (19), create
then the ED.

Statistical quantities, such as the first and second moments (the mean and the variance,
respectively), could then be calculated to quantify the randomness of the stochastic responses.

2.4. Solving Procedure

To solve Equation (14), a transformation of the complex amplitude to Cartesian form is needed:

Am = (am + ibm)exp(iσT). (20)

Substituting Equation (20) into Equation (14) and simplifying by exp(iσT), one can obtain two
generic equations for the real and imaginary parts of each amplitude Am:

a(1,0)
m = σ

2ω0
bm − cn

2 am − kn
2ω0

(2bm − cos[qm]Im(Gm))

−S ∗ 1
N+1

kn
ω0

∑N
n=1 sin[nqm]∑N

x=1 cos[nqx]sin[qx](bx − b̃x)

− 3
8

αn
ω0

∑j,k,l
[
ajakbl + bjbkbl

]
∆(1)

jkl,m,

(21)

b(1,0)
m = − σ

2ω0
am − cn

2 bm + kn
2ω0

(2am − cos[qm]Re(Gm))

+S ∗ 1
N+1

kn
ω0

∑N
n=1 sin[nqm]∑N

x=1 cos[nqx]sin[qx](ax − ãx)

+ 3
8

αn
ω0

∑j,k,l
[
ajakal + ajbkbl

]
∆(1)

jkl,m −
1

2(N+1)
fn

ω0
∑N

n=1 sin[nqm].

(22)
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consequently, 2N(p + q + d) coupled algebraic equations are obtained.
Solving analytically these equations is very difficult or even impossible, especially in presence

of uncertainties. To overcome this issue, numerical solving processes must be used. Subsequently,
two possible configurations occur regarding including or not the stability analysis. To solve similar
problem, Bitar et al. [15,29] applied the Asymptotic Numerical Method (ANM) [53–56] in graphical
interactive software named MANLAB [57] and included stability analysis. The complexity of the
study was underlined in presence of multiplicity of stable and unstable solutions. In the present work,
accounting for uncertainties increases the number of stable and unstable branches and thus makes the
solving ANM-based process very difficult, prohibitive or even impossible. To simplify the study, we
choose to limit the solving process to the computation of stable solutions and to apply the Runge-Kutta
time integration method to solve Equations (21) and (22).

3. Numerical Examples

Two numerical examples are considered in this section: two and three coupled pendulums chains.
To make clear presentation and discussion of each example, deterministic study is presented at first.
Stochastic results are then discussed compared to deterministic ones to evaluate the robustness of the
collective dynamics of the considered structures against uncertainties.

In deterministic case, the design parameters of the perfectly periodic structure are listed in
Table 1 [29].

Table 1. Design parameters of the periodic coupled pendulums chain.

m (kg) l (m) k (N·m) c
(
kg·s−1) f (N·m) ω0

(
rad·s−1)

0.25 0.062 9.10−4 0.16 0.01 12.58

In stochastic case, the length of the first pendulum is supposed to be uncertain and varies such as

l1 = l(1 + δlξl), (23)

where δl is a chosen dispersion level and ξl a lognormal random variable.
Uncertainty propagation through the generic discrete model is performed using the LHS method

and the gPCE. Effects of uncertainties on the collective dynamics of the structures are investigated
through statistical analyses of the dispersions of the frequency responses and the basins of attraction.

The problem is numerically time-consuming when using the Runge-Kutta time integration
method. It is also necessary to sufficiently refine frequency steps and vary initial conditions to
obtain more stable solutions, although it is difficult to cover all possible solutions. These constraints
impose minimizing as possible the number of samples for the LHS method. Therefore, 200 samples
are generated.

To apply the gPCE method, a fourth order expansion is used (p = 4). The length of the
first pendulum is considered to be an uncertain parameter (d = 1). Hence, (p + 1)d = 5 Hermite
polynomial roots are chosen, according to which 5 deterministic solutions are computed. Consequently,
the 200 samples required for the LHS method are reduced by 97.5%.

3.1. Example 1: Two Coupled Pendulums

Two coupled pendulums structure (N = 2) is considered here. 2N(p + q + d) = 8 algebraic
equations are generated with p = 1 stochastic pendulum, q = 1 deterministic pendulum
neighbor of the stochastic one and d = 0 since no deterministic pendulum in the structure has
deterministic neighbors.
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3.1.1. Deterministic Study

If uncertainty is not taken into account, p = 0, q = 0 and d = 1. Consequently, 4 algebraic
equations are generated. Deterministic responses in both modal and physical coordinates are illustrated
in Figure 2.

Appl. Sci. 2017, 7, 684  9 of 26 

Uncertainty propagation through the generic discrete model is performed using the LHS method 
and the gPCE. Effects of uncertainties on the collective dynamics of the structures are investigated 
through statistical analyses of the dispersions of the frequency responses and the basins of attraction. 

The problem is numerically time-consuming when using the Runge-Kutta time integration 
method. It is also necessary to sufficiently refine frequency steps and vary initial conditions to obtain 
more stable solutions, although it is difficult to cover all possible solutions. These constraints impose 
minimizing as possible the number of samples for the LHS method. Therefore, 200 samples are 
generated. 

To apply the gPCE method, a fourth order expansion is used ( = 4). The length of the first 
pendulum is considered to be an uncertain parameter ( = 1 ). Hence, ( + 1) = 5  Hermite 
polynomial roots are chosen, according to which 5  deterministic solutions are computed. 
Consequently, the 200 samples required for the LHS method are reduced by 97.5%. 

3.1. Example 1: Two Coupled Pendulums 

Two coupled pendulums structure (N= 2) is considered here. 2 ( + + ) = 8  algebraic 
equations are generated with = 1 stochastic pendulum, = 1 deterministic pendulum neighbor 
of the stochastic one and = 0 since no deterministic pendulum in the structure has deterministic 
neighbors.  

3.1.1. Deterministic Study 

If uncertainty is not taken into account, = 0, = 0 and = 1. Consequently, 4 algebraic 
equations are generated. Deterministic responses in both modal and physical coordinates are 
illustrated in Figure 2. 

 
(a) 

 
(b)

Figure 2. Deterministic (a) modal amplitudes | |  and | |  and (b) physical amplitudes  and 
 of the pendulums responses. 

A multiplicity of stable solutions is generated, in the multistability domain, by modal 
interactions [58] between the responses which are driven by the collective dynamics. Three stable 
solutions could thus be obtained at several frequencies in the multistability domain [59–61]. They are 

σ

-2 -1 0 1 2

|A
1
|²

0

0.1

0.2

0.3

0.4

0.5

0.6

σ

-2 -1 0 1 2

|A
2
|²

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

SM

DM

DM
SM-RB

SM-NRB

f (Hz)
1.6 1.8 2 2.2 2.4

φ
1
 (

ra
d)

0.2

0.4

0.6

0.8

1

1.2

1.4

f (Hz)
1.6 1.8 2 2.2 2.4

φ
2
 (

ra
d)

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 2. Deterministic (a) modal amplitudes |A1|2 and |A2|2 and (b) physical amplitudes φ1 and φ2

of the pendulums responses.

A multiplicity of stable solutions is generated, in the multistability domain, by modal
interactions [58] between the responses which are driven by the collective dynamics. Three stable
solutions could thus be obtained at several frequencies in the multistability domain [59–61]. They are
classified as Single (SM) and Double mode (DM) solutions. The only SM branch, presented by red
curve, corresponds to the null trivial solution of the second amplitude. Two SM branches are identified
for the first amplitude: resonant branch (SM-RB) and non-resonant branch (SM-NRB) (Figure 2a).
The DM branches, which are presented by blue curves, result from coupling between the pendulums.
A correspondence in term of bifurcation points between the amplitudes with respect to each branch
type is observed. It is generated by the bifurcation topology transfer. Identical physical responses
reflect the symmetry between the pendulums.

More detailed illustration of the bifurcation topology transfer between the amplitudes |A1|2

and |A2|2 is allowed by the basins of attraction. The robustness of the attractors, corresponding
to the multimode branches, and their contributions in the basins are investigated. In literature,
Bartuccelli et al. [62] illustrated numerically the basins of attraction of a plane pendulum under
parametric excitation. An experimental investigation of the basins of attraction of two fixed points of a
nonlinear mechanical nano-resonator was illustrated by Kozinsky et al. [63]. Sliwa et al. [64] studied
the basins of attraction of two coupled Kerr oscillators. Bitar et al. [15] studied the basins of attraction
of two and three coupled oscillators under both external and parametric excitations. The basins of
attraction are generally plotted in the phase plan (φ,

.
φ). In this work, the basins of attraction are
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plotted in the Nyquist plane (a, b) of real and imaginary parts of the responses amplitudes Am [15,29]
regarding the proposed solving methodology.

Fixing the detuning parameter on σ = −1, in the multistability domain, two and three stable
solutions are obtained for |A2|2 and |A1|2, respectively. Two and three attractors correspond to these
stable solutions, respectively, in the basins of attraction. Figure 3 illustrates the basins of attraction
plotted in the Nyquist plane ((a1)0, (b1)0) for (a2)0 = (b2)0 = 0.25.
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Figure 3. Basins of attraction of the deterministic amplitudes (a) |A1|2 and (b) |A2|2 in the Nyquist
plane ((a1)0, (b1)0) for σ = −1 and (a2)0 = (b2)0 = 0.25.

When |A1|2 jumps between SM-RB and SM-NRB, |A2|2 is stabilized on SM. Similarly,
a correspondence exists between the DM attractors. Subsequently, one can restrict the analysis
to the basins of attraction of |A1|2.

Varying the detuning parameter (σ = −1.2, σ = −1 and σ = −0.8), the contribution of each
attractor is illustrated quantitatively through the ratio of its size with respect to the global size of
the basins of attraction. For σ = −1.2, the most robust attractors correspond to the SM-NRB; they
dominate the basins with 52.5% of their total size, compared to 45.9% and only 1.6% for the SM-RB
and DM attractors, respectively. Nevertheless, the SM-NRB attractors vanish for σ = −0.8 and the
DM attractors become the most robust; their contribution is quantified by 64.5%, compared to a
contribution of 35.5% of the SM-RB. For σ = −1, Figure 3, the DM attractors also dominate the basins
of attraction; 60.9%. However, the contributions of the attractors of SM-RB and DM are quantified by
15.7% and 23.4%, respectively.

3.1.2. Stochastic Study

Impact of uncertainty is illustrated by the envelopes of the frequency responses amplitudes
computed using the LHS method and the gPCE, in generalized and physical coordinates, for two
dispersion levels: δl = 2% and δl = 5% (Figures 4–6).

In order to enable comparative study with deterministic responses, we use the initial conditions
fixed in deterministic case, in the multistability domain. The discontinuity of the envelopes is due
to the lack of initial conditions. Note that varying more the initial conditions makes computation
prohibitive and it still difficult to cover all possible solutions and so obtain smooth curves.

Increasing the dispersion level affects more the responses variability. All multimode branches
are larger in terms of amplitude and frequency. Consequently, the multimode solutions are enhanced
and the multistability domain is wider. The uncertainty effect on each pendulum response depends
on its position with respect to the stochastic one. The greatest impact is on the first pendulum
responses (larger envelopes) since it contains the uncertain parameter. The second one is less affected
by uncertainty. Modal localization is consequently generated on the first pendulum response.
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Figure 4. Envelopes of the amplitudes (a,b)
∣∣∣Ã1

∣∣∣2 and
∣∣∣Ã2

∣∣∣2 of the first pendulum modal response

and (c,d) |A1|2 and |A2|2 of the second pendulum modal response computed using the LHS and gPCE
methods, respectively, for δl = 2%.
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Figure 5. Envelopes of the amplitudes (a,b)
∣∣∣Ã1

∣∣∣2 and
∣∣∣Ã2

∣∣∣2 of the first pendulum modal response

and (c,d) |A1|2 and |A2|2 of the second pendulum modal response computed using the LHS and gPCE
methods, respectively, for δl = 5%.
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Figure 6. Envelopes of the amplitudes φ̃1 and φ2, of the pendulums physical responses computed, for
(a,b) δl = 5% and (c,d) δl = 5%, using the LHS and gPCE methods, respectively.

Table 2 and Figures 7 and 8 illustrate the uncertainty effects through the intervals of variation
of the amplitude (∆φ) and frequency (∆ f ) ranges of the multistability domain. These intervals are
computed between extreme bifurcation points, according to the example shown in Figure 7. φ̃1 is more
affected by uncertainty than φ2 since the first pendulum length is stochastic. More important variation
is detected on ∆ f than on ∆φ. The ratio ∆ f /∆φ shows that the nonlinearity of the first pendulum
response is strongly strengthened. Moreover, dispersion and nonlinearity are proportional.

Satisfying approximations are allowed by the gPCE with respect to the LHS method, considered
as reference. Good agreement between modal and physical responses is proved by small accuracy
errors. For δl = 5%, the gPCE errors increase, revealing the limits of the method against high level of
uncertainty. It is important to note that some errors result from the luck of initial conditions making
the detection of bifurcation points more difficult.
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Table 2. Stochastic amplitude and frequency ranges of the multistability domain, according to the SM
and DM, with respect to deterministic ranges.

Dof
SM DM

LHS gPCE LHS gPCE

2% 5% 2% 5% 2% 5% 2% 5%

∆ f (%)
1 204.17 356.25 204.17 343.75 182.50 267.50 167.50 253.75
2 106.25 97.92 106.25 97.92 103.75 107.50 103.75 107.75

∆φ (%)
1 120.86 133.14 118.49 132.69 113.57 123.13 110.11 123.55
2 120.86 118.34 116.12 118.05 103.19 99.72 103.05 99.31

∆ f
∆φ (%)

1 204.23 267.61 171.83 259.15 160.36 217.12 152.25 205.41
2 87.32 83.10 91.55 830 100.90 107.21 100.90 108.11

In presence of uncertainty, a set of solutions is generated by the LHS method or the gPCE.
Several basins of attraction are thus superposed. The envelopes of the attractors are quantified

by the overlapped areas. For δl = 2%, the envelopes of the attractors of
∣∣∣Ã1

∣∣∣2 (first pendulum),
computed using the LHS method, represent 64.57% of the basins. The gPCE approximation gives
62.34%. The envelopes of the attractors of |A1|2 (second pendulum) represent 9.67% of the basins
(gPCE: 8.97%). For δl = 5%, the impact of uncertainty is more important. Indeed, the basins of

attraction of
∣∣∣Ã1

∣∣∣2 are fully overlapped (100%). The size of the envelopes of the attractors of |A1|2,
computed by the LHS method, increases to 19.04%. The gPCE approximate it by 17.55%. The gPCE
gives a satisfying approximation of the basins’ envelopes, although errors proportionally increase with

dispersion level. The comparison of the envelopes of the basins of
∣∣∣Ã1

∣∣∣2 to those of |A1|2 highlights
the modal localization generated on the first pendulum response.

Moreover, 96.4% of CPU time reduction is achieved when applying the gPCE, with respect to
the LHS method. In fact, nearly 15.8 h are needed to compute the frequency responses using the LHS
method. However, less than 0.6 hours is required for the gPCE implementation. More important
time reduction ratio is achieved when computing the basins of attraction: 97.6%. Indeed, the 350.4 h
required by the LHS method are reduced to only 8.4 h needed for the gPCE implementation. Note
that all computations are made using Matlab on 8-Core Dual Processor with 64 GB of RAM (Random
Access Memory).

For more detailed dispersion analysis, the attractors of SM-RB, SM-NRB and DM are plotted

separately. The variability of the basins of attraction of
∣∣∣Ã1

∣∣∣2 is more important than the variability of

the basins of |A1|2, which illustrates modal localization on first pendulum response. The dispersion
of each attractor is illustrated by the variability of its contribution in the basins of attraction from a
minimal size (color defined for the considered attractor in the deterministic case illustrated by Figure 3)
to a maximal size bounded by the limit (white area) corresponding to other attractors’ contributions.

The envelopes are represented by black areas. Figure 9 shows the envelopes of the attractors of
∣∣∣Ã1

∣∣∣2,

for δl = 2%, computed using the gPCE. Since, the basins of
∣∣∣Ã1

∣∣∣2 are fully overlapped for δl = 5%,

Figure 10 illustrates the envelopes of the basins of |A1|2.
As shown in Figure 9, the DM attractors are the most robust. Table 3 compares the contributions

of the attractors of SM-RB, SM-NRB and DM in the basins of attraction in deterministic and stochastic
case (for δl = 2% and δl = 5%). Table 3 lists both minimal sizes and envelopes of the attractors.
Summing these two areas gives the global contribution of each attractor in the basins. Superposing the
envelopes of the attractors of SM-RB, SM-NRB and DM gives the global envelopes.

In deterministic case, the DM attractors of the first pendulum response are the most robust.
However, the contributions of the attractors of SM-RB and SM-NRB in the basins become more
important for δl = 2% and even more for δl = 5%. The SM-NRB attractors are in fact the most robust.
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The DM attractors of the second pendulum response remain the most robust. This evolution of the
attractors’ contributions in the basins of attraction is due to modal localization generated by presence
of uncertainty.

Table 3 proves that more accurate approximation of the variability of the basins of attraction is
obtained using the gPCE for lower dispersion level (δl = 2%, here). The gPCE approximations of the
basins of attraction are more affected than those of the frequency responses. The basins analysis is
indeed more thorough.
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Figure 9. Envelopes of the attractors of (a) SM-RB, (b) SM-NRB and (c) DM of the modal intensity

amplitude
∣∣∣Ã1

∣∣∣2 of the first pendulum response, in the Nyquist plane ((a1)0, (b1)0) for σ = −1 and
(a2)0 = (b2)0 = 0.25, computed using the gPCE method for δl = 2%.
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Figure 10. Envelopes of the attractors of (a) SM-RB, (b) SM-NRB and (c) DM of the modal intensity
amplitude |A1|2 of the second pendulum response, in the Nyquist plane ((a1)0, (b1)0) for σ = −1 and
(a2)0 = (b2)0 = 0.25, computed using the gPCE method for δl = 5%.

Table 3. Comparison of the contributions of the attractors of SM-RB, SM-NRB and DM in the basins
of attraction computed using the LHS and gPCE methods, for deterministic case (det), δl = 2% and
δl = 5%.

Modal Amplitude Attractor Det

Basins of Attraction Size (%)

LHS gPCE

ffil = 2% ffil = 5% ffil = 2% ffil = 5%

∣∣∣Ã1

∣∣∣2 (dof1)

Min
SM-RB 15.7 0 0 0 0

SM-NRB 23.4 8.39 0 8.93 0
DM 60.9 27.04 0 28.73 0

Envelope
SM-RB 0 43.93 100 42.29 100

SM-NRB 0 52.14 100 48.91 100
DM 0 63.97 97.86 51.52 72.41

|A1|2 (dof2)

Min
SM-RB 15.7 12.73 9.91 12.89 10.03

SM-NRB 23.4 22.13 21.75 22.20 22.16
DM 60.9 55.47 49.30 55.94 50.26

Envelope
SM-RB 0 6.81 11.55 6.32 11.04

SM-NRB 0 2.86 7.49 2.65 6.50
DM 0 9.67 19.04 8.97 17.55
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3.2. Example 2: Three Coupled Pendulums

Three coupled pendulums structure (N = 3) is considered in this section. If uncertainty is not
taken into account, 6 algebraic equations are generated (p = 0, q = 0 and d = 1). In stochastic
case, 2N(p + q + d) = 18 algebraic equations are generated with p = 1 stochastic pendulum, q = 1
deterministic pendulum neighbor of the stochastic one and d = 1 since one deterministic pendulum in
the structure has deterministic neighbors.

3.2.1. Deterministic Study

Deterministic modal and physical responses are illustrated by Figure 11. The symmetry between
the first and the third pendulum generates conformity between their physical responses.

Modal interactions and bifurcation topology transfer between the pendulums’ responses, which
are driven by the collective dynamics, generate up to six stable solutions at several frequencies in the
multistability domain. The obtained stable branches are classified as Double (DM) and Triple mode
(TM) solutions. The DM branches correspond to the solutions of the first and third amplitudes (red
curves), whereas the TM solutions result from the coupling between the pendulums (blue curves).
Three DM solutions (DM-RB, DM-NRB, DM-B1 and DM-B2) and two TM solutions (TM-B1 and TM-B2)
are obtained, Figure 11a. A correspondence in term of bifurcation points between the amplitudes with
respect to each branch type is observed. This is generated by the bifurcation topology transfer.
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Figure 11. Deterministic (a) modal responses amplitudes |A1|2, |A2|2 and |A3|2 and (b) physical
responses amplitudes φ1, φ2 and φ3, of the pendulums.

Figure 12 illustrates the contributions of the attractors of the six stable branches in the basins of
attraction. The basins are plotted for σ = −1, in the Nyquist plane ((a1)0, (b1)0) for arbitrary chosen
initial conditions (a2)0 = (b2)0 = 0.2 and (a3)0 = (b3)0 = 0.3. Figure 12 shows also the responses
amplitudes, which can be identified through the color bar.
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Figure 12. Basins of attraction of the deterministic amplitudes (a) |A1|2, (b) |A2|2 and (c) |A3|2 in the
Nyquist plane ((a1)0, (b1)0) for σ = −1, (a2)0 = (b2)0 = 0.2 and (a3)0 = (b3)0 = 0.3.

The bifurcation topology transfer between the responses generates a correspondence between
the attractors in the three basins of attraction. Indeed, when |A1|2 and |A3|2 jump between DM-RB,
DM-NRB, DM-B1 and MD-B2, |A2|2 is stabilized on DM. Moreover, a correspondence exists between
the TM attractors (TM-B1 and TM-B2) of the three pendulums responses.

The DM attractors are the most robust since they dominate the basins with 51% of their global size.
The contribution of the TM attractors is nearly similar (49%). Focusing on DM, the DM-B2 attractors,
occupying nearly 35% of the basins, are the most robust. Similarly, the TM-B2 attractor occupies 33%.
The lowest contribution is of the DM-RB attractors representing less than 2% of the global basins size.

3.2.2. Stochastic Study

The greatest impact of uncertainty is obtained on the first pendulum responses since it contains
the uncertain parameter. The second pendulum responses are less affected while the behavior of
the third pendulum remains deterministic, because no coupling terms relate its equation with the
one associated to the stochastic pendulum. Hence, the third pendulum responses are not presented
hereafter. Figures 13–15 illustrate the envelopes of the responses amplitudes in generalized and
physical coordinates, for δl = 5% and δl = 2%.

For δl = 5%, all branches are larger in terms of amplitude and frequency ranges. Consequently,
the multimode solutions are enhanced and the multistability domain is wider. Nevertheless, the
overlap of envelopes makes detection of extreme statistics of adjacent branches more difficult. Modal
localization is here generated on the response of the first pendulum containing uncertainty.

Appl. Sci. 2017, 7, 684  17 of 26 

 
(a) (b) (c) 

DM-RB 
DM-NRB 
DM-B1 

 DM 
 DM-B2 
 TM-B1 
 TM-B2 

Figure 12. Basins of attraction of the deterministic amplitudes (a) | | , (b) | |  and (c) | |  in the 
Nyquist plane (( ) , ( ) ) for = −1, ( ) = ( ) = 	0.2 and ( ) = ( ) = 	0.3. 

The bifurcation topology transfer between the responses generates a correspondence between 
the attractors in the three basins of attraction. Indeed, when | |  and | |  jump between DM-RB, 
DM-NRB, DM-B1 and MD-B2, | |  is stabilized on DM. Moreover, a correspondence exists between 
the TM attractors (TM-B1 and TM-B2) of the three pendulums responses. 

The DM attractors are the most robust since they dominate the basins with 51% of their global 
size. The contribution of the TM attractors is nearly similar (49%). Focusing on DM, the DM-B2 
attractors, occupying nearly 35% of the basins, are the most robust. Similarly, the TM-B2 attractor 
occupies 33%. The lowest contribution is of the DM-RB attractors representing less than 2% of the 
global basins size. 

3.2.2. Stochastic Study 

The greatest impact of uncertainty is obtained on the first pendulum responses since it contains 
the uncertain parameter. The second pendulum responses are less affected while the behavior of the 
third pendulum remains deterministic, because no coupling terms relate its equation with the one 
associated to the stochastic pendulum. Hence, the third pendulum responses are not presented 
hereafter. Figures 13–15 illustrate the envelopes of the responses amplitudes in generalized and 
physical coordinates, for = 2% and = 5%. 

For = 5%, all branches are larger in terms of amplitude and frequency ranges. Consequently, 
the multimode solutions are enhanced and the multistability domain is wider. Nevertheless, the 
overlap of envelopes makes detection of extreme statistics of adjacent branches more difficult. Modal 
localization is here generated on the response of the first pendulum containing uncertainty. 

(a) 

(a
1
)
0

-1 -0.5 0 0.5 1

(b
1
) 0

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

(a
1
)
0

-1 -0.5 0 0.5 1

(b
1
) 0

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

(a
1
)
0

-1 -0.5 0 0.5 1

(b
1
) 0

-1

-0.5

0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

σ

-3 -2 -1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ

-3 -2 -1 0 1 2
0

0.05

0.1

0.15

σ

-3 -2 -1 0 1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 13. Cont.



Appl. Sci. 2017, 7, 684 19 of 27
Appl. Sci. 2017, 7, 684  18 of 26 

(b)

Figure 13. Envelopes of the modal intensity amplitude responses: (a) ,  and  of the 
first pendulum and (b) | | , | |  and | |  of the second pendulum, computed using the gPCE 
method for = 2%. 

 
(a) 

 
(b)

Figure 14. Envelopes of the modal intensity amplitude responses: (a) ,  and  of the 
first pendulum and (b) | | , | |  and | |  of the second pendulum, computed using the gPCE 
method for = 5%. 

 
(a) 

σ

-3 -2 -1 0 1 2

|A
1
|²

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ

-3 -2 -1 0 1 2

|A
2
|²

0

0.05

0.1

0.15

σ

-3 -2 -1 0 1 2

|A
3
|²

0

0.05

0.1

0.15

0.2

0.25

0.3

σ

-3 -2 -1 0 1 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ

-3 -2 -1 0 1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

σ

-3 -2 -1 0 1 2
0

0.05

0.1

0.15

σ

-3 -2 -1 0 1 2

|A
1
|²

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

σ

-3 -2 -1 0 1 2

|A
3
|²

0

0.05

0.1

0.15

0.2

0.25

0.3

σ

-3 -2 -1 0 1 2

|A
2
|²

0

0.05

0.1

0.15

f (Hz)
1.6 1.8 2 2.2

φ̃
1
(r
a
d
)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

f (Hz)
1.6 1.8 2 2.2

φ
2
 (

ra
d

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

f (Hz)
1.6 1.8 2 2.2

φ
3
 (

ra
d

)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 13. Envelopes of the modal intensity amplitude responses: (a)
∣∣∣Ã1

∣∣∣2,
∣∣∣Ã2

∣∣∣2 and
∣∣∣Ã3

∣∣∣2 of the first

pendulum and (b) |A1|2, |A2|2 and |A3|2 of the second pendulum, computed using the gPCE method
for δl = 2%.
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Figure 14. Envelopes of the modal intensity amplitude responses: (a)
∣∣∣Ã1

∣∣∣2,
∣∣∣Ã2

∣∣∣2 and
∣∣∣Ã3

∣∣∣2 of the first

pendulum and (b) |A1|2, |A2|2 and |A3|2 of the second pendulum, computed using the gPCE method
for δl = 5%.
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Figure 15. Envelopes of the physical amplitude responses φ̃1, φ2 and φ3, computed using the gPCE
method, for (a) δl = 2% and (b) δl = 5%.

Figure 16 and Table 4 illustrate the uncertainty effects through the intervals ∆φ and ∆ f of the
multistability domain. More important variation is detected on ∆ f than on ∆φ. The ratios ∆ f /∆φ show
that the nonlinear aspect of the structure is enhanced. Indeed, the nonlinearity of the first pendulum
response is more strengthened than the one of second pendulum response.

Comparing uncertainty propagation methods, the gPCE allows generally an accurate
approximation of the responses dispersion. Nevertheless, less accuracy is obtained for δl = 5%.
Note that errors result also from lack of initial conditions and make detection of bifurcation points
difficult. Furthermore, only 5 simulations are generated when applying the gPCE, compared to
200 samples used by the LHS method. A discontinuity of the envelopes’ curves is thus detected,
especially for δl = 5%.
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Figure 16. Evolution of (a) the frequency ranges and (b) the amplitude ranges of the multistability
domain with respect to deterministic ones according to the DM and TM.

Table 4. Stochastic amplitude and frequency ranges of the multistability domain, according to the DM
and TM, with respect to the deterministic ranges.

Dof

DM TM

LHS gPCE LHS gPCE

2% 5% 2% 5% 2% 5% 2% 5%

∆ f (%)
1 172.86 272.86 162.86 262.86 165.06 287.95 161.45 275.90
2 110.47 113.95 110.47 1.95 143.18 165.91 143.18 152.27

∆φ (%)
1 104.76 114.15 105.73 113.66 113.29 126.44 109.73 125.75
2 100.94 103.10 100.40 1.56 100.83 97.39 100.69 96.97

∆ f
∆φ (%)

1 165.88 240.00 154.12 231.76 145.61 227.19 146.49 218.42
2 109.48 110.34 109.48 111.21 0.98 168.85 140.98 155.74

Regarding the dispersion of the basins of attraction (Figure 17 and Table 5), the envelopes of the

attractors of
∣∣∣Ã1

∣∣∣2, computed using the LHS method, cover 69.27% of the basins, for δl = 2%. The gPCE
approximation gives 66.85%. For δl = 5%, the basins are fully overlapped. However, the envelopes
cover only 7.58% of the basins of |A1|2, computed using the LHS method, for δl = 2% and 16.40% for
δl = 5%. The gPCE approximations are, respectively, 6.91% and 15.02%. Less accurate results are thus
obtained by the gPCE for δl = 5%. To overcome this issue, one can elevate the polynomial order of the
gPCE or use one of its recently developed variants [65–67].

As shown in Figure 17 and Table 5, a largest dispersion is detected on the DM-RB and DM-NRB

attractors of
∣∣∣Ã1

∣∣∣2. Their contributions in the basins, approximated in deterministic case by 1.69%
and 8.71% respectively, increase up to 14.5% and 47.5%, for δl = 2%. For δl = 5%, the attractors
become totally overlapped (100%). The DM-B2 and TM-B2 attractors of |A1|2, remain the most robust
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against uncertainty. The robustness analysis of the basins of attraction illustrates the modal localization
generated on one or more attractors, for different dispersion levels.Appl. Sci. 2017, 7, 684  21 of 26 
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Figure 17. Envelopes of the attractors of (a) DM-RB, (b) DM-NRB, (c) DM-B1, (d) DM-B2, (e) TM-B1

and (f) TM-B2 of the amplitude
∣∣∣Ã1

∣∣∣2 of the first pendulum response, in the Nyquist plane ((a1)0, (b1)0)

for σ = −1, (a2)0 = (b2)0 = 0.2 and (a3)0 = (b3)0 = 0.3, computed using the gPCE method for
δl = 2%.

Table 5. Comparison of the contributions of different attractors in the basins of attraction computed
using the LHS and gPCE methods, for deterministic case, δl = 2% and δl = 5%.

Amplitude Attractor Det
LHS gPCE

ffil = 2% ffil = 5% ffil = 2% ffil = 5%

∣∣∣Ã1

∣∣∣2 (dof1)

Min

DM-RB (%) 1.69 0 0 0 0
DM-NRB (%) 8.71 0.43 0 0.82 0
DM-B1 (%) 5.71 3.19 0 3.30 0
DM-B2 (%) 34.87 12.72 0 13.77 0

TM-B1 (%) 16.08 0 0 0 0
TM-B2 (%) 32. 14.40 0 15.46 0

Envelope

DM-RB (%) 0 14.53 100 12.21 99.93
DM-NRB (%) 0 47.16 100 42.38 97.82
DM-B1 (%) 0 8.12 25.50 7.01 10.30
DM-B2 (%) 0 38.17 51.19 35.07 44.58

TM-B1 (%) 0 47.31 69.55 43.44 44.27
TM-B2 (%) 0 28.64 44.79 24.55 35.59

|A1|2 (dof2)

Min

DM-RB (%) 1.69 1.30 0.97 1.33 0.99
DM-NRB (%) 8.71 9.59 9.08 9.65 9.30
DM-B1 (%) 5.71 5.02 4.28 5.08 4.39
DM-B2 (%) 34.87 32.91 30.72 33.12 30.96

TM-B1 (%) 16.08 13.87 10.82 13.27 11.04
TM-B2 (%) 32.94 31.05 28.72 31.27 29.29

Envelope

DM-RB (%) 0 1.19 2.47 1.09 2.29
DM-NRB (%) 0 2.63 6.97 2.37 6.29
DM-B1 (%) 0 1.03 2.07 0.95 1.94
DM-B2 (%) 0 3.27 6.48 3 5.98

TM-B1 (%) 0 5.12 10.46 4.64 9.53
TM-B2 (%) 0 3.22 7.61 2.91 6.73
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On the other hand, the gPCE allows reducing the CPU time needed for the LHS method by
nearly 95.2% (from 33.6 h down to 1.6 h) and 97.5% (from 489.6 h down to 12 h) when computing the
frequency responses and the basins of attraction, respectively.

3.3. Overall Discussion

Three stable solutions are obtained at several frequencies in the multistability domain due to
modal interactions between the responses of two coupled nonlinear pendulums, generated by the
collective dynamics. However, up to six stable solutions are obtained if a three coupled pendulums
chain is considered.

In presence of uncertainties, the stability of the system is enhanced. Indeed, a multiplicity of
stable solutions is obtained and the multistability domain is wider in terms of frequency range and
response amplitude. Moreover, the nonlinearity of the system is strengthened by increasing the ratios
of the frequency intervals by the amplitude intervals computed between the extreme bifurcation points
in the multistability domain.

The robustness of the attractors of different modes and modal branches is illustrated by the
dispersion analysis of the basins of attraction and the quantitative study of the evolution of the
distribution of these attractors from deterministic case to the case δl = 5%. Modal localization is
generated by widening one or more special modal branches more than the others.

For a reduction of up to 97.5% of computing time compared to the LHS method, the gPCE
method allows satisfying approximations of the frequency responses and the basins of attraction.
These approximations are more accurate for the frequency responses since the dispersion analysis of
the basins of attraction is more thorough. For high dispersion levels (>2%), some limits of the gPCE
method are reached.

4. Conclusions

A generic discrete analytical model combining multiple scales method and standing-wave
decomposition was proposed in this paper. The model accounts for parametric uncertainties and
permits to investigate the robustness of the collective dynamics of nonlinear coupled pendulums chain.
Uncertainties allow a realistic modeling of imperfections, which can disturb the perfect periodicity
of real engineering structures. In probabilistic framework, dispersion analyses of the frequency
responses and the basins of attraction of two and three coupled pendulums chains were performed.
Statistical evaluations of the frequency responses, in both modal and physical coordinates, quantified
the variability of the frequency and amplitude intervals of the multistability domain. The complexity
of the frequency responses detected in terms of modal interactions and bifurcation topology transfer,
in deterministic case, was amplified in presence of uncertainty. The envelopes of the multimode
branches are enlarged, and even overlapped, making difficult the detection of the extreme statistics of
adjacent branches. This complexity emphasizes the large number of multimode solutions, even for
chains of only two and three coupled pendulums, and the modal localization generated by uncertainty.
Moreover, the presence of imperfection in a periodic chain widens its multistability domain and
strengthens its nonlinear aspect. Particularly, the stability and the nonlinearity of the responses of the
pendulums containing uncertainty are strongly enhanced. Furthermore, the robustness analysis of the
basins of attraction was investigated through the dispersion analysis of the attractors’ contributions.
Finer analysis was thus allowed highlighting the complexity of the problem and the modal localization
generated on the response of the pendulum containing uncertainty. These advantages can serve as
a hint of the important modal localization, expected, in presence of uncertainties, for large number
of pendulums. Imperfections can be functionalized to generate energy localization suitable for
several engineering applications such as vibration energy harvesting, mass sensing in micro and
nanotechnology, energy scavenging or trapping applications.

The generalized Polynomial Chaos Expansion was compared to the Latin Hypercube Sampling
method, considered as reference, for uncertainty propagation. Results proved the satisfying
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approximations given by the former method for up to 97% of computational time reduction with
respect to the later.

The robustness analysis becomes, both analytically and numerically, more complex and
prohibitive when large-size structures and high dispersion levels are considered. Future works
will focus on these challenges in order to improve analytical and numerical analyses.

The robustness of the collective dynamics against the uncertainty of some chosen structural input
parameters was discussed in this paper. Extending the study to parametric analysis, with the aim
of investigating other possible influential factors with respect to system robustness, is an interesting
perspective that will be addressed in future works.
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Appendix A

The functions Gm and S are chosen according to the number and the positions of the uncertain
pendulums in the chain, which is derived from the coupling. Four possible configurations (a–d) are
defined, with respect to Section 2.1, as follows:

a. If the concerned pendulum is deterministic as well as its neighbors, Gm = 2Am and S = 0. In this
case, the complex amplitude equation takes the form

2iω0 A(1,0)
m + iω0cn Am + 4knsin

[ qm
2
]2 Am + 3

4 αn ∑j,k,l Aj Ak A∗l ∆(1)
jkl,m

− 1
(N+1) fn exp(iσT)∑N

n=1 sin[nqm] = 0,
(A1)

b. If the concerned pendulum is deterministic but the previous one is stochastic, Gm = Am + Ãm et
S = −1. Equation (14) is expressed as

2iω0 A(1,0)
m + iω0cn Am + kn

(
2Am − Cos[qm]

(
Am + Ãm

))
+ 2kn

N+1 ∑N
n=1 sin[nqm]∑N

x=1 cos[nqx]sin[qx]
(

Ãx − Ax

)
,

(A2)

c. If the concerned pendulum is deterministic but the following is stochastic, Gm = Am + Ãm and
S = +1. Equation (14) takes the form

2iω0 A(1,0)
m + iω0cn Am + kn

(
2Am − cos[qm]

(
Am + Ãm

))
+ 2kn

N+1 ∑N
n=1 sin[nqm]∑N

x=1 cos[nqx]sin[qx]
(

Ax − Ãx

)
+ 3

4 αn ∑j,k,l Aj Ak A∗l ∆(1)
jkl,m −

1
(N+1) fn exp(iσT)∑N

n=1 sin[nqm] = 0,

(A3)

d. If the stochastic pendulum is concerned, Ãm replaces Am in Equation (14), Gm = 2Am and S = 0.
Equation (14) is thus written as

2iω0 Ã(1,0)
m + iω0cn Ãm + 2kn

(
Ãm − cos[qm]Am

)
+ 3

4 αn ∑j,k,l Ãj Ãk Ã∗l ∆(1)
jkl,m

− 1
(N+1) fn exp[iσT]∑N

n=1 sin[nqm] = 0
(A4)

The number of generated complex equations depends on the number and positions of stochastic
pendulums. In fact, the N equations obtained in deterministic case become N(p + q + d) in a stochastic
one, where p is the number of stochastic pendulums, q the number of deterministic pendulums
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neighbors of the stochastic ones and d = 1 if the structure contains deterministic pendulums having
deterministic neighbors and 0 otherwise.
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